Black and Decker (U.S.), Inc.

Environmental Investigation Report Black and Decker, Incorporated Hampstead, Maryland Facility

ENVIRONMENTAL INVESTIGATION REPORT BLACK AND DECKER, INCORPORATED HAMPSTEAD, MARYLAND FACILITY

Prepared for:

Black and Decker (U.S.), Inc.

Randall L. McAlister, P.G. Senjor Geologist

Peter S. Puglionesi, Project Manager Walter M. Leis, P.G. Project Director

April 1989

Prepared by:

Roy F. Weston, Inc. Weston Way West Chester, Pennsylvania 19380

W.O. No. 2501-02-01

4166B

•

() N

TABLE OF CONTENTS

Section		Title	Page
EXECU	TIVE SU	JMMARY	ES-1
1	INTRO	DUCTION	1–1
2	BACKG	ROUND	2–1
	2.2	Site Description Site Activities Environmental Setting 2.3.1 Physiography 2.3.2 Geology 2.3.3 Hydrogeology	2-1 2-1 2-4 2-4 2-5 2-5
3	PHASE	I INVESTIGATION	3–1
	3.1	Zone A - Storage Tank Area 3.1.1 Field Activity 3.1.2 Analytical Results	3-1 3-1 3-8
	3.2		3-14 3-14 3-17
	3.3		3-20 3-20 3-20
	3.4	Zone D - Potential Product Disposal Area 3.4.1 Field Activity 3.4.2 Analytical Results	3-22 3-22 3-28
	3.5		3-32 3-32 3-34
	3.6		3-34 3-34 3-37
·	3.7	Zone G - Lagoon Areas 3.7.1 Field Activity 3.7.2 Analytical Results	3-38 3-38 3-40
	3.8	Conclusions	3-47
4	PHASE	E II INVESTIGATION	4–1
	4.1	Tank Farm Soils 4.1.1 Phase IIa 4.1.2 Phase IIb	4-1 4-1 4-8

ii

TABLE OF CONTENTS (continued)

Section	Title	Page
	4.2 Groundwater 4.2.1 Monitor Well Installation and	4-32
·	Groundwater Sampling 4.2.2 Hydrogeology	4-33 4-39 4-45 4-52
	4.3.1 Tank Farm Soils - Source Characterization 4.3.2 Groundwater	4-52 4-54
-5	CONCLUSIONS AND RECOMMENDATIONS	5–1
	5.1 Conclusions 5.2 Recommendations	5-1 5-2
6	REFERENCES	6-1
	APPENDIX A - PHASE I ANALYTICAL DATA	
	APPENDIX B - SOIL GAS PROCEDURE	
	APPENDIX C - PHASE I SOIL BORING LOGS AND TEST EXCAVATION LOGS	
	APPENDIX D - GEOPHYSICAL SURVEY	
	APPENDIX E - PHASE IIA ANALYTICAL DATA	
	APPENDIX F - PHASE IIA SOIL BORING LOGS, WELL B LOGS, AND WELL CONSTRUCTION DIAGRA	OREHOLE MS
	APPENDIX G - PHASE IIB ANALYTICAL DATA	
	APPENDIX H - PHASE IIB SOIL BORING LOGS, WELL B LOGS, AND WELL CONSTRUCTION DIAGRA	OREHOLE

iii

.

LIST OF TABLES

Table No.	Title	Page
3-1	Tank Farm 1 and 2 Inventory	3-3
3-2	Results of Soil-Gas Analysis: Zone A	3-9
3-3	Zone A: Soil Analysis	3-13
3-4	Zone B: Well Elevation Survey	3-18
3-5	Zone B: Soil and Groundwater VOC Analysis	3-19
3-6	Results of VOC Analysis: Zone C Sediment	3-23
3-7	Results of VOC Analysis: Zone D Soil Samples	3-31
3-8	Results of Soil-Gas Analysis: Zone E	3-35
3–9	Results of VOC Analysis: Zone E Soil Samples	3-36
3-10	Results of Petroleum Hydrocarbon and VOC Analysis: Zone F Soil Samples	3-39
3-11	Results of VOC Analysis: Zone G Surface-Water and Sediment Samples	3-42
3-12	Results of Nitrate and EP Toxicity Analysis: Zone G Sediment and Surface- Water Samples	3-43
3-13	Results of Metals Analysis: Zone G Surface-Water Samples	3-44
4-1	Results of VOC Analysis: Phase IIb Soil Samples, Tank Farm 1	4-17
4-2	Results of VOC Analysis: TCLP Soil Samples, Tank Farm 1	4-22
4-3	Results of VOC Analysis: Phase IIb Soil Samples, Tank Farm 2	4-26
4-4	Results of VOC Analysis: TCLP Soil Samples, Tank Farm 2	4-31
4-5	Well Construction Details Phase II Monitor Wells	4-38

4166B

iv

LIST OF TABLES

Table No.	Title	Page
4-6	Groundwater Elevations in Black & Decker Wells	4-41
4-7	Results of VOC Analysis: Phase II Ground- water Samples	4-46

•

11

LIST OF FIGURES

Figure No.	Title	Page
2-1	Topographic Map of Black & Decker Plant, Hampstead, Maryland and Vicinity	2-2
2-2	Site Map of Black & Decker Facility, Hampstead, Maryland	2-3
3-1	Phase I Areas of Investigation, Black & Decke Hampstead, Maryland	r 3-2
3-2	Location of Phase I Sampling Points, Tank Farm 1, Black & Decker, Hampstead, Maryland	3-5
3-3	Location of Phase I Sampling Points, Tank Farm 2, Black & Decker, Hampstead, Maryland	3-6
3-4	Location of Phase I Sampling Points, Above- Ground Tank Storage Tank Area, Black & Decker, Hampstead, Maryland	3-7
3-5	Results, Tank Farm 1 Soil-Gas and Soil Sample Analysis, Black & Decker, Hampstead, Maryland	3-10
3-6	Results, Tank Farm 2, Soil-Gas and Soil Sample Analysis, Black & Decker, Hampstead, Maryland	3-11
3-7	Results, Above-ground Tank Storage Area, Soil-Gas and Soil Sample Analysis, Black & Decker, Hampstead, Maryland	3-12
3-8	Locations of Zone B Test Pits and Monitor Wells, Black & Decker, Hampstead, Maryland	3-16
3-9	Locations of Zone C Test Pits and Sediment Sample, Black & Decker, Hampstead, Maryland	3-21
3-10	Zone D & F, Magnetometer Survey, Black & Decker, Hampstead, Maryland	3-25
3-11	Zone D & F Electromagnetic Survey, Black & Decker, Hampstead, Maryland	3-26
3-12	Zone D & F, Test Pit Locations, Black & Decker, Hampstead, Maryland	3-27

4166B

LIST OF FIGURES (continued)

Figure No.	Title	Page
3-13	Zone D & F, Magnetic Anomaly Map, Black & Decker, Hampstead, Maryland	3-29
3-14	Zone D & F, Electromagnetic Anomaly Map, Black & Decker, Hampstead, Maryland	3-30
3-15	Location of Phase I Sampling Points, Zone E, Black & Decker, Hampstead, Maryland	3-33
3-16	Location of Phase I Sampling Points, Zone G, Black & Decker, Hampstead, Maryland	3-41
3-17	Results, Zone G, Lagoon Surface-Water and Sediment Sample Analysis	3-45
4-1	Location of Phase IIa Soil Borings, Tank Farm 1	4-2
4-2	Location of Phase IIa, Soil Borings, Tank Farm 2	4-3
4-3	Phase I and IIa Soil Borings, Results of TPH and VOC Analysis, Tank Farm 1	4-6
4-4	Phase I and IIa Soil Borings, Results of TPH and VOC Analysis, Tank Farm 2	4-7
4-5	Location of Phase IIb Soil Borings, Tank Farm 1	4-9
4-6	Location of Phase IIb Soil Borings, Tank Farm 2	4-10
4-7	Phase II Soil Borings, Results of TPH and VOC Analysis Cross Section A-A', Tank Farm 1	4-13
4-8	Phase II Soil Borings, Results of TPH and VOC Analysis Cross Section B-B', Tank Farm 1	4-14
4-9	Phase II Soil Borings, Results of TPH and VOC Analysis Cross Section C-C', Tank Farm 1	4-15
4-10	Phase II Soil Borings, Results of TPH and VOC Analysis Cross-Section D-D', Tank Farm 1	4-16
4-11	Tank Farm 1 Soil Profile Depicting Zones of TPH Concentration >100 ppm and VOC Concentration >1 ppm	4-20

Y

LIST OF FIGURES (continued)

.

Figure No.	Title	Page
4-12	Phase II Soil Borings, Results of TPH and VOC Analysis Cross-Section A-A', Tank Farm 2	4-23
4-13	Phase II Soil Borings, Results of TPH and VOC Analysis Cross-Section B-B', Tank Farm 2	4-24
4-14	Phase II Soil Borings, Results of TPH and VOC Analysis Cross-Section C-C',Tank Farm 2	4-25
4-15	Tank Farm 2 Soil Profile Depicting Zones of TPH Concentration >100 ppm and VOC Concentration >1 ppm.	4-30
4-16	Monitor Well and Production Well Locations Black & Decker, Hampstead, Maryland	4-34
4-17	Monitor Well Construction, Black & Decker, Hampstead, Maryland	4-36
4-18	Shallow Groundwater Elevation Contour Map 12/88, Black & Decker, Hampstead, Maryland	4-43
4-19	Deep Groundwater Elevation Contour Map 12/88, Black & Decker, Hampstead, Maryland	4-44
4-20	TCE Concentration in Groundwater 7/88 and 12/88, Black & Decker, Hampstead, Maryland	4-49
4-21	PCE Concentration in Groundwater 7/88 and 12/88, Black & Decker, Hampstead, Maryland	4-51

4166B

viii

EXECUTIVE SUMMARY

Black and Decker, Inc. (Black & Decker) retained Roy F. Weston, Inc. (WESTON) to conduct an environmental investigation of Black & Decker's Hampstead, Maryland facility. The study was initiated as a result of the detection of chlorinated hydrocarbons in the groundwater at the plant site.

WESTON's objectives in the investigation were to:

- Identify sources or potential sources of groundwater contamination on-site.
- Delineate the nature and extent of potential contamination on-site.
- Characterize possible routes of chlorinated hydrocarbon migration.
- Develop recommendations based on the available data.

POTENTIAL SOURCE AREA CHARACTERIZATION

Using a variety of nonintrusive and intrusive investigation techniques, the Phase I Source Area identification program efficiently achieved the objective of identifying which of the potential source areas could represent significant current sources of groundwater contaminants. Follow-up sampling was conducted on selected areas during Phase II to further define suspected source areas.

Storage Tank Areas (Zone A)

Of the three storage tank areas, the aboveground storage tank area does not appear to be a current source area. Soils in the other two areas, underground Tank Farms 1 and 2, appear to contain localized "hot spots" of both total petroleum hydrocarbons (TPH) and volatile organic compounds (VOCs). The VOCs are present mainly in soils with elevated TPH concentrations.

Tank Farm 1

Soils in the tank farm area contain TPH, toluene, ethyl benzene, and xylene in limited horizons. A comparison of the nearby groundwater quality and the Toxicity Characteristic Leaching Procedure (TCLP) leachate concentrations against proposed draft Federal drinking water standards indicates that these compounds are present below levels that have or would significantly impact groundwater quality.

Tank Farm 2

Soils in this tank farm area contain primarily TPH, PCE, and TCE in limited horizons. A comparison of the nearby groundwater quality and the TCLP leachate concentrations against Federal drinking water standards indicates that these compounds may be present at sufficiently high concentrations to impact groundwater quality. Although the potential future groundwater impacts were not quantified (i.e., using leachate generation rates, lateral groundwater flow rates, and transport characteristics), the available data indicate that soil remediation is appropriate for Tank Farm 2.

Other Potential Source Areas

The evaluation of other potential source areas generally indicates that, although previous source inputs cannot be precluded, the following areas are not current sources of PCE and TCE to the groundwater:

- Fill site near seep area (Zone B).
- Potential heat treating residues disposal areas (Zone C).
- Product (tool) disposal area (Zone D).
- Corner of Buildings 5 and 6 (Zone E).
- Past potential burn area (Zone F).
- Lagoon area (Zone G).

The overall groundwater flow and VOC distribution characterization indicate that Tank Farm 2 may not have been the only, nor the principal, source of PCE and TCE in the groundwater. More likely, historical use of solvents at the Hampstead facility may have contributed to the current quality of groundwater onsite. The current distribution of TCE and PCE probably reflects the migration of a plume or plumes of these contaminants from a source or sources, no longer existing, along pathways of preferred shallow and deep groundwater flow.

GROUNDWATER CONTAMINANT/MIGRATION CHARACTERIZATION

The investigation has confirmed that the principal direction of groundwater movement is to the south-southwest. An additional component of flow to the east has been identified in the northeastern edge of the facility. Groundwater migration pathways in the bedrock are expected to be preferentially oriented along fracture zones and schistosity planes. Shallow groundwater flow appears to be perpendicular to the hydraulic gradient, which corresponds generally with surface topography. Preferred flow pathways within the saprolite may partially reflect trends in the underlying bedrock.

Characterization of the VOC distribution in the groundwater indicates that essentially separate plumes of TCE and PCE exist on the eastern half and western half of the facility, respectively. The TCE plume appears to extend south from an origin near the aboveground storage tank area. Eastern components of flow in this area suggest that a small portion of the groundwater that contains TCE may be migrating toward Route 30. The PCE plume, with highest concentrations at production well 7, encompasses the western half of the facility. Evidence suggests that groundwater containing PCE is generally moving toward the southwest.

RECOMMENDATIONS

Tank Farm Soils

Based on field and soil-water partition data for Tank Farm 2 and the concentration of groundwater contaminants in RFW-8, remediation of the Tank Farm 2 soils is recommended to minimize the future migration of contaminants to the groundwater.

Groundwater

Based on the distribution of PCE and TCE in the groundwater on-site and groundwater flow directions, a groundwater remediation plan is recommended. The proposed plan incorporates the pumping of several recovery wells to create a hydraulic barrier to contaminated groundwater flow along the northeast and southwest property boundaries. The remedial plan is designed to recover contaminated groundwater on-site and prevent migration of contaminants off-site and to result in eventual restoration of the aquifer.

SECTION 1

INTRODUCTION

Black and Decker, Inc. (Black & Decker) retained Roy F. Weston, Inc. (WESTON) in 1987 to conduct an environmental investigation of Black & Decker's Hampstead, Maryland facility. The study was initiated as a result of the detection of chlorinated hydrocarbons in the groundwater at the plant site.

WESTON's objectives in the investigation were to:

- Identify sources or potential sources of groundwater contamination on-site.
- Delineate the nature and extent of potential contamination on-site.
- Characterize possible routes of chlorinated hydrocarbon migration.
- Develop recommendations based on the available data.

WESTON'S investigation at the plant was approached in two phases. The first phase, conducted in November and December 1987, utilized soil-gas sampling, geophysical surveying, test pit excavations, soil borings, lagoon water and sediment sampling, and groundwater sampling in an effort to identify sources or potential sources of the constituents found in the groundwater. Data collected during this phase were evaluated and the resultant conclusions were incorporated in the design of the second phase.

Phase II of the investigation, conducted in June, July and December 1988, involved supplemental monitor well installation, additional soil borings, and groundwater and soil sampling and analysis. These activities aided in further definition of the extent of contamination of the on-site soil and groundwater, characterized routes of migration and provided preliminary data to be considered in developing remedial alternatives.

This report provides a comprehensive description of both Phase I and Phase II field activities, discusses the results of the data analysis, and includes recommendations for further action at the Black & Decker site.

4166B

SECTION 2

BACKGROUND

2.1 SITE DESCRIPTION

The Black & Decker facility is located in Hampstead, Maryland in northeastern Carroll County, approximately 35 miles north of Baltimore (Figure 2-1). The plant is situated on 150 acres of Black & Decker property in a predominantly rural setting. The population center of Hampstead is approximately 0.8 mile north of the plant along Hanover Road, State Route 30.

As shown in Figure 2-2, centrally located on the plant site is a large building, which serves as the center of operations. On the northwest side of this building are several single story buildings, which are used for the maintenance of plant operations. Five water supply wells line the northwest boundary of the site. A gravel road provides access to the wooded area surrounding the well houses. This road continues along the western boundary and connects with a paved road, leading to the wastewater treatment facility and lagoons on the south end of the property.

2.2 SITE ACTIVITIES

The original Black & Decker facility on the property was built in 1952 for the manufacture of power hand tools. There have been additions to the main building and construction of several ancillary buildings on-site since 1952. The main building is actually a composite of several buildings constructed in phases during the plant's operation. Various areas within the composite building have been designated Buildings 1 through 6.

Beginning in 1983, the focus of plant activities was gradually changed from manufacturing to distribution. The transformation was officially completed in July 1987; currently, the Hampstead facility serves as Black & Decker's principal distribution center on the East Coast. Subordinate activities still conducted on-site include manufacturing gears from powdered metal, heat treatment of the gears, and cleaning and treatment of power tool accessories for rust prevention.

Based on the recollections of current employees, several areas on the property were believed to be used for disposal of debris and off-specification tool products during the history of manufacturing operations. These materials were believed to be relatively inert. In addition, the manufacturing processes utilized numerous solvents and oils, which were stored in on-site aboveground and belowground tanks. The use of these materials has largely been discontinued with the change in emphasis at the

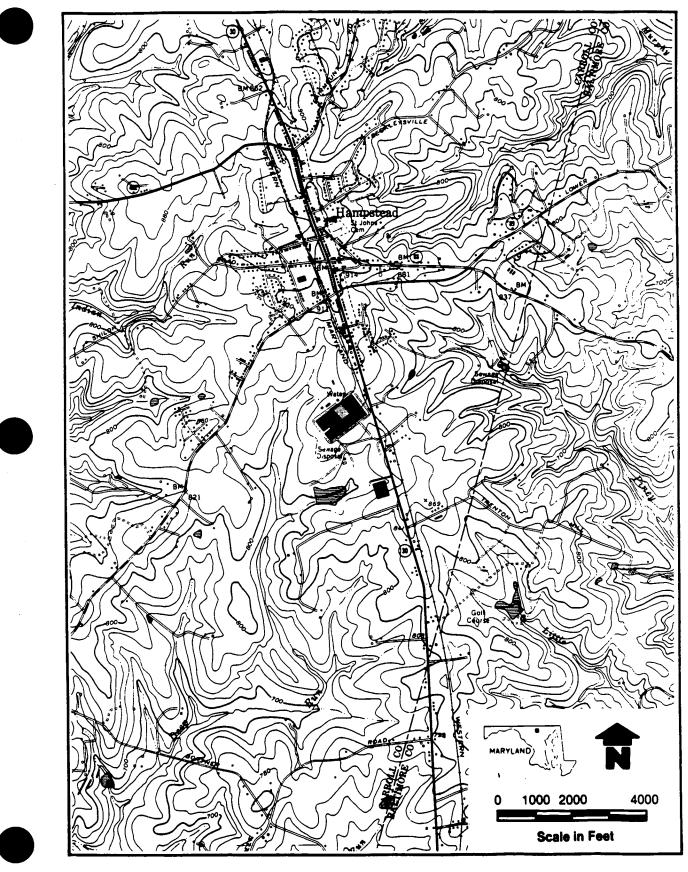


FIGURE 2-1 TOPOGRAPHIC MAP OF BLACK & DECKER PLANT, HAMPSTEAD, MD AND VICINITY

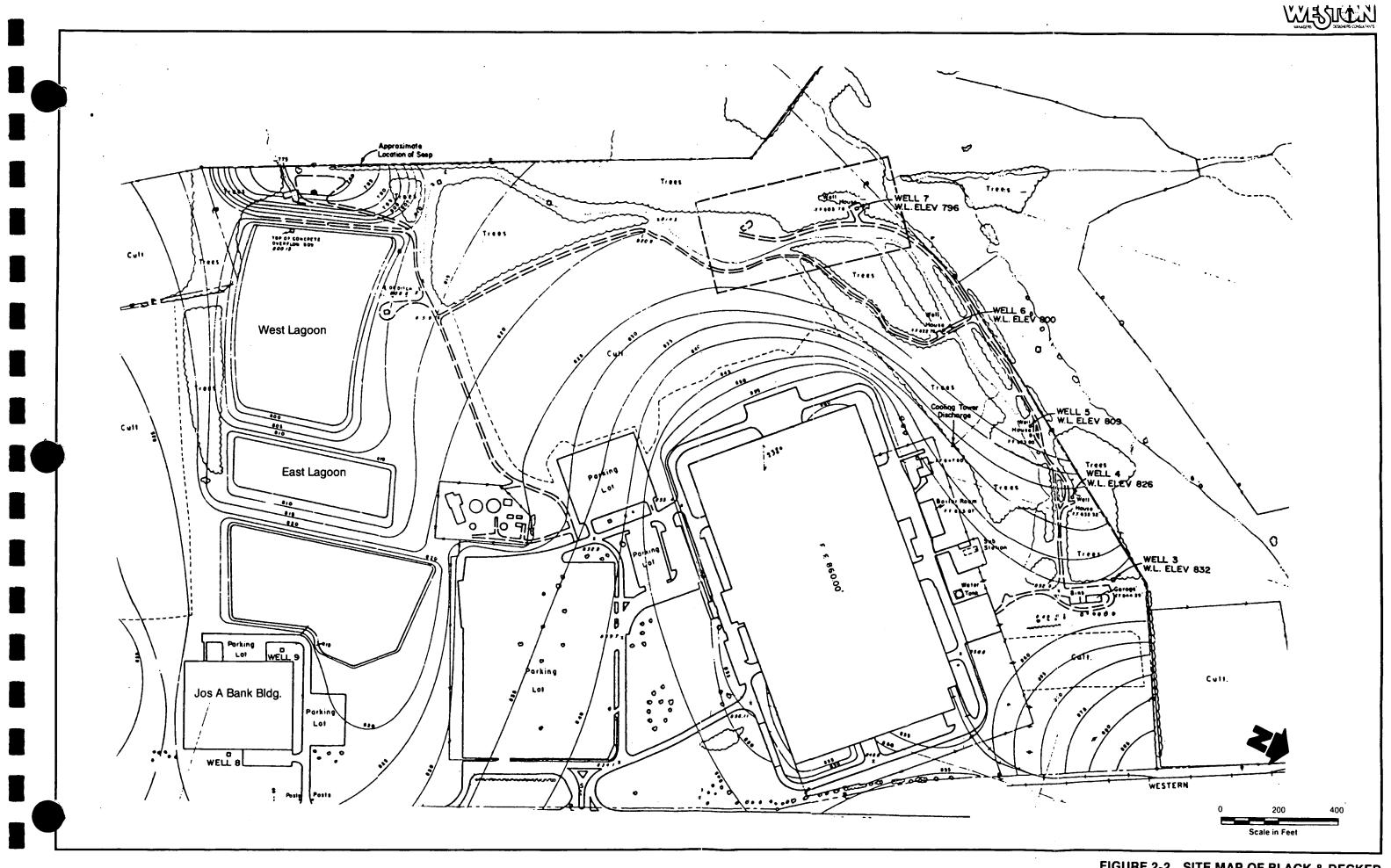


FIGURE 2-2 SITE MAP OF BLACK & DECKER FACILITY, HAMPSTEAD, MD

facility from manufacturing to distribution. All of the underground storage tanks have since been excavated, cleaned, and filled with sand.

Since 1978, the two lagoons on-site have been used by the facility for wastewater treatment. The smaller East Lagoon is used as a holding pond for the boiler blow-down water and for the effluent of the biotreatment plant. This water is, in turn, treated in the chemical treatment plant and discharged to the larger West Lagoon or "process lake." A portion of the water from the West Lagoon is recycled for use as noncontact cooling water and the excess discharged to a small stream west of the site via a NPDES permitted outfall.

In April 1984, as part of an effort to determine the impact of a gasoline spill at the Hampstead Exxon Service Station, water samples of supply wells at the Hampstead Black & Decker facility were analyzed by Carroll County officials for volatile organic compounds (VOCs). As a result of the detection of chlorinated hydrocarbons in the samples (particularly trichloroethene and tetrachloroethene), an environmental investigation was initiated by Black & Decker in conjunction with the then Maryland Department of Health and Mental Hygiene. Initial activity involved a preliminary characterization of the potential sources of the chlorinated hydrocarbons, which may have been related to past activities at the plant site. Since beginning the study, Black & Decker has provided for groundwater remediation through the use of an air stripping unit to remove moderate concentrations of VOCs from groundwater at the plant site.

2.3 ENVIRONMENTAL SETTING

2.3.1 Physiography

The plant site lies within the eastern division of the Piedmont physiographic province, which is characterized by moderate relief, gentle slopes, and rounded hills (Meyer, 1958). The climate in the Hampstead area is considered humid temperate; the average rainfall is 44 inches, and the average annual temperature is 53°F (Duigon, 1981).

As shown in Figure 2-1, the Black & Decker plant is situated on a N35°E trending ridge, which is an extension of a topographic high to the north on which the town of Hampstead lies. One hundred feet of relief (a 2° to 4° slope) separates the main building from a small stream, which follows the western perimeter of the plant site and drains south to Deep Run.

As shown in Figure 2-1, on the southeastern portion of the facility, the land surface slopes gently toward the lagoons. Storm drainage in this area is directed toward these lagoons and regionally toward Deep Run. In a small portion of the facility adjacent to the main building along the eastern

WISSEN

perimeter of the site, the land surface slopes gradually to the east-northeast. Surface drainage in this area is directed east toward Piney Run.

2.3.2 Geology

As in most of eastern Carroll County, an indeterminate thickness of the albite-chlorite schist facies of the Wissahickon Formation underlies the Black & Decker property. This facies consists principally of tightly folded albite schist or phyllite interbedded with layers of chlorite and or muscovite schist. Cream to yellow, vitreous, micaceous quartzite veins are frequently injected along the planes of foliation.

Thin quartzite beds (<5 feet thick) are interbedded with the phyllite near the base of the formation. As is common in the Piedmont, the Wissahickon bedrock underlying the property has been highly deformed and fractured. Zones of intense fracturing may have surface expression as valleys or draws, or as other linear topographic features. Meyer (1958) reports that the strike of schistosity on the plant grounds ranges from N35°E to N46°E.

Chemical weathering has produced a 25- to 80-foot thickness of weathered schist or saprolite overlying the crystalline bedrock on-site. The saprolite grades from a micaceous, clayey reddish-brown silt at shallow depths to a medium soft, greyishbrown, slightly weathered schist/phyllite near the interface with competent bedrock. Residual quartz veins are encountered throughout the saprolite.

2.3.3 Hydrogeology

In the Hampstead area, groundwater occurs chiefly in the tension joints, fractures, and shear zones in the Wissahickon Schist, in the pore spaces of the overlying saprolite, and in fractured quartz veins. Recharge to the bedrock fractures is principally from the downward percolation of water stored in the saprolite (Meyer, 1958). Groundwater flow in the bedrock may follow preferred directions as dictated by the strike of schist foliation or principal direction of jointing. Shallow groundwater flow is generally perpendicular to the hydraulic gradient, which corresponds generally with surface topography. Preferred flow pathways within the saprolite may partially reflect trends in the underlying bedrock.

The large areal extent and moderately good water-bearing properties have made the albite-chlorite facies an important aquifer in Carroll County. A high percentage of domestic and farm water wells and several municipal and industrial supply wells tap fractures in this unit at an average depth of 100 feet. The yields of these wells average approximately 16 gpm with an average specific capacity of 1.5 gpm per foot of drawdown (Meyer, 1958).

The supply wells at Black & Decker exceed the reported area averages for the bedrock aquifer. Well records for August 1988 indicate an average yield of 32 gpm and a range of specific capacities from 0.8 to 2.8 gpm per foot of drawdown for the five wells used by the plant. Step-drawdown tests conducted by the Maryland Geological Survey in 1954 on Black & Decker supply well 3 yielded an average coefficient of transmissivity and a storage coefficient for the bedrock aquifer as 5,000 gpd per foot and 0.03, respectively. A decrease in pumping levels with increased pumping rate during the test indicates that bedrock permeability decreases with depth (Meyer, 1958).

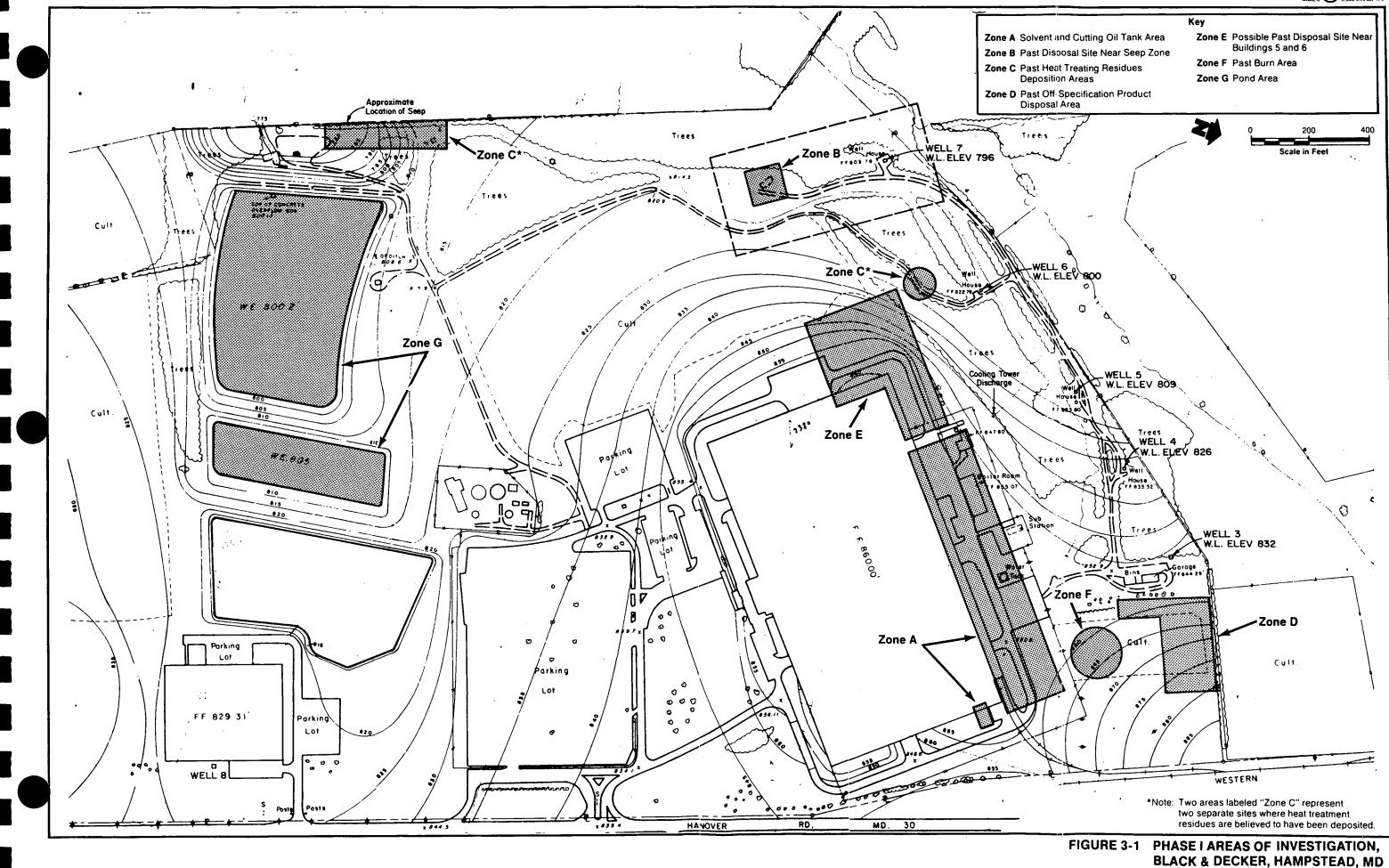
SECTION 3

PHASE I INVESTIGATION

Seven areas at the Hampstead facility that could be possible sources of groundwater and/or soil contamination were identified based on discussions with Black & Decker employees and previous investigations. These areas, Zones A through G, were investigated in Phase I, and are illustrated in Figure 3-1.

The field investigations and analytic results specific to each zone are described in Subsections 3.1 through 3.7. The validity of all chemical analyses in this section were confirmed in accordance with the WESTON quality assurance and quality control program, as described in Appendix C of the Work Plan. Summary tables of the analytical results, as presented in the following subsections, list only the compounds that were detected in samples of the particular zone. Units of mg/kg and mg/L in the summary tables correspond to parts per million (ppm) in the text. Units of ug/L and ug/kg correspond to parts per billion (ppb). Units of ng/L correspond to parts per trillion (pptr). A complete tabulation of the results, which lists all compounds tested in each analysis, is provided in Appendix A.

The conclusions drawn from the Phase I investigation and their use in developing the Phase II investigation are discussed in Subsection 3.8.


3.1 ZONE A - STORAGE TANK AREA

3.1.1 Field Activity

Three areas in this zone were identified as locations of tanks, that previously contained solvents and cutting oils. Potential soil and groundwater contamination could have occurred as a result of inadvertent spills or possible leakage.

Tank Farm 1 consisted of 13 underground tanks, which were located immediately adjacent to the rear of the main building. The oils and solvents that were contained in the tanks are listed in Table 3-1. Tank Farm 2 consisted of five underground tanks located immediately adjacent to the east side of the main building. The tanks contained various oils used in the manufacturing processes at Black & Decker, in addition to waste oils, as listed in Table 3-1. The aboveground storage tank area consisted of two 5,000-gallon aboveground tanks containing UCARTM chemicals and trichloroethylene.

The underground tanks at the tank farms have since been excavated, cleaned, and backfilled with sand. The old TCE storage

Table 3-1

Tank Farm 1 and 2 Inventory

	Tank No.	Contents	Capacity	Comments
Tank Farm 1	1-1	Toluol	1,000g	
	1-2	Acetone	1,000g	
	1-3	Acetone	1,000g	
	1-4	(Mineral spirits)		
		Cleaning Fluid	1,000g	
	1-5	(Mineral spirits)		
		Cleaning Fluid	1,000g	
	1-6	Empty	1,000g	Previously contained
				xylene and acetone
	1-7	Kerosene	1,000g	
	1-8	Solvesso 150		
		aromatic solvent	1,000g	
	1-9	Solvesso 100		
		aromatic solvent	1,000g	
	1-10	Alcohol	1,000g	
	1-11	Rust Velo	5,000g	
	1-12	Titanine		
		clear acrylic	6,000g	
	1-13	Clear Valspar	1,000g	
Tank Farm 2	2-1	Reclaimed oil	2,000g	
	2-2	Ordnance oil	1,500g	
	2-3	Quench oil	2,000g	
	2-4	Cutting oil	8,000g	
	2-5	Lubricating oil	6,000g	

tank has been removed from the aboveground tank area. Additional aboveground tanks, including a new diked TCE storage tank and tanks for methanol and liquid nitrogen, are now present in this area.

Soil-gas analysis and soil borings were the investigative techniques used to evaluate the Tank Farm Zone for the presence of VOCs and petroleum hydrocarbons (TPH).

Soil-Gas Analysis

In Zone A, 19 soil-gas samples were collected and analyzed onsite for trichlorethene (TCE) and tetrachloroethene (PCE) using the procedure described in Appendix B. Figure 3-2 depicts the locations of the eight sampling points in Tank Farm 1; Figure 3-3 depicts the locations of the three sampling points in Tank Farm 2; Figure 3-4 depicts the locations of the eight sampling points in the aboveground tank storage area. Sample locations were concentrated around distribution pipes and the underground and aboveground tanks identified on the Black & Decker site plans.

Soil Borings

Soil borings were performed in five locations in Zone A. These locations were selected on the basis of the soil-gas results (see Subsection 3.1.2). The locations of the borings for the three tank farm areas are shown in Figures 3-2 through 3-4. Each boring was advanced with a truck-mounted hollow-stem auger drill rig. Auger refusal was encountered at 10 feet in boring SB-A-2. The other borings were completed to a depth of 16 feet. As the borings were advanced, the boreholes were screened with a Century organic vapor analyzer (OVA) for indications of VOCs.

Continuous samples of soils were taken with a split spoon using Standard Penetration Test techniques (ASTM D-1586). Visual descriptions of the soil, including color, texture, and moisture content, were made during sampling. Soil from each 2-foot interval was collected with a stainless steel trowel and contained in two 250-ml laboratory-cleaned jars. Aluminum foil was placed over the mouth of the jar designated for TPH analysis and the jar lid was fitted over the foil. At the conclusion of the boring, within 5 hours of sample collection, the headspace of the jar designated for TPH analysis was screened by inserting the OVA probe through the foil after the jar lid had been removed. The screening was conducted at room temperature, between 75° and 80°F. The sample with the highest OVA reading was submitted for petroleum hydrocarbon analysis. The companion sample from that interval was submitted for VOC analysis. Two sample intervals were analyzed from SB-A-9 since both intervals had comparably high OVA readings. A duplicate

÷ North Wall of Building <u>TEMPERATION</u> TUUL TUUT ÷ SG-43 (16) SG-44 100 TI' EL STORN PENN W TEL MADRIL PEL 4 4 <u>5 come per</u> q. (12) $\langle \mathfrak{n} \rangle$ 38 . ¥ , **1** (5) 3 6 (4) (1) (z) Ň HOUSE Retaining nimus Wall **G** SG-46 SG-45 SG-4 Θ FUTURE (9 Чb SG-49 d SG-63 🖶 SB A-7 . 1 'SG-48 --127 Legend Note: Tanks presently covered with Soil Gas SG:49 crushed stone, soil, grass. **Sample Location** Soil Boring SB A-4 10 20 5 曲 Location Scale in Feet

> FIGURE 3-2 LOCATION OF PHASE I SAMPLING POINTS, TANK FARM 1, BLACK & DECKER, HAMPSTEAD, MD

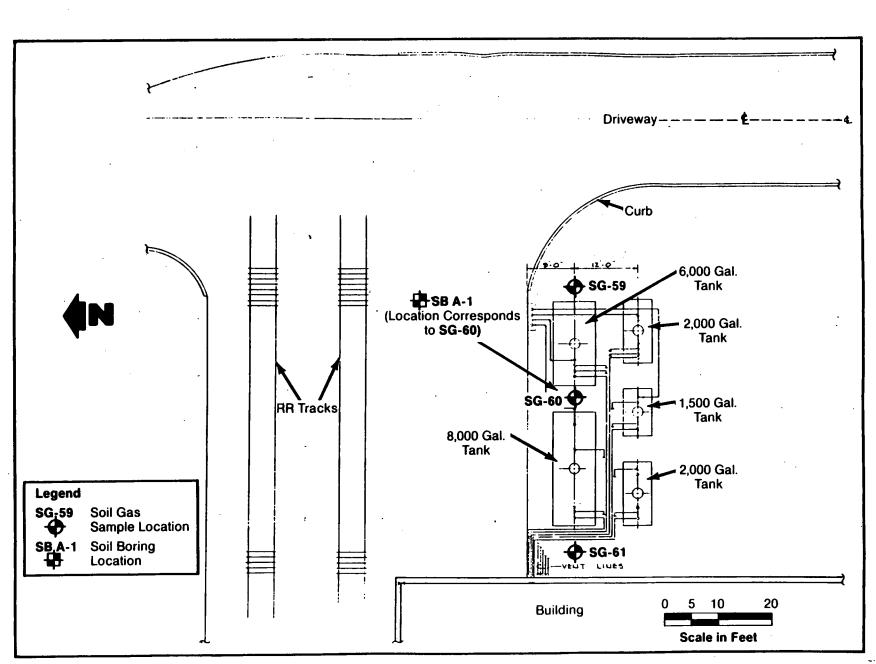


FIGURE 3-3 LOCATION OF PHASE I SAMPLING POINTS, TANK FARM 2, BLACK & DECKER, HAMPSTEAD, MD

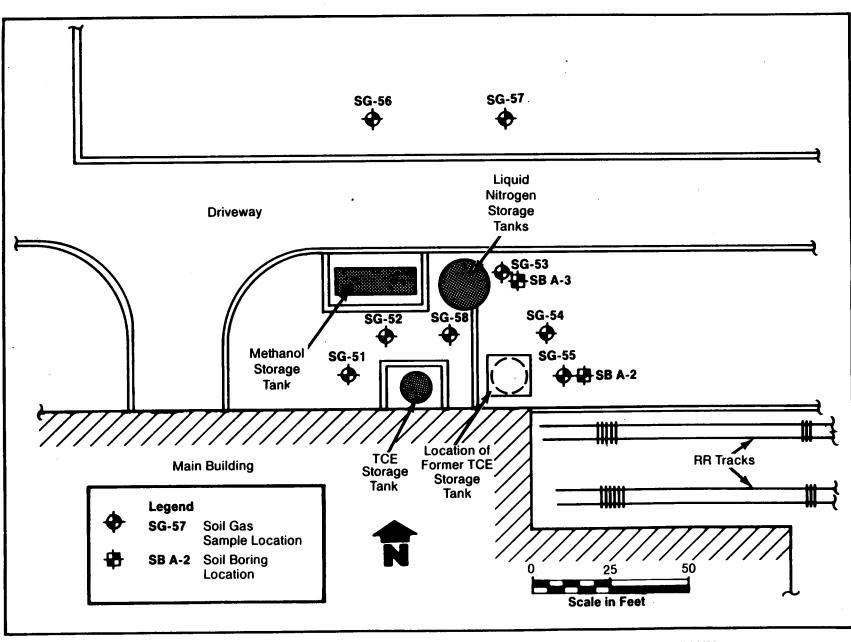


FIGURE 3-4 LOCATION OF PHASE I SAMPLING POINTS, ABOVE GROUND TANK STORAGE TANK AREA, BLACK & DECKER, HAMPSTEAD, MD

sample was collected at SB-A-4 for VOC analysis. A field blank was collected of HPLC water, which had been poured over a decontaminated split spoon in the field. The field blank was submitted for TPH and VOC analysis.

Sample spoons and trowels were cleaned with Alconox and water, with a potable water rinse followed by a deionized water rinse, after each sampled interval. The back of the rig, augers, and spoons were steam cleaned between borings.

Latex gloves were worn for sampling and changed between sample intervals. At the conclusion of drilling, these shallow bore-holes were backfilled with cuttings.

3.1.2 Analytical Results

Soil-Gas

The results of the soil-gas analysis for TCE and PCE are presented in Table 3-2 and Figures 3-5, 3-6, and 3-7. The detection limits for TCE and PCE were 0.06 pptr and 0.08 pptr, respectively. J values represent quantities that were noted as present but at concentrations below the quantification limit.

In general, both PCE and TCE were detected at very low levels in the soil-gas. PCE was typically found at levels less than 1.0 pptr. Concentrations at this level and lower were insignificant, especially since both TCE and PCE were detected in one air blank (11-21-87) at approximately 0.5 pptr. Relative to the rest of the samples, higher concentrations (several hundred parts per trillion) of TCE were detected in samples SG-60, SG-55, and SG-53 from Tank Farm 2 and the aboveground storage tank area. The locations of soil borings SB-A-1, SB-A-2, and SB-A-3 completed in Zone A correspond to these three soil-gas sampling locations.

Soil Borings

Soils sampled in the tank zones were generally described as brown silty loam to silt to clayey silt. Quartzite fragments were frequently found distributed through the finer-grained sediment. Fill was encountered above some of the underground tanks. Complete boring logs are included in Appendix C.

The summaries of the VOC and TPH analyses for the soils sampled in Zone A are presented in Table 3-3, and Figures 3-5, 3-6, and 3-7. The results of the VOC analysis show that significant levels of TCE and PCE were found in the soil at 6 to 8 feet in SB-A-1, 2.4 ppm and 380 ppm, respectively; lesser concentrations of other volatiles were also detected in this sample. Significant levels of PCE, ethyl benzene, and total xylenes were found in the soil at 4 to 6 feet in SB-A-4. In addition, 4-methyl-2-pentanone was detected at 110 ppb in the 12- to 14foot interval of SB-A-4. Several volatile organics were noted

Table 3-2

Results	of	Soil	Gas	Anal	ysis:	Zone	Α
---------	----	------	-----	------	-------	------	---

,

=====================		================		
Sample ID	Bulb #	Run #, Inj.	TCE	PCE
		Port.	(ng/mL)	(ng/mL)
43	6	88B	0.32	0.54
44	5	91B	0.45	0.07J
45	ì	92B	0.03J	0.20
46	4	65A	0.17	0.06J
47	6	66A	0.12	0.20
48	3	93B,94B	5.5	0.89
49	2	68A,69A	2.9	1.9
50	5	67A	0.27	0.03J
51	2	49A,50A	8.4 8.2	ND ND
52 53	4	48A 28A,52B	150	0.12
53	3	20A, 23A	5.5	0.02J
55	2	24A	240	1.4
56	5	51A	3.6	ND
57	6 3 2 5 2 4 5 3 2 5 2 5 2	30A,54B	12	0.01J
58	4	29A, 57B	10	0.48
59	6	79B,80B	16	22
60	3	54A	120	42
61	1	77B,78B	1.0	9.5
62	1	100B	0.17	0.05J
63	1 2	96B	1.3 125	0.06J 45
60 Repl. (11-21)	2		125	45
60 Repl.	5		89	44
(11-22)	-			
(/				
Air Blank		53A	0.03J	0.14
(11-20)		76B	0.03J	ND
_ • -				
Inside		703	ND	ND
Air Blank	1	73A 87B	0.50	0.58
(11-21)		0/0	0.50	
Air Blank		93A	0.05	0.01J
(11-22)		127B	0.08	0.02J
()				
Bulb	6		ND .	0.01J
Blank				1

J - Detected at concentration below detection limits ND - Not detected

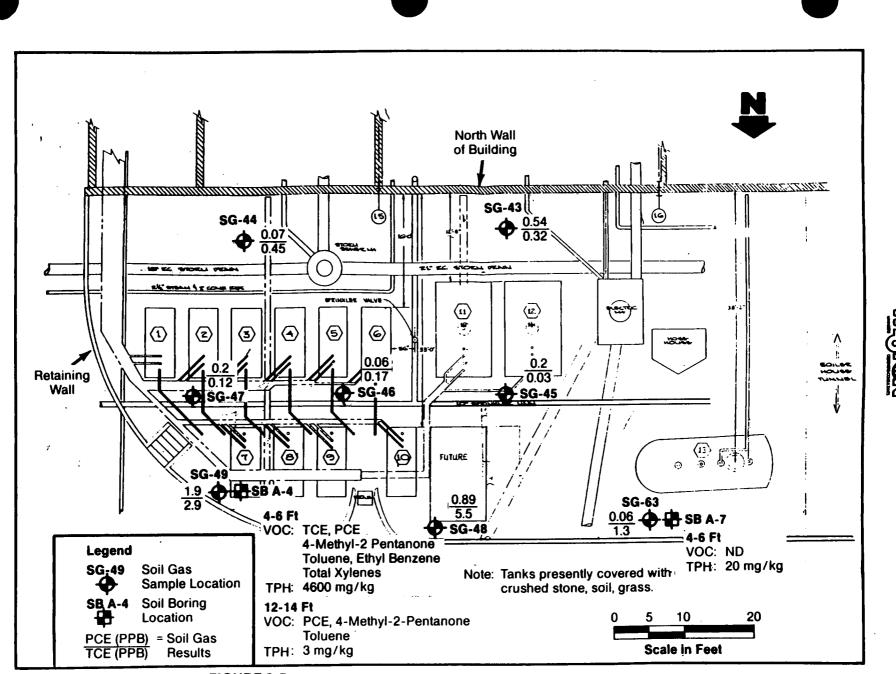
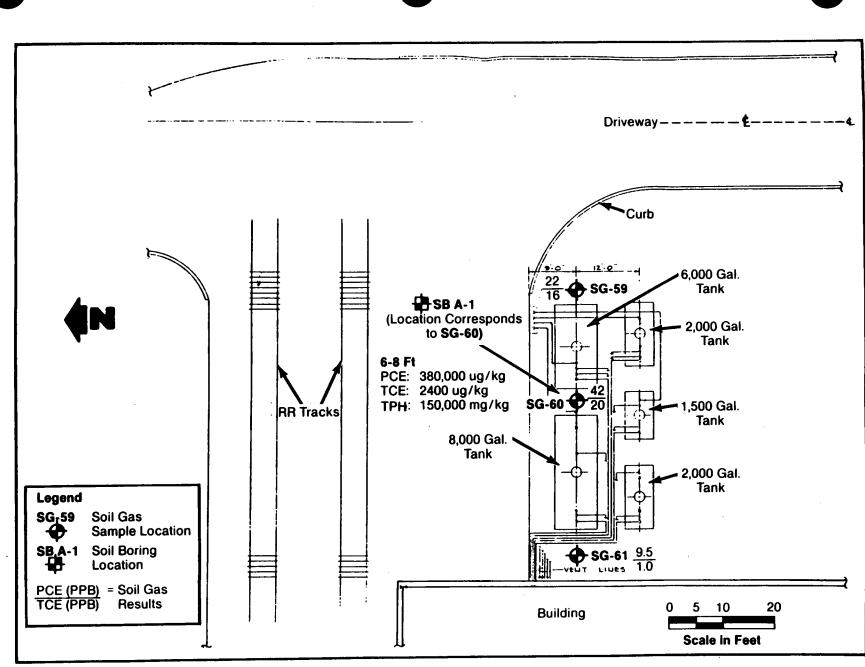



FIGURE 3-5 RESULTS, TANK FARM 1 SOIL GAS AND SOIL SAMPLE ANALYSIS BLACK & DECKER, HAMPSTEAD, MD

NEW

FIGURE 3-6 RESULTS, TANK FARM 2 SOIL GAS AND SOIL SAMPLE ANALYSIS BLACK & DECKER, HAMPSTEAD, MD

NEW

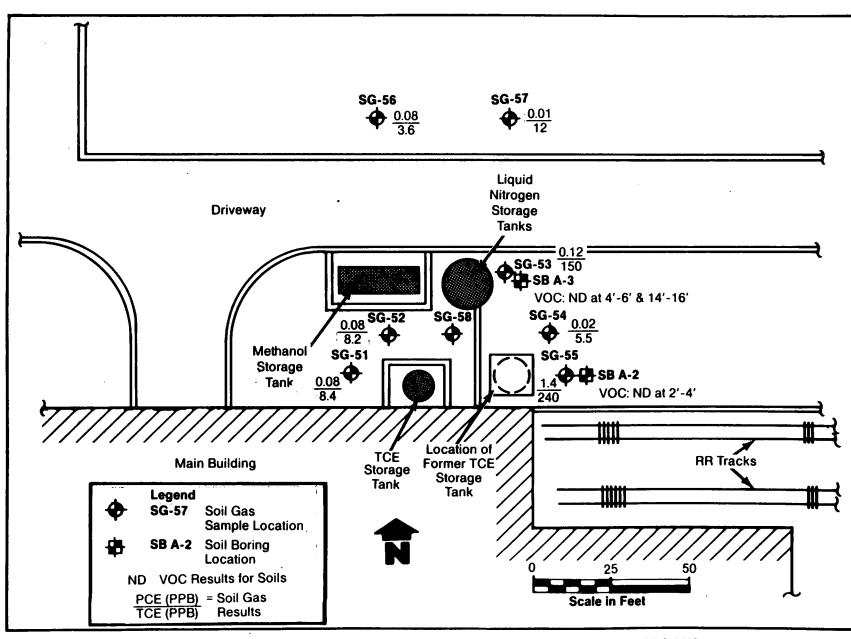


FIGURE 3-7 RESULTS, ABOVE GROUND TANK STORAGE AREA, SOIL GAS AND SOIL SAMPLE ANALYSIS, BLACK & DECKER, HAMPSTEAD, MD

Table 3-3

.

Zone A: Soil Analysis

Results of TPH Analysis

Sample	Sample	TPH
Number	Depth (ft)	Concentration
SB-A1	6-8	150000 mg/kg
SB-A2	2-4	3 mg/kg
SB-A3	14-16	2 mg/kg
SB-A4	4-6	4600 mg/kg
SB-A4	12-14	3 mg/kg
SB-A7	4-6	20 mg/kg
Field Blank		0.2u mg/l

u - not detected

Results of VOC Analysis

Detected Compound	SB-A1 ug/kg		SB-A2 ug/kg	SB-A3 ug/kg		SB-A4 ug/kg		SB-A4 ug/kg		SB-A7 ug/kg		FIELD BLANK ug/l	TRIP BLANK ug/l
Methylene Chloride	130	R	26 B	21	в	120	8	39 8		20	в	6 B	6 В
Acetone	190		15 B	17		200		410 B		26		2 B	2 JB
1,1-Dichloroethene	8	-			-		-				-		
Trans-1,2-Dichloroethene	13												
Chloroform		-				2	J					6	5
2-Butanone	26	JB		6	JB	29	JB	12 J	B	11	JB		
Carbon Tetrachloride	39	J											
Trichloroethene	2400					9	J						
1,1,2-Trichloroethane	220												
4-Methyl-2-pentanone						55	J	110					
Tetrachloroethene	380000					850		2 J			J		
Toluene ·	88	В	2 JB	2	JB	46	B	2 J	в	2	J 8		
Ethylbenzene						510							
Total Xylenes						1600							
Sample Depth (ft)	6-8	-	2-4	14-16	,	4-6		12-14		4-6			

B - Detected in labratory blanks

J - Detected at concentration below detection limits

as present in the soil but below laboratory quantification limits in SB-A-2, SB-A-3, and SB-A-7. Concentrations of methylene chloride, acetone, chloroform, toluene, and 2-butanone found in the samples were low and not considered significant since these compounds were also detected in laboratory blanks.

The results of the TPH analysis show that 150,000 ppm and 4,600 ppm of petroleum hydrocarbons were detected in soil samples from SB-A-1 and SB-A-4, respectively. Low concentrations were detected in SB-A-2, SB-A-3, and SB-A-7.

These results indicated that the aboveground tank area in Zone A is not currently a source of groundwater contaminants. However, underground Tank Farms 1 and 2 appeared to contain localized "hot spots" of both TPH and VOCs. VOCs were only present at significant levels in samples that contained very high petroleum hydrocarbon levels. This may be due to a partitioning phenomenon where the VOCs appeared to be preferentially residing in the oil phase rather than the aqueous or gas phase. The hydrocarbons were retained in the soil pores by surface tension forces and high viscosity. This scenario could have accounted for the historical migration of any VOCs not associated with high TPH and retention of VOCs in soils characterized by TPH/VOC hot spots.

In general, the Zone A results indicated that further characterization of the soils in Tank Farms 1 and 2 in Phase II was warranted.

3.2 ZONE B - FILL SITE NEAR SEEP AREA

3.2.1 Field Activity

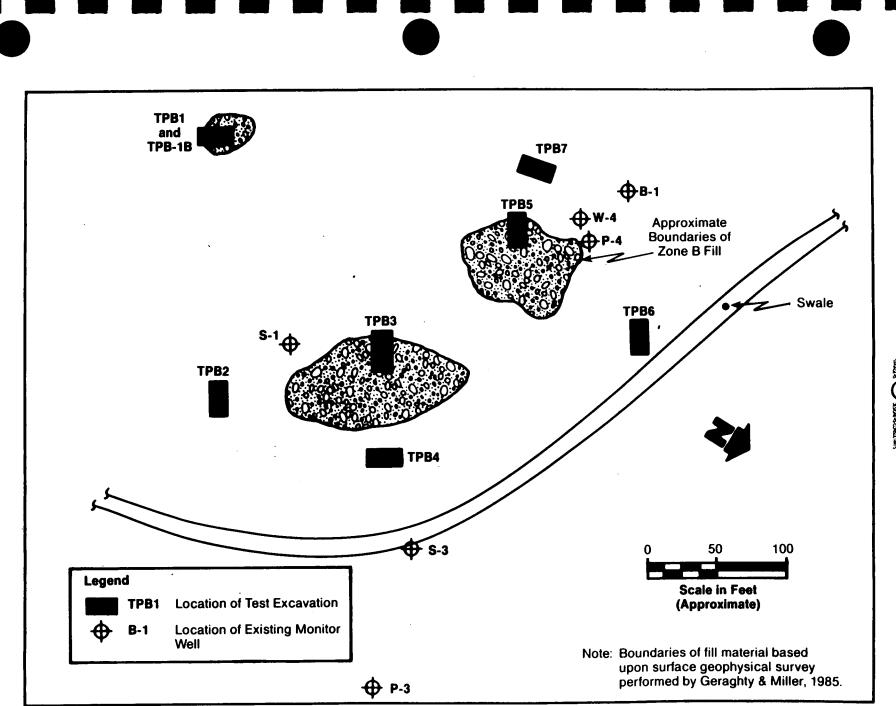
This area in the western portion of the property was identified as a potential site of plant refuse disposal early in the plant's history. Zone B is located in a low-lying area adjacent to groundwater seeps. Groundwater data collected by others reportedly suggested that the area may be the source of PCE and TCE identified in nearby production well 7. However, previous testing did not indicate contamination in the groundwater seeps. Fill areas within Zone B had been previously identified by geophysical surveys, but had not been evaluated further for the presence of wastes or soils containing organic chemical constituents.

For the WESTON Phase I investigation, test pits were excavated in the previously identified fill areas to visually characterize the material and sample for VOC and EP toxicity metals analysis. At the request of the Maryland Department of the Environment (MDE), water samples were collected from six existing monitor wells and analyzed for VOCs in order to determine the effect pumping of well 7 had on PCE and TCE concentrations in the local groundwater.

Backhoe Test Excavations

Eight trenches were excavated with a backhoe around the fill areas in locations shown in Figure 3-8. Test pits TPB-1, TPB-1B, TPB-3, and TPB-5 were excavated within suspected boundaries of the fill material. TPB-4 and TPB-6 were located hydraulically upgradient of the boundaries, and TPB-2 and TPB-7 were located hydraulically downgradient of the boundaries. Excavations were made to the base of the fill, or to a depth where groundwater was encountered if no fill was present. Visual descriptions of the soils and any encountered fill were made at each excavation. Monitoring of the soils sampled by the backhoe bucket was conducted using a HNu Model 101 portable gas analyzer with a 10.2-eV probe.

Four samples of test pit soils were collected and analyzed for VOCs and EP toxicity metals. Elevated HNu readings recorded in TPB-2 and TPB-4 determined the sampling interval in those test pits. Samples were taken from the base of the fill in TPB-3 and TPB-5 because no elevated readings occurred. A duplicate sample from TPB-3 and a field blank were submitted for VOC analysis.


Samples were collected from the backhoe bucket with stainless steel trowels. The field blank consisted of HPLC water, which had been poured in the decontaminated backhoe bucket. The bucket and rear of the backhoe were steam-cleaned between excavations. Test pits were carefully backfilled at the completion of sampling.

Groundwater Sampling

Groundwater samples were collected from the six monitor wells selected by MDE in Zone B, as shown in Figure 3-8. Prior to sampling with a Teflon bailer, the wells were purged of three well volumes using a Johnson Keck pump Model SP-81. The conductivity, temperature, and pH of the purge water were monitored during sampling using a YSI conductivity meter and an analytical pH meter Model 107. All samples, including a duplicate sample from monitor well P-3, a field blank, and a trip blank, were analyzed for VOCs. The field blank consisted of HPLC water, which had been poured into a decontaminated bailer in the field.

The bailers and pump were scrubbed with an Alconox and water solution, rinsed with potable water, and then rinsed with deionized water before each well was sampled. A fresh pair of latex gloves was worn during sampling at each well.

The elevations of the top of the outer steel casing of the 26 existing on-site monitor wells and the finished floor elevations of the production well houses were surveyed with respect to the finished floor elevation of the main building by a Maryland licensed surveyor to within ± 1 foot of horizontal distance

3-16

.

FIGURE 3-8 LOCATIONS OF ZONE B TEST PITS AND MONITOR WELLS, BLACK & DECKER, HAMPSTEAD, MD

NERT

and \pm 0.01 foot of elevation. The elevations of the innermost casings of all monitor wells were determined by subtracting the thickness of the locking cap and distance between the top of the inner and outer casings from the surveyed elevation (Table 3-4).

3.2.2 Analytical Results

Soil Samples from Test Pits

The soil uncovered in excavation of pits in Zone B were typically a yellowish brown to red brown to brown, silty loam, silt, or silty clay. Fill, consisting of burnt wood, bricks, and scrap metal was found from 5 to 8 feet in TPB-3. Similar fill was found from 1 to 5 feet in TPB-5. Field HNu readings several units above background were noted only at 10.5 feet in TPB-2 and at 2.5 feet in TPB-4. Complete descriptions of each test pit are included in Appendix C.

The results of the VOC analyses (Table 3-5) indicate that no concentrations of volatiles above quantification limits were found in any of the test pit soil samples, except for low levels of constituents, which were also found in the laboratory blanks.

The results of the EP toxicity metals scan showed that selenium was detected at 116 ppb in the leachate from sample TPB4-1. This concentration is well below the hazardous waste standard established by the Code of Maryland (COMAR) 10.51. The maximum concentration allowable for selenium under COMAR 10.51 is 1.0 ppm. No other metals were detected in extracts from this sample or other samples from the Zone B test pits.

The results for Zone B indicated that the fill areas are not a current source of groundwater contamination. It was determined that no further source characterization was warranted in Zone B.

Groundwater Samples

VOC analyses for the groundwater sampled from six of the monitor wells in Zone B are included in Table 3-5. These results were consistent with previous results. Samples from all six wells in this area showed PCE concentrations in excess of 100 ppb. PCE concentrations in monitor wells B-1 and W-4 exceeded 1 ppm. Lesser concentrations, the majority below detection limits, of TCE, 1,1,2-TCA, and trans-1,2-DCE were found in individual samples. Low levels of methylene chloride, acetone, toluene, and 1,1,1-TCA were also found in these samples, but these compounds were detected in field and laboratory blanks and the results are not considered significant.

Zone B: Well Elevation Survey

Well	Elevation TOC	Distance between TOC and TIC	Elevation TIC
No.	(ft above MSL)	(ft)	(ft above MSL)
 B1	815.57	0.02	815.55
B2	807.70	0.02	807.68
B3	803.04	0.02	803.02
T1	816.75	0.02	816.73
S1	813.90	0.19	813.71
S2	814.22	1.02	813.20
S3	822.42	0.30	822.12
S4	802.37	0.24	802.13
S5	804.02	1.05	802.97
S6	833.61	0.60	833.01
P1	813.72	0.19	813.53
P3	823.75	0.14	823.61
P4	816.56	0.11	816.45
P5	817.16	0.20	816.96
P6	812.90	0.18	812.72
P8	812.48	0.41	812.07
WI	813.90	0.18	813.72
W3	820.13	0.38	819.75
W4	815.24	0.18	815.06
W5	815.61	0.21	815.40
W6	820.55	0.15	820.40

TOC - top of outermost casing TIC - top of innermost casing MSL - mean sea level

4168B

3-18

Zone B: Soil and Groundwater VOC Analysis

Results of VOC Analysis: Soil Samples

Compound Detected	TPB2-1 ug/kg		TPB3-1 ug/kg		TPB4-1 ug/kg		TPB5-1 ug/kg		Field Blank ug/l		Trip Blank ug/l	
Methylene Chloride	16	в	22	B	27	B	28	B	4	JB	4	JE
Acetone	12	В	7	JB	4	JB	5	JB	4	JB	5	JE
2-Butanone	8	JB							3	JB	24	J
Toluene Carbon Disulfide	3	JB	6	JB	3	JB	15 2	B J	2	JB	3	JI
Chloroform									7		7	

Results of VOC Analysis: Groundwater Samples

Compound Detected	S-1 ug/l		S-3 ug/l	P-3 ug/l		P-3 DUP ug/l	P-4 ug/l		W-4 ug/l	B-1 ug/l		TB ug/l	ug	F₿ /l
Methylene Chloride	3	JB	6 В	7.		5 JB	83	8 J8	3 JB	89 70	B JB	3 J 1 J	_	6 B 2 JB
Acetone			1 JB	2.	JR	2 JB 1 JB	27	18		10	10	1.0	5	2 90
1,1,1-Trichloroethane Trans-1,2-Dichloroethene Chloroform	4	J	27	13		12			7			5	·	6
2-Butanone	-		•	5.		5			16	38		18		
Trichloroethene Tetrachloroethene 1,1,2-Trichloroethane	2 140	J	8 280	130	J	140	650		1600 8	1700				
Toluene	1	JB		1 -	JB	1 JB	12	JB	1 JB	10	JB	2 J	8	

B - Detected in laboratory blanks J - Detected at concentration below detection limits

3.3 ZONE C - POTENTIAL HEAT TREATING RESIDUES DISPOSAL AREA

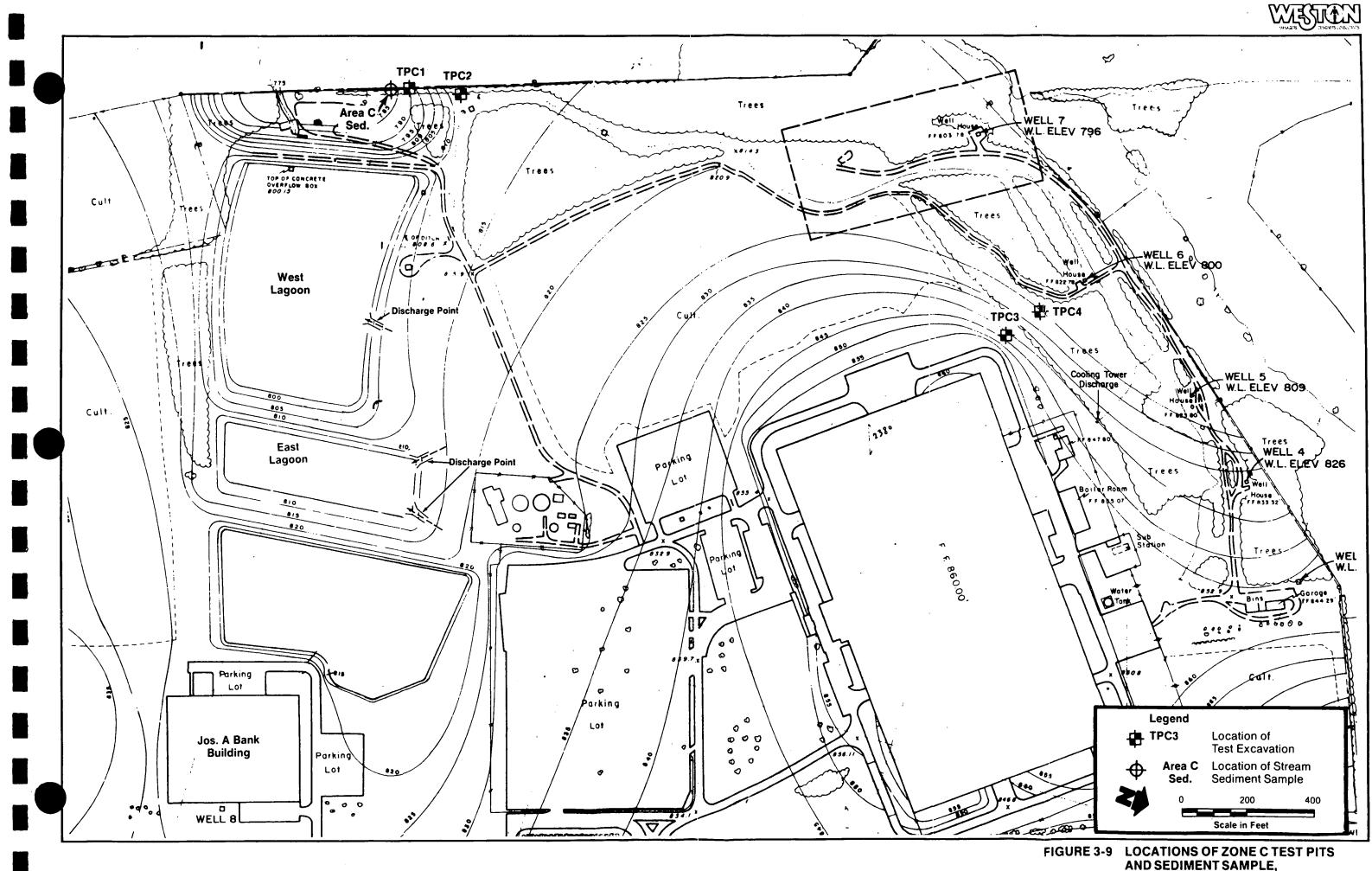
3.3.1 Field Activity

Zone C consists of two areas where material may have been deposited from heat-treating furnaces that previously operated at the facility. The northern area, closest to the plant building, could have received residues from the furnaces. The southern area, near the ponds, could have received furnace fragments, brick, and other debris from the furnaces. The presence of residues or debris and chemical constituents that could be associated with them was not previously investigated. Test pit excavations and sediment sampling were used to investigate this zone for possible soil contamination. The parameters tested included VOCs, based on the constituents present in the groundwater, and EP toxicity metals and cyanide, based on constituents typically associated with heat treatment.

Backhoe Test Excavations

Four test excavations (two per area) were completed and sampled following the procedures defined for excavations in Zone B (Subsection 3.2.1). The locations of the excavations are shown in Figure 3-9. Visual descriptions were made of the soils and fill. Samples were collected from the base of the fill in TPC-1, TPC-2, and TPC-3. No fill was uncovered in TPC-4, and therefore, the sample and duplicate were taken at the base of the excavation. The five samples and field blanks were analyzed for cyanide and EP toxicity metals. A trip blank was submitted for VOC analysis.

Sediment Sampling


One stream sediment sample was collected with a stainless steel trowel from a location downgradient of TPC-1, as shown in Figure 3-9. The sample was analyzed for VOCs, EP toxicity metals, and cyanide.

3.3.2 Analytical Results

Soil Samples from Test Pits

Soils encountered in test pits were generally described as reddish-brown to yellowish-brown, and grading from clay to silt to sandy loam. Fill and debris, including concrete, metal pipe and scraps, fabric, sheet plastic, and a tree stump, were uncovered in TPC-1 and TPC-2 from 1 to 4.25 feet and 1 to 11 feet, respectively. A layer of white material was encountered at the surface in TPC-3. No fill was found in TPC-4. Complete test excavation logs are included in Appendix C.

The EP toxicity metals results indicated that only selenium at 121 ppb was detected in the extract from the TPC-1 sample.

BLACK & DECKER, HAMPSTEAD, MD

This concentration is below the hazardous waste level established in COMAR 10.51. No EP toxicity metals were detected in the other samples. In addition, the cyanide results indicated that cyanide was not present in any of the test pit soil samples.

The results for Zone C indicated that the fill areas are not a current source of groundwater contamination. It was determined that no further source characterization was warranted in Zone C.

Sediment Sampling

The VOC analysis for the stream sediment sample is presented in Table 3-6. PCE was detected in the sample at 14 ppb; TCE was present at a concentration just below the quantification limit. Low levels of methylene chloride, acetone, and toluene were also detected in these samples, but as these compounds were also detected in laboratory blanks, the results are not considered significant.

The results of the cyanide and EP toxicity metals analyses for the sediment sample were negative.

These results indicated that the stream sediment does not represent a significant repository of groundwater contaminants.

3.4 ZONE D - POTENTIAL PRODUCT DISPOSAL AREA

3.4.1 Field Activity

This area was identified by Black & Decker as a potential site of buried off-specification products. The boundaries of the fill area, and the potential presence of chemical constituents were not previously investigated. A geophysical survey was conducted to define the boundaries of buried debris. Test excavations were completed in areas defined by the survey, and the soils were sampled for VOC and EP toxicity metals analysis.

Geophysical Survey

One of the objectives of the geophysical investigation was to locate the debris burial sites in Zone D. Site reconnaissance revealed that the trenches were probably oriented north-south, based on soil surface depressions. Visual estimates of the length of the trenches could not be made, but the width of the trenches was estimated to be approximately 5 feet (two backhoe bucket widths).

A detailed discussion of the field procedures and data reduction procedures of the geophysical investigation is included in Appendix D.

Results of VOC Analysis: Zone C Sediment

Compound Detected	Area C sed ug/kg	Field Blank ug/l	Trip Blank ug/l
Methylene Chloride	21 B	4 J	B 4 JB
Acetone	5 JB	4 J	B 5 JB
Chloroform			7
Trichloroethene	7 J		
Tetrachloroethene	14		
Toluene	3 JB	7 B	3 JB
2-Butanone		3 J	24

B - Detected in laboratory blanksJ - Detected at concentration below detection limits

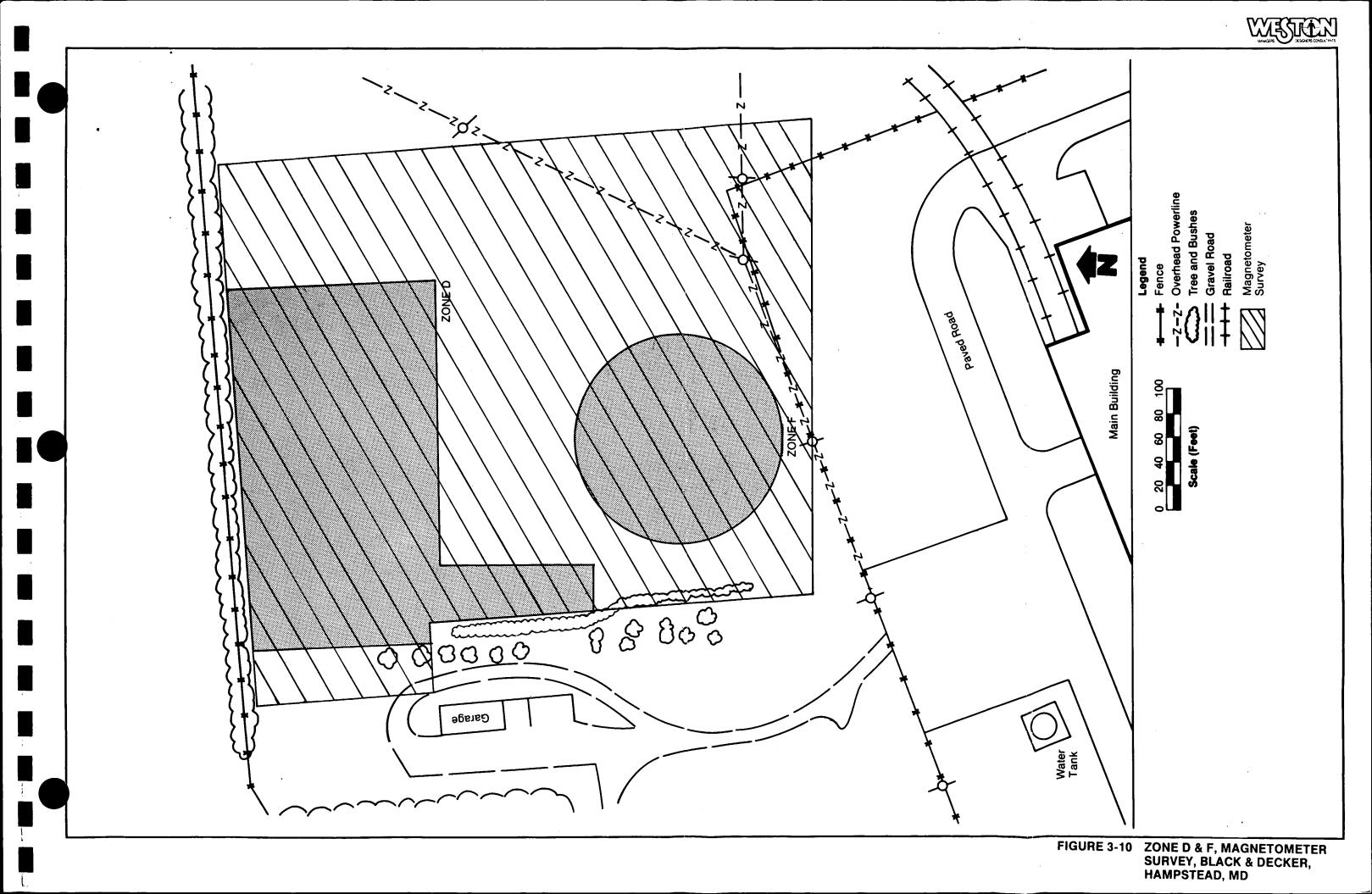
Magnetics

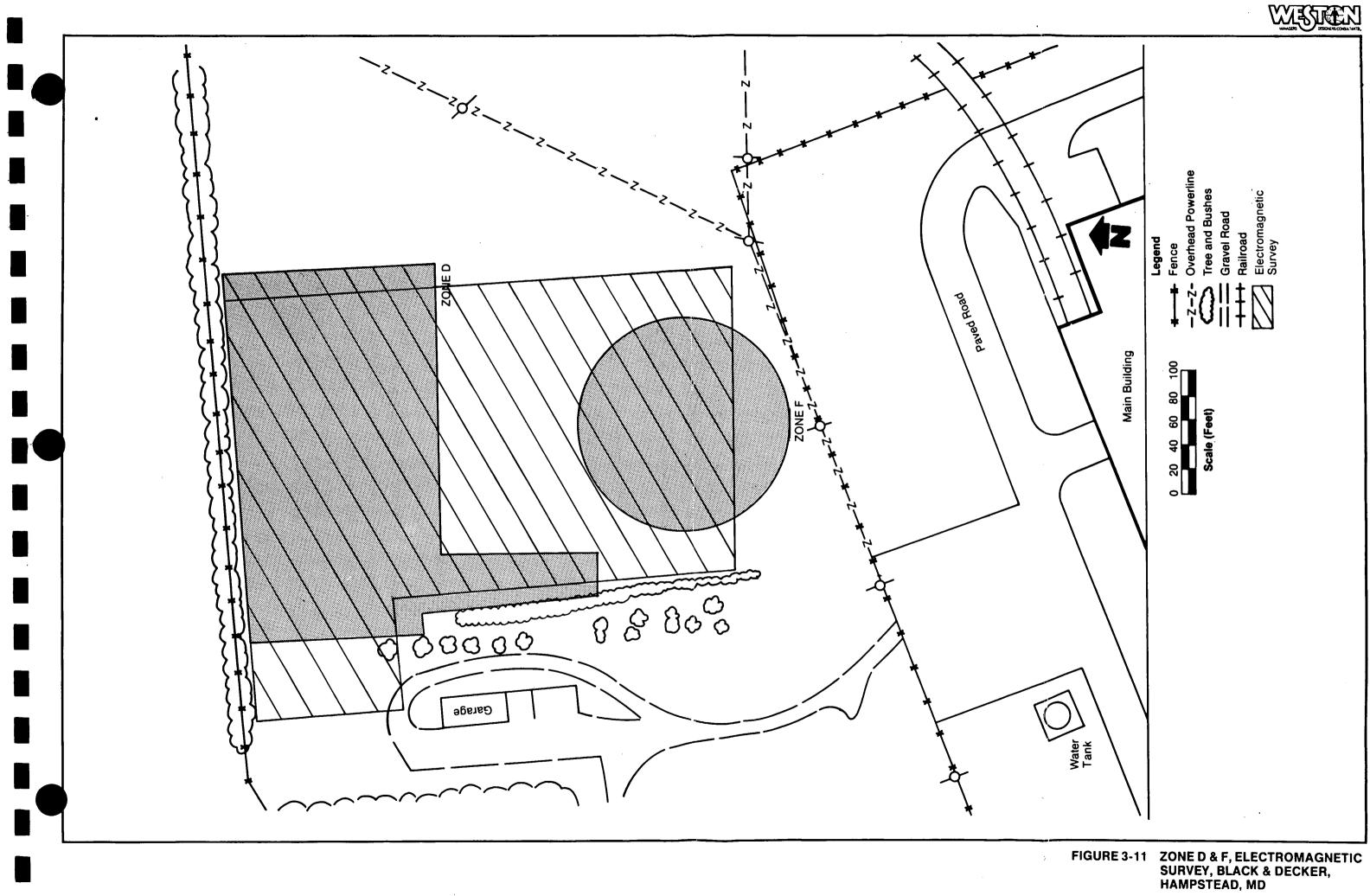
The proton precession magnetometer was used to identify areas containing relatively large concentrations of buried ferrous metal. Interpreted sources of the ferrous metals were the trench contents in Zone D. Figure 3-10 presents the area of magnetic coverage for the geophysical survey at the Black & Decker facility.

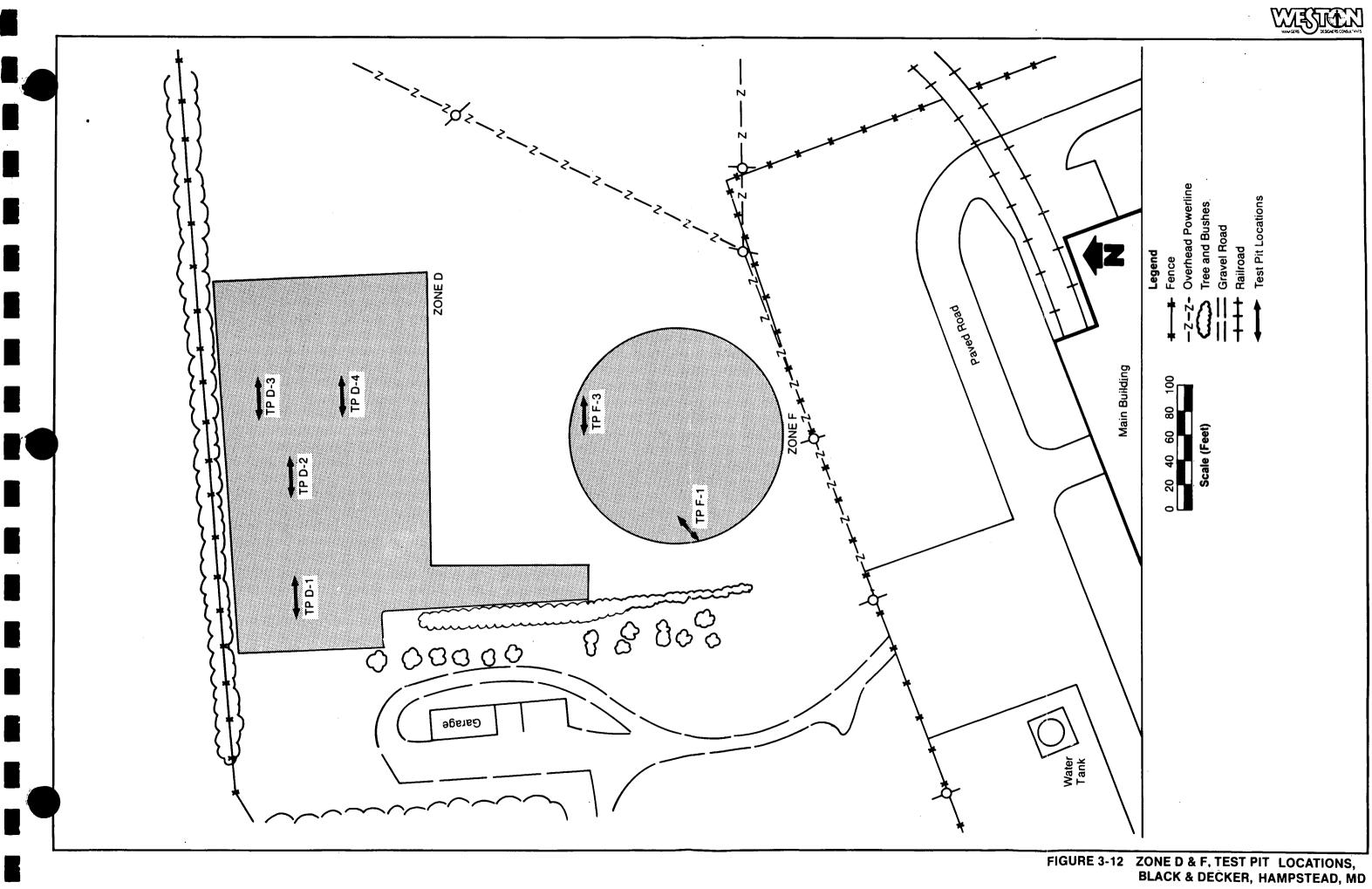
The magnetic survey was designed based on the suspected orientations and dimensions of the trenches in Zone D. The magnetic survey was divided into two parts.

The first part was designed to locate the east-west boundaries (the short axis) of the trenches located in the northern portion of the site. Magnetic measurements were taken at 10-foot intervals along four east-west-oriented lines spaced 20 feet apart. The second part of the survey was designed to locate the north-south boundaries (the long axis) of the trenches in Zone D. Magnetic measurements were taken at 20-foot intervals along north-south-oriented lines spaced 20 feet apart.

Electromagnetics


The EM-31D terrain conductivity meter was used to identify areas having anomalous electrical conductivities. Metal debris associated with burial activities could be possible sources of anomalous conductivities. Figure 3-11 shows the electromagnetic coverage for the geophysical survey conducted at the Black & Decker facility.


The electromagnetic survey was designed based on the results of the magnetic survey. The EM survey encompassed both Zone D and Zone F. It was found that areas of increasing magnetic intensities were clustered in the northwest and southwest portions of the surveyed area. Therefore, the electromagnetic survey focused on the central and western portions of the area defined by the 20-foot magnetic survey grid. Electromagnetic measurements were taken at 20-foot intervals along north-southoriented lines spaced 20 feet apart.


Backhoe Test Excavations

After interpretation of the geophysical survey data, the locations of test excavations were selected in suspected fill areas. Four trenches were excavated at Zone D in the locations depicted in Figure 3-12. The procedures for completing and sampling the excavations were the same as defined for Zone B (Subsection 3.2.1). Visual descriptions were made of the soils and fill in all pits. Soil samples from TPD-1 and TPD-4 were collected from within the fill area, since it was not possible to trench below the fill. Soil samples from TPD-2 and

4168B

TPD-3 were collected at the base of the fill. A duplicate sample was collected at TPD-3. Based on the presence of buried off-specification tool products, all samples were analyzed for EP toxicity metals. Although HNu readings were low, samples from TPD-2 and TPD-3 and a trip blank were also analyzed for VOCs to check for the presence of the organic constituents found in the groundwater.

3.4.2 Analytical Results

Geophysical Survey

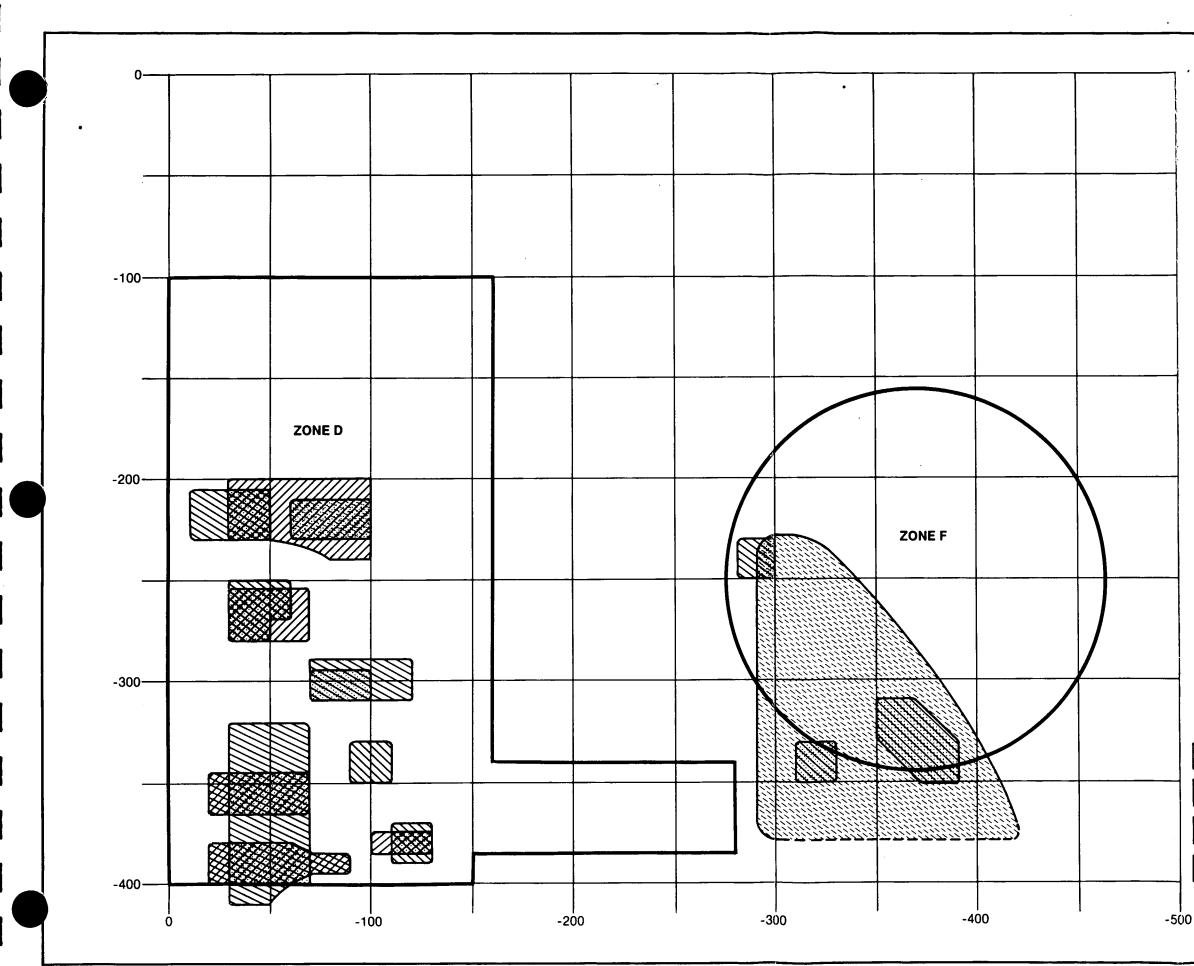
Magnetics

The full set of data recorded for the magnetic survey is presented in Appendix D. The results of the magnetic survey interpretation are presented in Figure 3-13.

Integration of the east-west magnetic survey and the northsouth magnetic survey resulted in the definition of seven magnetic anomalies in Zone D, as identified in Figure 3-13. The criteria used to identify the anomalies are reviewed in Appendix D.

The location of these anomalies was used to select the five test pit locations in Zone D.

Electromagnetics


The electromagnetic (EM-31) survey data are presented in Appendix D. The results of the EM-31 survey interpretation are presented in Figure 3-14.

Three electromagnetic anomalies were identified using the inphase component of the electromagnetic field (see Appendix D). Generally, the locations of the in-phase anomalies were in agreement with the magnetometer anomalies. Two of the magnetic anomalies were not confirmed by the electromagnetic survey. This is probably because the source of the magnetic anomaly was not a relatively strong conductor.

Soils Samples from Test Pits

Soils encountered in Zone D test pits were described as yellowbrown to red-brown silt to silt loam. Fill and debris were encountered in all four excavations. This included scrap metal, wood, plastic, construction debris, and power tool parts. The test excavation logs are included in Appendix C.

The VOC analysis for the soil samples from TPD-2 and TPD-3 showed only the presence of toluene in levels below the quantification limits, 1 ppb and 2 ppb, respectively (Table 3-7)

WISTON

Legend

North Grid (10x40 Ft) Vert. Grad. Anomalies

Main Grid (20x20 Ft) Vert. Grad. Anomalies

Main Grid (20x20 Ft) T. Field Anomalies

Integrated Magnetic Anomaly

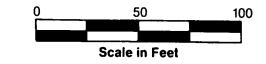
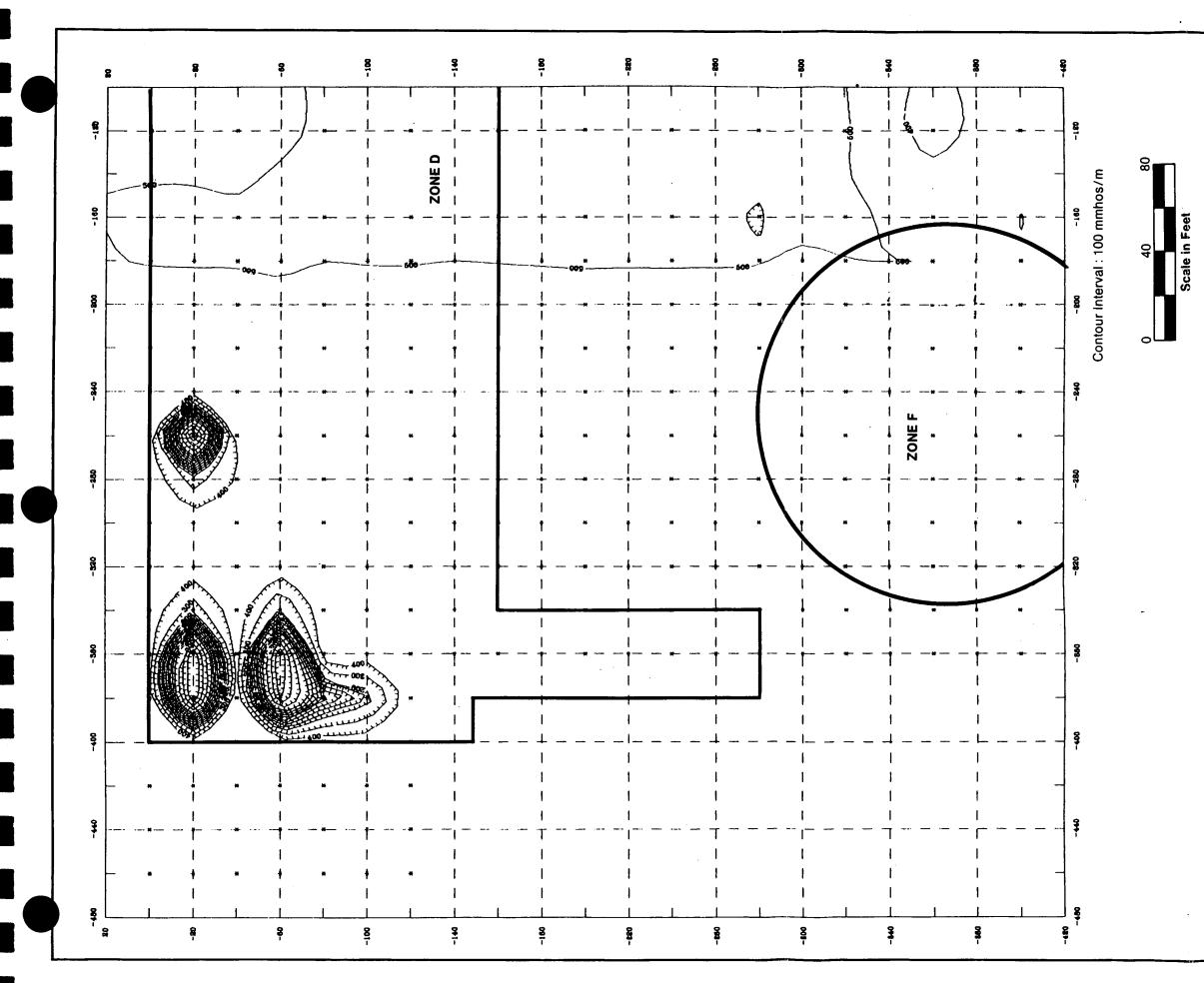



FIGURE 3-13 ZONE D & F, MAGNETIC ANOMALY MAP, BLACK & DECKER, HAMPSTEAD, MD

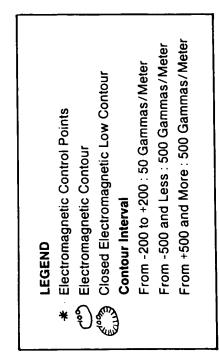


FIGURE 3-14 ZONE D & F, ELECTROMAGNETIC ANOMALY MAP, BLACK & DECKER, HAMPSTEAD. MD

Results of VOC Analysis: Zone D Soil Samples

Compound Detected	TPD2-1 ug/kg		TPD3-1 ug/kg		Field Blank ug/l		Trip Blank ug/l	
Methylene Chloride Acetone Toluene		B JB JB	-	B JB JB	4	JB JB JB	5	JB JB JB
Chloroform	_				7		7	

.

B - Detected in laboratory blanks
 J - Detected at concentration below detection limits

Methylene chloride and acetone were detected at low levels in the samples, but were also found in the laboratory blanks.

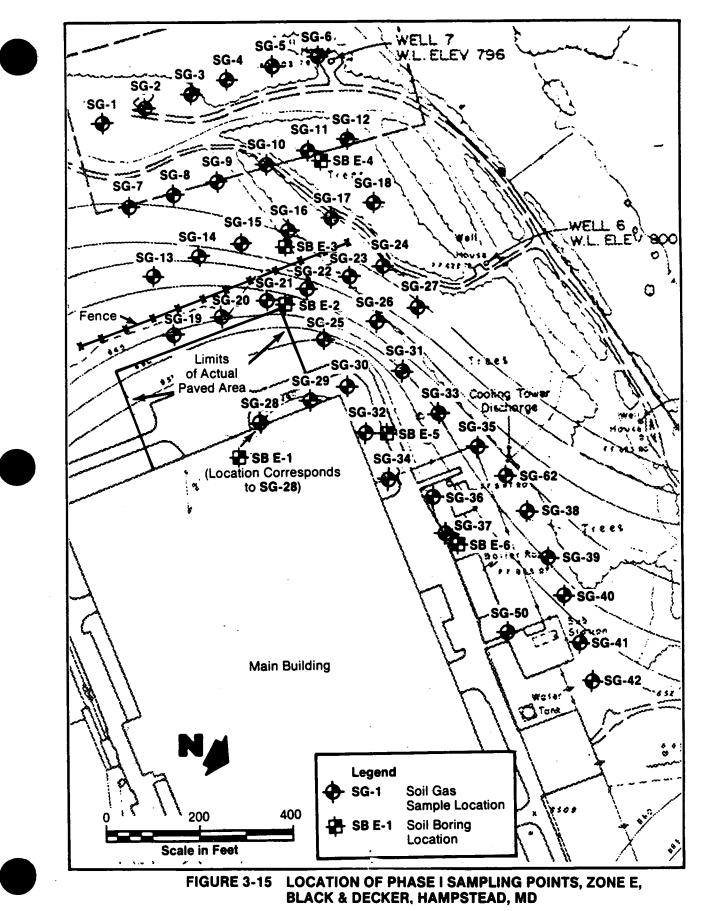
The EP toxicity metals results indicated that in the soil sample for TPD-3, selenium was detected at 264 ppb, a concentration below COMAR 10.51 standards. No other metals were detected in leachate from this or the three other Zone D soil samples.

These results generally indicated that the Zone D off-specification product burial area does not currently represent a repository of groundwater contaminants.

3.5 ZONE E - SITE NEAR CORNER OF BUILDINGS 5 AND 6

3.5.1 Field Activity

This area was filled and regraded prior to the Building 5 and 6 expansion of the main plant and again prior to construction of a small storage building to the southwest of Building 5/6. It was believed that this area could potentially have been used to deposit heat-treating residues. The zone was investigated to assess the potential for buried fill and constituents found in the groundwater. Soil-gas analysis and soil borings were the investigative techniques used to evaluate this zone.


Soil-Gas Analysis

In Zone E, 44 soil-gas samples were collected and analyzed for TCE and PCE using the procedure described in Appendix B. Figure 3-15 depicts the location of the sampling points; the sampling area was extended south and west of Zone E at the request of MDE, to allow for the evaluation of potential migration of VOCs toward well 7 and Zone B.

Soil Borings

Soil borings were performed in seven locations distributed throughout the Zone E area. Since the soil-gas analysis, in general, indicated that the concentration of volatiles in the soil was low, the locations were selected in an effort to evaluate the soils in Zone E for possible contamination with cyanide. The boring locations are shown in Figure 3-15. The procedures for drilling the borings and sampling were the same as those outlined for Zone A (Subsection 3.1.1). Borings were drilled and sampled to a depth of 16 feet, with the exception of SB-E-6, which was drilled to a depth of 10 feet. Visual descriptions were made of each sampled interval. One sample from each boring, selected by headspace screening with the OVA, was submitted for VOC and cyanide analyses. Field blanks were collected and analyzed for VOCs and cyanide. A trip blank was submitted for VOC analysis.

3.5.2 Analytical Results

Soil-Gas Analysis

The results of the broad soil-gas sampling and analysis program for TCE and PCE off the east corner of the main building are presented in Table 3-8. In general, both TCE and PCE were detected at low levels in the soil-gas, typically below 1 pptr. Two "relatively" high PCE concentrations of 13 pptr and 160 pptr were detected in SG-21 and SG-24, respectively. Soil boring SB-E-2 was placed at the SG-21 location, and a Phase II monitor well was proposed for the SG-24 location.

Soil Borings

Similar to Zone A soils, the soils in the six soil borings at Zone E were described as yellowish-brown to reddish-brown silt loam to silt. Occasional clayey layers and quartzose fragments were also encountered. Boring lithologic logs are included in Appendix C.

The soil sample analysis results for VOCs were largely negative (Table 3-9). PCE was detected in only one sample at an estimated concentration of 1 ppb (below quantification limits) in SB-E-1 at the 4- to 6-foot sample interval. Other than methylene chloride, acetone, toluene, and 2-butanone, which were detected in the blanks, no other VOCs were detected in any of the samples from soil borings in Zone E. The results of the cyanide analysis were also negative.

These results generally indicated that the Zone E, Building 5/6 presumed construction fill area does not contain waste materials and does not contain significant levels of groundwater contaminants.

3.6 ZONE F - PAST POTENTIAL BURN AREA

3.6.1 Field Activity

This area may have been used in part to disable off-specification products, plastic parts, and other materials prior to their disposal. The location of the potential burn area was not clearly defined, but was thought to coincide with a slight surface depression to the east of Zone D. A geophysical survey was conducted to define the boundaries of any potential buried fill. Test excavations were completed in areas defined by the geophysical anomalies.

Geophysical Survey

The objective of the geophysical investigation in Zone F was to delineate the burn area. A detailed discussion of the field procedures and data reduction procedures of the geophysical investigation is included in Appendix D.

Table 3-8

Results of Soil Gas Analysis: Zone E

Sample ID	Bulb #	Run #, Inj. Port.	TCE (ng/mL)	PCE (ng/mL)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 6 1 5 2 3 2 3 5 4 6 1 3 6 4 2 6 4 3 5 2 3 6 4 2 6 4 2 5 4 6 4 3 5 2 3 5 4 6 1 3 2 5 4 6 1 3 2 5 4 6 1 3 2 5 4 6 1 3 2 5 4 6 1 3 2 5 4 6 1 3 6 1 5 4 6 4 3 5 2 3 5 4 6 1 3 6 1 5 4 6 4 2 6 1 3 6 1 5 4 6 4 3 5 2 3 6 1 5 4 6 4 3 5 2 3 6 1 5 4 6 4 3 5 2 3 6 4 5 4 6 4 3 5 2 3 6 4 5 4 6 4 3 5 2 3 5 6 4 5 4 6 4 3 5 2 3 5 6 4 2 6 4 2 6 4 2 6 4 2 5 4 6 4 3 5 2 3 5 6 4 2 5 5 6 4 5 5 6 4 5 5 5 6 4 5 5 5 6 4 5 5 5 5 5 5 5 5 5 5 5 5 5	142B 138B 114A 134B 135B 136B 129B 105A,130B 131B 108A 107A 133B 122B 123B 98A,99A,100 104A 124B,125B 126B 84A 85A,86A 87A 82A 108B,104B 107B 97A,88A 110B 78A,80A 96A 121B 120B 77A 94A 76A 89A 102B 77A 94A 76A 89A 102B 71A 70A 72A 97B 98B 75A 101B	ND 0.04J ND 0.45 0.32 0.08 0.40 0.07 1.1 0.03J 0.03J 0.06 0.04J 0.33 1.3 0.02J ND 0.02J 0.06 0.42 0.07 ND 0.11 0.15 0.02J 0.06 0.42 0.07 ND 0.11 0.15 0.02J 0.03J 0.03J 0.03J 0.03J 0.45 0.34 0.07 0.75 0.15 0.09 0.03J 0.03D 0.	$\begin{array}{c} 0.04J\\ 0.57\\ 0.02J\\ 0.40\\ 0.35\\ 0.04J\\ 0.09\\ 0.04J\\ 2.3\\ 0.71\\ 1.5\\ 0.02J\\ 0.02J\\ 0.02J\\ 0.07J\\ 1.1\\ 1.8\\ 0.07J\\ 1.0\\ 0.03J\\ 0.16\\ 13\\ 0.12\\ 0.31\\ 160\\ 0.03J\\ 0.16\\ 13\\ 0.12\\ 0.31\\ 160\\ 0.02J\\ 2.2\\ 1.8\\ 0.72\\ 0.01J\\ 0.07J\\ 0.09\\ 0.10\\ 0.07J\\ 0.09\\ 0.10\\ 0.07J\\ 0.09\\ 0.10\\ 0.07J\\ 0.09\\ 0.10\\ 0.07J\\ 0.04J\\ 0.25\\ 0.09\\ 0.01J\\ 0.07J\\ 0.27\\ \end{array}$

J - Detected at concentration below detection limits

3-35

Results of VOC Analysis: Zone E Soil Samples

Detected Compound	SB-E1 ug/kg	SB-E2 ug/kg	SB-E3 ug/kg	SB-E4 ug/kg	SB-E5 ug/kg	SB-E5 ug/kg	SB-E6 ug/kg	FIELD BLANK ug/l	TRIP BLANK ug/l
Methylene Chloride	19 в	29 в	25 B	21 B	15 B	21 B	- 17 в	6В	6 в
Acetone	34 B	29 B	36 B	9 JB	25 B	46 B	23 B	2 JB	2 JE
Chloroform								6	5
2-Butanone			5 JB		5 JB	6 JB	7 JB		
Tetrachloroethene	1 J								
Toluene	2 JB	5 JB	2 J8	2 JB	2 JB	2 JB	2 JB		
Sample Depth (ft)	4-6	4-6	6-7	10-11	4-6	8-10	14-16		

B - Detected in labratory blanks J - Detected at concentration below detection limits

Magnetometer

The magnetometer was used to identify areas that could have contained relatively large concentrations of buried ferrous metals, based on the possibility that ferrous metals could have been present in near-surface soils or in buried fill within the product burn area. Figure 3-10 presents the area of magnetic coverage for the geophysical survey at the Black & Decker facility.

The survey was designed to encompass a 5-acre area of investigation, which included Zone D to the north. Magnetic measurements in Zone F were taken at 20-foot intervals along northsouth-oriented lines spaced 20 feet apart.

Electromagnetics

The EM-31D terrain conductivity meter was used to identify areas having anomalous electrical conductivities. Metal debris associated with burning activities could be possible sources of anomalous conductivities. Figure 3-11 presents the electromagnetic coverage for the geophysical survey conducted at the Black & Decker facility.

The design of the electromagnetic survey was based on the magnetic survey results. The EM survey encompassed both Zone D and Zone F. The details of the EM survey grid are discussed in Subsection 3.4.1.

Test Excavations

Two trenches were excavated in areas identified as weak anomalies by the geophysical survey, as shown in Figure 3-12. The test pits were completed and sampled in accordance with the procedures outlined for Zone B (Subsection 3.1.1). TPF-1 and TPF-3 were terminated at a depth of 8 feet and 4 feet, respectively, where a vein of quartzite was encountered. Visual descriptions of the soils were made for each pit. One sample from the base of each excavation and a field blank were collected and submitted for VOC and TPH analyses. A duplicate was collected from TPF-1 and analyzed for VOCs.

3.6.2 Analytical Results

Geophysical Survey

Magnetic and electromagnetic surveys were conducted to determine if near-surface or buried metallic residues were present in this potential past off-specification product burning area.

Magnetics

The magnetic survey identified three relatively weak anomalies in Zone F. The location of these anomalies is presented in Figure 3-13. These anomalies potentially resulted from relatively small concentrations of buried ferrous materials.

Electromagnetics

The electromagnetic survey did not identify any areas in Zone F that had relatively high concentrations of buried conductive materials.

Soil Samples from Test Pits

Soils encountered in the two Zone F test pits were a brown silt loam. Quartzite and other weathered rock fragments were abundant and caused refusal at 4 feet in TPF-3 and at 8 feet in TPF-1. The test excavation logs are included in Appendix C.

The results of the VOC and TPH analyses are summarized in Table 3-10. Total xylenes were detected at 6 ppb in the soil sample taken from TPF-1. Methylene chloride, acetone, and toluene were detected in laboratory blanks, as well as at low levels in both soil samples. TPH were detected at relatively low levels, less than 15 ppm, in the soils.

These results did not confirm the reported possible use of this area for burning off-specification tool products, and indicated that Zone F does not contain waste materials or significant levels of contaminants detected in on-site groundwater.

3.7 ZONE G - LAGOON AREAS

3.7.1 Field Activity

The East Lagoon has served as a surge-detention basin for wastewater, and the West Lagoon served as a receiving pond for treated wastewater and noncontact cooling water. Based on these uses, the potential presence of chemical constituents in the water and bottom sediment was investigated. The sediment and water samples were analyzed for VOCs, EP toxicity metals, priority pollutant metals, and nitrates.

Sediment Sampling

Eight sediment samples were collected from the bottom of the two ponds using a Ponar dredge. The locations of the sediment samples, as shown in Figure 3-16, were selected from areas in the lagoons that would most likely contain the highest levels of chemical constituents, such as near the treated sewage and wastewater discharge points. A duplicate sample was taken at location EL-1. Visual descriptions were made of each sample as

Results of Petroleum Hydrocarbon and VOC Analysis Zone F Soil Samples

Results of TPH Analysis

Sample Number	TPH Concentration
TPF1-1	9.0 mg/kg
TPF1-1DUP	12.0 mg/kg
TPF3-1	14.0 mg/kg

Results of VOC Analysis

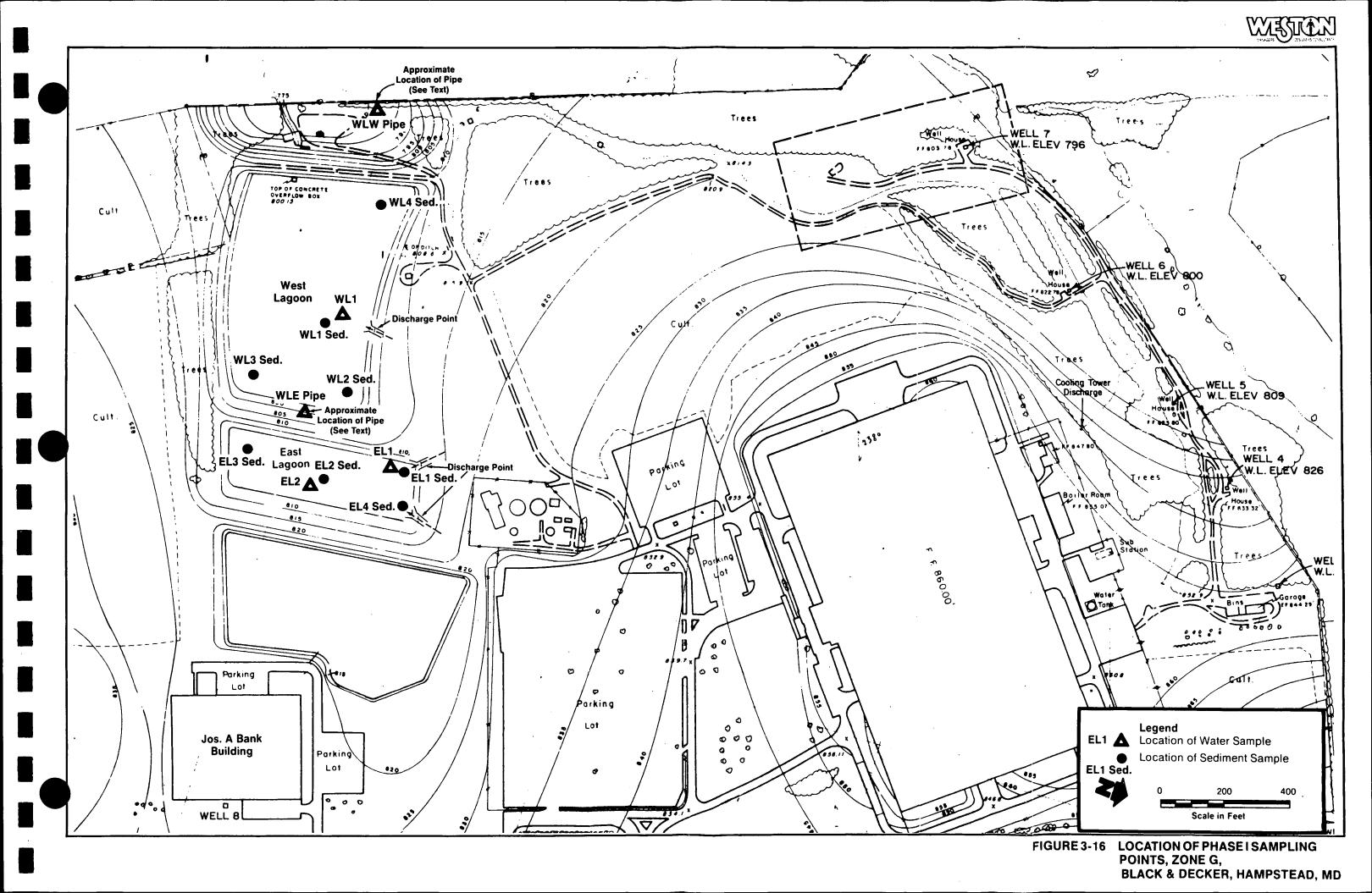
Detected Compound	TPF1-1 ug/kg		TPF3-1 ug/kg		Field Blank ug/l	Trip Blank ug/l
Methylene Chloride Acetone	25 19	в	21	B J	3 JB 2 J	3 JB
Chloroform Toluene	2	J	-	J	1 J	7 2 J
Total Xylenes 2-Butanone	6				7	25

B - Detected in laboratory blanks
 J - Detected at concentration below detection limits

collected. The sediments were analyzed for VOCs, EP toxicity metals, and nitrates.

Surface-Water Sampling

Three water samples, two from the East Lagoon and one from the West Lagoon, were collected 1 foot beneath the water surface with a Kemmerer sampler. A duplicate sample was collected at EL-1. One sample each was collected from a pipe that extends out from the westernmost slope of the West Lagoon, and from the pipe that extends out from the eastern slope of the West Lagoon. Both samples were collected directly into laboratoryprepared bottles. These pipes are thought to collect water from drainage zones designed to prevent hydrostatic pressure buildup at the toe of the slopes between lagoons. These locations are shown in Figure 3-16.


The water samples and field blank were analyzed for VOCs and metals; pH, temperature, and conductivity were recorded for each sample at the time of collection. A trip blank was submitted for VOC analysis.

3.7.2 Analytical Results

The summary results of the VOC, EP toxicity metals, metals, and nitrate analyses are presented in Tables 3-11, 3-12, and 3-13. The distribution of TCE and PCE in the lagoon sediment and water samples is shown in Figure 3-17.

Sediment Samples

As shown in Table 3-11, trans-1,2-dichloroethene (trans-1,2-DCE), TCE, PCE, toluene, ethyl benzene, total xylenes, vinyl chloride, and carbon disulfide were detected in sediment samples from the East Lagoon. Trans-1,1-DCE, TCE, PCE, toluene, ethyl benzene, and total xylenes were detected at relatively higher concentrations near or above 1 ppm each in the EL-1 sample, which was collected near a wastewater discharge point in the northwest corner of the lagoon. The other three samples in the East Lagoon contained these constituents at estimated concentrations below the detection limits. Sediment sample WL-4 from the northwest corner of the West Lagoon was the only West Lagoon sample that contained detectable levels of TCE at Low concentrations of trans-1,2-DCE and carbon 110 ppb. disulfide were present in the other West Lagoon sediment The significance of concentrations of methylene samples. chloride, acetone, chloroform, and low concentrations of toluene and 2-butanone detected in all of the lagoon sediment samples is questionable as these compounds were also detected in blanks.

Results of VOC Analysis: Zone G Surface Water and Sediment Samples

	EL-1	EL-2	WL-1	WLE PIPE	WLW PIPE	BLANK	BLANK
Compound Detected	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Methylene Chloride	9 в	11 B	9 B	8 8	8 ⁻ 8 B	7	7
Acetone	20	12	2 J		9 J	6 J	3
Trans-1,2-Dichloroethene	16			5	2 J		
Chloroform	12	5	8	9		6	6
Trichloroethene			12	480	3 J		
Tetrachloroethene				9	16		
Toluene	1 J	1 J					
1,1,1-Trichloroethane				1 3	1		
Bromodichloromethane			1 J	1.	J		

Results of VOC Analysis: Surface Water Samples

Results of VOC Analysis: Sediment Samples

Compound Detected	EL1-SED ug/kg		EL2-SED ug/kg		EL3-SED ug/kg		EL4-SED ug/kg		WL1-SED ug/kg		WL2-SED ug/kg		WL3-SED ug/kg		WL4-SED ug/kg
Chloromethane	•												5	J	-
Methylene Chloride	290	B	14	8	130	B	170	В	25	В	28	8	16	В	130
Acetone	1100	B	35	В	360	в	590	8	71	В	200	B	47	8	300 1
Trans-1,2-Dichloroethene	2000		4	J	14	J	15	J			14	J	2	J	
Chloroform					11	J	16	J							
2-Butanone			12	J	85	J	170		26	J	74		20		
Trichloroethene	100	J													110
Tetrachloroethene	45	J													
Toluene	8300		6	J	32	J	61	J	6	J	6	J	7	J	23
Ethylbenzene	900				29	J	27	J							
Total Xylenes	3100														
Carbon Disulfide	150	J			39	J	74	J	5	J	8	J			

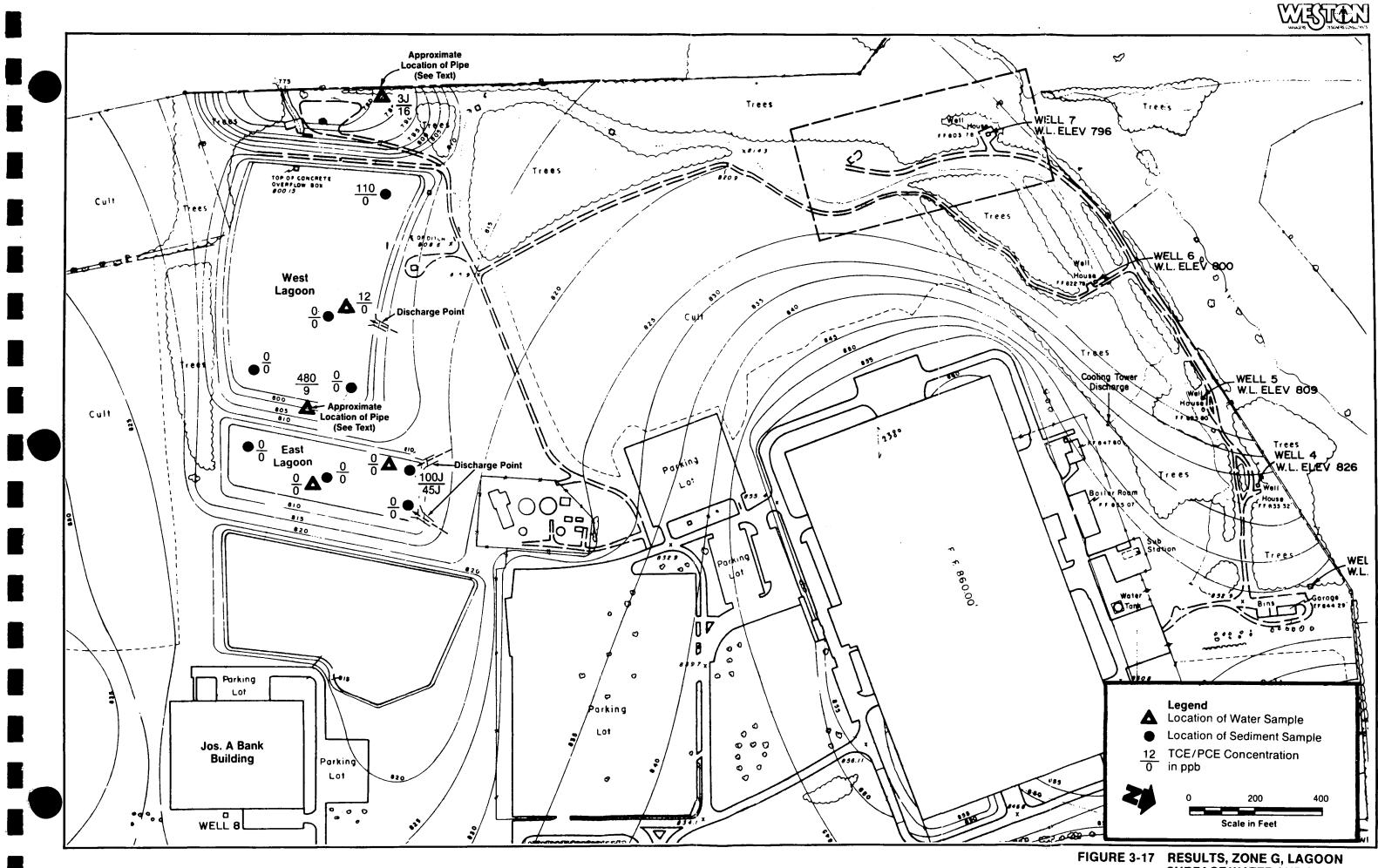
B - Detected in laboratory blanks

J - Detected at concentration below detection limits

Results of Nitrate and EP-Toxicity Analysis Zone G: Sediment and Surface Water Samples

Results of Nitrate Analysis Surface Water Samples

Sample Number	Nitrate Concentration
EL-1	2.5 mg/l
EL-2	1.6 mg/l
WL-1	0.65 mg/l
WLE-PIPE	1.4 mg/l
WLW-PIPE	1.3 mg/l


Results of Nitrate and EP-Toxicity Analysis Sediment Samples

Sample Number	Nitrate Concentration	EP	Leachate Barium*		
EL1 SED			1490 ug/l		
EL2 SED					
EL3 SED					
EL4 SED					
WL1 SED	0.41 mg/kg		2380 ug/l		
WL2 SED			1180 ug/l		
WL3 SED	0.19 mg/kg		1560 ug/l		
WL4 SED			9190 ug/l		
Field Bla	ink				

* Other EP-Toxicity Results Negative

Results of Metals Analysis: Zone G Surface Water Samples

Metal	EL-1 ug/l	EL-1DUP ug/1	EL-2 ug/l	WL-1 ug/l	PIPE ug/l	PIPE ug/l	FB ug/l
Antimony	73.1	· · · · · · · · · · · · · · · · · · ·				<u></u>	
Arsenic	8.9	1.7	1.8	1.4	0.5	0.6	
Beryllium	3.6	1.3	1.1	1.5	0.5	0.5	0.5
Cadium	41.2						
Chromium	1600	16.2	31.5	17.1			
Copper	4320	113	117	208	45.1	30.0	29.6
Lead	6880	63.6	126	62	4.0	3.2	3.5
Mercury	4.7	2.1	1.8	0.59			
Nickel	1470	164	697	40.6		8.6	
Selenium			0.9				
Zinc	5500	262	260	342	219	75.8	83.3

SURFACE WATER AND SEDIMENT SAMPLE ANALYSIS

As shown in Table 3-12, the EP toxicity metals analysis results for the lagoons found only barium in detectable concentrations. Less than 2 ppm of barium was detected in the leachate from sediment sample EL-1 from the East Lagoon, and less than 10 ppm was detected in extracts of all West Lagoon sediment samples. These concentrations are well below the COMAR 10.51 maximum EP toxicity concentration of 100 ppm established for barium. No other metals were detected in leachates from the other lagoon sediment samples.

The results of the nitrate analysis, shown in Table 3-12, show a maximum concentration of nitrates of 0.41 ppm in WL-1 SED.

These results generally indicated that contaminants are present in the sediments of the wastewater lagoons at levels commensurate with their use. As expected, the highest levels of volatile organics were found near the inlet to the East Lagoon, which had been used to collect wastewater prior to treatment and discharge to the West Lagoon. The predominant constituents detected were not PCE and TCE, however. The moderate concentrations of other VOCs observed in a limited area do not suggest that the lagoons are a source of groundwater contaminants. Other site data, such as surface-water and groundwater results, should also be considered in evaluating this area.

Surface-Water Samples

As shown in Table 3-11 and Figure 3-17, water samples in the East Lagoon contained considerably less VOCs than the sediments. Only trans-1,2-DCE was detected in sample EL-1 at 16 ppb. A low concentration of TCE (12 ppb) was detected in the water sample from the West Lagoon. These results indicated that the VOCs currently observed in the sediments are not present at significant levels in the water that is in direct contact with the sediments, which is consistent with soil/water partition behavior for these organic compounds.

TCE was detected at 480 ppb in the water from the toe of slope drain on the east end of the West Lagoon. In addition, water was sampled from a pipe believed to drain the toe of the west slope of the West Lagoon, which is a discharge point into the small stream crossing Black & Decker property, west of the lagoons. In this sample, TCE was reported at an estimated concentration below the quantification limit, and PCE was detected at 16 ppb. Trace amounts of trans-1,2-DCE, bromodichloromethane, and 1,1,1-TCA were also detected in the various lagoon water samples. Low concentrations of methylene chloride, acetone, and toluene detected in the samples were not considered significant because they were also detected in the blanks.

The results of the nitrate analyses, shown in Table 3-12, show a maximum concentration of nitrates of 2.5 ppm in EL-1. These concentrations are typically not considered significant for wastewater discharge or water supply.

The metals analysis for lagoon water samples are presented in Table 3-13. The water sample at the inlet to the East Lagoon (EL-1) had significant concentrations of cadmium, chromium, copper, lead, mercury, and zinc. Metals concentrations in sample EL-2, taken some distance from the inlet, were an order of magnitude or more lower, possibly reflecting both quiescent conditions and equalization of wastewater influent variations. These concentrations of metals are typical of wastewater prior to treatment at the plant. Lower concentrations of metals were found in sample WL-1 from the West Lagoon, which receives the treated effluent. The results for samples from the WLE pipe and WLW pipe from the toe of slope drains were very low, indicating that the migration of metals from the lagoon waters has not occurred.

The lagoon sediment sample results indicated that the sediments do not represent a current source of groundwater contaminants. The toe of slope samples, however, indicated that the lagoons may have represented a source in past operation. The significance of this contribution was addressed in the Phase II groundwater program by locating monitor wells in the lagoon area.

3.8 CONCLUSIONS

Using a variety of nonintrusive and intrusive investigation techniques, the Phase I source area identification program efficiently achieved the objective of identifying which of the potential source areas actually represent current sources of groundwater contaminants. The conclusions reached regarding each potential source and any recommendations for the Phase II groundwater program are summarized in the paragraphs that follow.

Zone A - Storage Tank Areas

Of the three storage tank areas, the aboveground storage tank area does not appear to be a current source area. Soils in the other two areas, underground Tank Farms 1 and 2, appear to contain localized "hot spots" of both TPH and VOCs. The VOCs were present mainly in soils with elevated TPH concentrations.

Based on these results, additional soil borings and shallow monitor wells were proposed for these two tank farms in order to achieve the following objectives:

- Define the extent of VOC (especially PCE and TCE) and petroleum hydrocarbon contamination.
- Determine if VOCs and TPH had migrated from soils into the shallow groundwater in Zone A.

• Evaluate the possibility that the tank farms served as a source for chlorinated hydrocarbons detected in Zone B and in the Black & Decker production wells.

Zone B - Fill Site Near Seep Area

The test pit program confirmed that several areas in this zone contain fill. The fill observed included primarily burnt wood, bricks, and scrap metal. Soil test results confirmed the visual observation that no wastes or other repositories of groundwater contaminants are currently present in this area. Since groundwater analysis results in this area continued to show that it is adjacent to the area of highest PCE concentrations, the possibility that the fill area served as a past source, which migrated out of the unsaturated zone soils, cannot be precluded. However, based on current conditions, no further source identification/characterization was recommended.

Zone C - Potential Heat-Treating Residues Disposal Areas

The test pit program identified debris fill in the southern Zone C area, but it did not appear to include heat-treating residues. Observations made in the test pits in the area west of the main building indicated that residue was only present at the ground surface in a small area. Soils tested in these pits and the sediment sampled adjacent to the southern Zone C area did not exhibit significant concentrations of metals or cyanides. Collectively, the data indicated that Zone C is not a current source of groundwater contaminants, and no further study was recommended.

Zone D - Product Disposal Area

Geophysical surveys and test pit excavations confirmed that off-specification tool products were buried in Zone D. The fill contained scrap metal, wood, refuse, plastic, construction debris, and power tool parts. However, analysis of the underlying soils indicated that the fill was not a source of groundwater contaminants. No further study was recommended.

Zone E - Corner of Buildings 5 and 6

Soil-gas analysis and soil boring sampling/analysis was conducted in this area to investigate the possibility that heattreating residues were buried in the area that was filled prior to construction of the Building 5 and 6 additions to the main facility building.

The soil-gas analysis generally detected very low concentrations of TCE and PCE in the vadose zone. The soil boring sample analysis indicated that no significant levels of VOCs or cyanides are present. There were no indications that buried

wastes are present. For Phase II, a shallow and deep well pair was proposed for the area between Zone E and well 7 to monitor the possible migration of PCE and TCE in the groundwater. No further evaluation of soils was considered necessary.

Zone F - Past Potential Burn Area

The geophysical surveys indicated only minor anomalies in Zone F. The test pits uncovered no evidence of buried fill or past burning activities. The test pit sample analyses indicated that Zone F does not contain waste materials or significant levels of groundwater contaminants. No further study of this area was recommended.

Zone G - Lagoon Areas

The lagoon sediment sample results indicated that several VOCs are present in the East Lagoon inlet area in the 1 to 10 ppm range. PCE and TCE were generally present at much lower levels ranging from none detected to 0.1 ppm. PCE levels in the toe of slope drain samples indicated, however, that the lagoons could have represented a source in past operation. In order to assess the significance of this contribution, a shallow monitor well was proposed for the south side of the lagoons as part of the Phase II groundwater investigation.

Overall Facility Source Assessment

In general, the results suggested that no large source currently exists in the areas where the highest concentrations of contaminants have been observed in the groundwater. Scattered "hot spots" were identified in the Zone A Tank Farms 1 and 2, and there were indications that higher PCE residuals may have been associated with the Zone G lagoons in the past. These areas were explored further in Phase II, which also focused on the broader objectives of determining PCE and TCE distributions in the groundwater and evaluating site hydrogeology.

SECTION 4

PHASE II INVESTIGATION

The Phase II investigation was designed to address three objectives:

- Further characterization of the extent of VOCs and petroleum hydrocarbons (TPH) detected in Phase I soil samples from the Zone A underground storage tank areas.
- The evaluation of the local hydrogeology to identify probable pathways of migration.
- Assessment of the groundwater quality on the plant site.

Phase IIa incorporated the analysis of soil and groundwater samples from borings and shallow monitor wells to evaluate the two underground tank farm areas. Additional monitor wells were installed to the depth of the bedrock/saprolite interface and into the bedrock aquifer to characterize groundwater quality and flow conditions across Black & Decker's property. Phase IIb was proposed after reviewing the results of Phase IIa. Closely spaced borings were installed and sampled in both tank farm areas to evaluate the volume and distribution of soil contaminants. Toxicity Characteristic Leaching Procedure (TCLP) testing was proposed for selected soil samples to provide an indication of constituent mobility in the soils. Four monitor wells were added to evaluate groundwater quality in the northeast corner of the facility.

Details of the Phase II Tank Farm investigation are described in Subsection 4.1. The groundwater investigation is presented in Subsection 4.2 The conclusions are presented in Subsection 4.3.

4.1 TANK FARM SOILS

4.1.1 Phase IIa

Field Activity

Nine soil borings, five in Tank Farm 1 and four in Tank Farm 2, were performed using a truck-mounted hollow stem auger. Boring locations, shown in Figures 4-1 and 4-2, were chosen to evaluate soil quality throughout both tank farm areas. Samples from the borings were collected at approximately 5-foot intervals with a 2-foot split-spoon using Standard Penetration Test techniques (ASTM D-1586). Sampling was continued until saturated

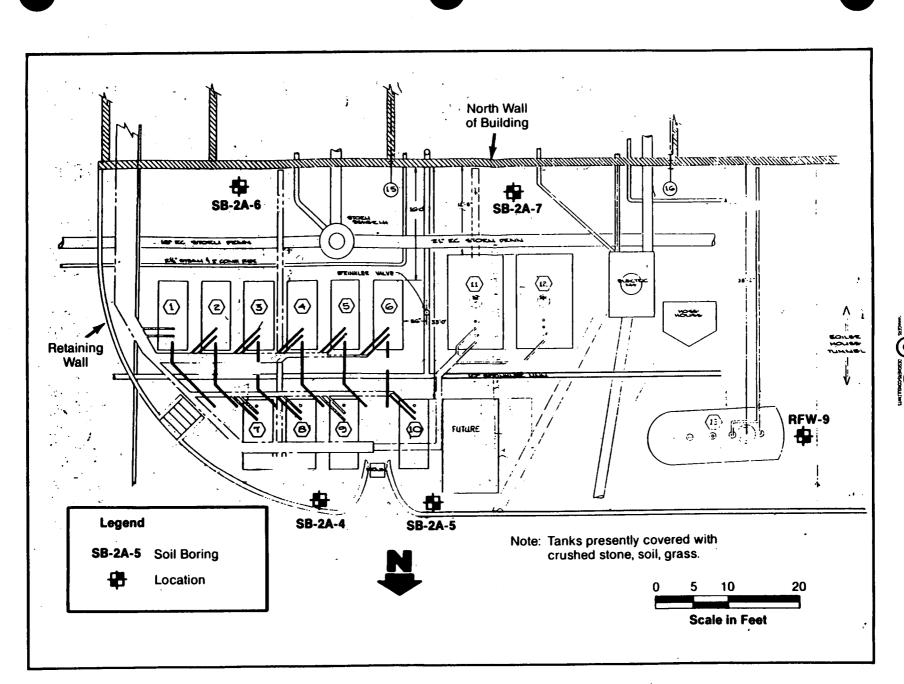


FIGURE 4-1 LOCATION OF PHASE IIa SOIL BORINGS, TANK FARM 1

4-2

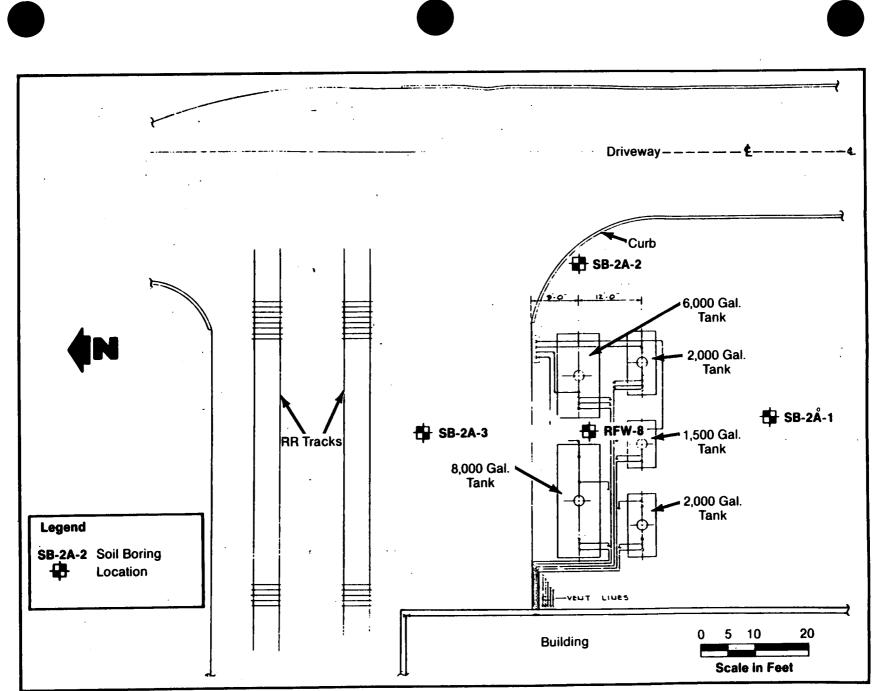


FIGURE 4-2 LOCATION OF PHASE IIa SOIL BORINGS, TANK FARM 2

4-3

NEW

. .

conditions were encountered. Borings were generally completed to depths of 30 to 45 feet. As the borings were advanced, the boreholes and split spoons were screened with an HNu for detection of VOCs. Visual descriptions of soil color, texture, and moisture content were made during sampling.

Two samples at each 5-foot interval were collected and contained in 125-ml laboratory-cleaned jars. One sample was designated for VOC analysis; the other was designated for field headspace screening and TPH analysis. At the time of sampling, the TPH sample jar was sealed with aluminum foil and with a plastic cap. These jars were then left for a minimum of 3 hours at ambient temperatures ranging from 85° to 95°F. At the conclusion of the day, the headspace of the TPH sample jar from each interval was screened by puncturing the foil with the 10.2-eV probe of a HNu Model 101.

The VOC sample from the same interval as the TPH sample with the highest headspace reading was selected from each borehole and submitted for VOC analysis. An additional VOC sample from both RFW-9 and SB-2A-7 were also submitted for VOC analysis. Samples from all intervals were analyzed for TPH. For quality control, a duplicate sample was collected at SB-2A-4 for TPH analysis and at SB-2A-7 for VOC analysis. A field blank and a trip blank were also analyzed for VOCs and TPH.

Split spoons were scrubbed with Alconox and water with a potable water rinse followed by a deionized water rinse after each sample. The back of the rig, augers, and spoons were steamcleaned before each boring. Latex gloves were worn and changed between each sampling interval. At the conclusion of drilling, boreholes were grouted to the surface with a Portland cement/ bentonite mixture, except for RFW-8 and RFW-9, which were completed as monitor wells. Cuttings from SB-2A-6 and SB-2A-4 were contained in 55-gallon drums because HNu readings from these boreholes exceeded 25 units. The soils from the other boreholes were disposed of on-site by Black & Decker employees.

Results

A complete tabulation of results, which lists all compounds tested for each analysis, and all blank, spike, and duplicate results is provided in Appendix E. The validity of all chemical analyses in this section was confirmed in accordance with the WESTON quality assurance and quality control programs, as described in Appendix C of the Work Plan.

Five soil borings were completed in Tank Farm 1 and four in Tank Farm 2 to the depth of groundwater saturation. The soils encountered in the borings were similar to those encountered in the Phase I investigation, and were generally described as a yellowish-brown to reddish-brown clayey silt. Quartzite and schistoze rock fragments were present throughout the borings. Complete lithologic descriptions of the samples are presented in Appendix F.

The results of the TPH analysis of the soils at Tank Farms 1 and 2 are presented in Figures 4-3 and 4-4 with the VOC analysis. Phase I analysis results are included with the Phase II results to provide a cumulative summary of the soil sample results. In the diagrams, each boring is schematically represented, showing the sample intervals and the corresponding detected concentrations of TPH. The relative locations of the borings are shown in an inset map.

The results for Tank Farm 1 shown in Figure 4-3 indicate that TPH are present in concentrations above 100 ppm in three of the seven borings completed in this area. These elevated levels were found in the soils at one or two intervals from 0 to 20 feet below ground surface (bgs) from borings SB-A-4, SB-2A-5, and SB-A-7.

In Tank Farm 2, Figure 4-4, concentrations of TPH in SB-2A-1, SB-2A-2, and SB-2A-3 were below 100 ppm throughout the borings. In SB-A-1 and RFW-8, which are located together, elevated concentrations in excess of 100 ppm were found between 0 and 15 feet bgs.

The general pattern of TPH concentrations in the soils at the two tank farms is predictable. The elevated concentrations of TPH, in excess of 100 ppm, are localized and appear to be limited to the upper 15 feet of a few boreholes closest to the tanks. Concentrations ranging from 10 ppm to 100 ppm are detected in several more boreholes, but are typically limited to the upper 30 feet of soil. Low TPH concentrations are detected in all boreholes below 30 feet. Typical background levels of TPH at industrial sites have been observed at 10 ppm to 100 ppm. Background concentrations of 10 ppm and less are commonly encountered on nonindustrial sites. The complete TPH analysis results are presented in Appendix E.

The results of the VOC analysis for Tank Farm 1 and 2 soils are presented with the TPH results in Figures 4-3 and 4-4. Again, Phase I analysis results are included with the Phase II results. In each diagram, the boreholes are schematically represented showing the interval sampled for VOC analysis. The principal analyte detected and the corresponding concentration are listed to the right of the interval. HNu or OVA field headspace readings for each interval are listed on the left.

VOCs were detected in all boreholes from Tank Farm 1, in concentrations ranging from below quantification limits to over 100 ppm. One or more of the compounds, toluene, ethyl benzene, and xylene were detected in concentrations above 1 ppm in soil samples from SB-2A-6, SB-A-4, SB-2A-4, and SB-2A-5, all of which were located right around the underground storage tanks. PCE was detected at 340 ppb in SB-A-4, and its presence below the quantification limit was noted in SB-A-7. Low concentrations of

. SB-2A-4 SB-2A-7 SB-2A-6 SB-A-4 SB-2A-5 TPH TPH VOC TPH VOC TPH VOC TPH **AVO** HNu HNu **AVO** HNu HNu VOC VOC 0. 100 T-160 X 15 7 67 80 6500 0 1.0 0 9 X-3,200 172 PCE-340 1.2 30 8 60 140 0 420 EB-510 4600 0 4 1.6 X-8000 174 1.3 Т-30,000 12,000 190 40 9 140 2 0 0 4 1.2 10' EB-12,000 NR X-86,000 1.4 X 500+ MP-110 3 34 1.5 3 7 15 5 2 10 3 30 1.4 **Depth BGS (Ft.)** 2.5 5 6 3 400 · 1 0 4 Duplicate 3 4 1.5 4 2 2 IX T-2900 10 800 5 4 3 2 3 1 T-4J 800 4 200 2 30' S-12 Duplicate T-200 EB-2J TCA-2J Interval Sampled 40' J for VOC Analysis X orth Wal Building 52 EB-500 67 — Petroleum Hydrocarbons in mg/kg OVA/HNu Head Space in Units Above Bkgd. 58-2A-6 SB-2A-Y . VOC Analysis (PPB) Analytes EB -Ethylbenzene ----tetainin Wali Τ-Toluene Xylene Х-Sampled - Ch S -Styrene Interval SB-A-4 PCE - Tetrachloroethene 🖶 SB-2A-4 SB-A-7 SB-2A-5 4-Methyl-2-Pentanone MP -Legend TCA - 1,1,2-Trichloroethane SB-A-4 Soil Boring Tanks presently covered with crushed stone, soil, grass.

WESTER

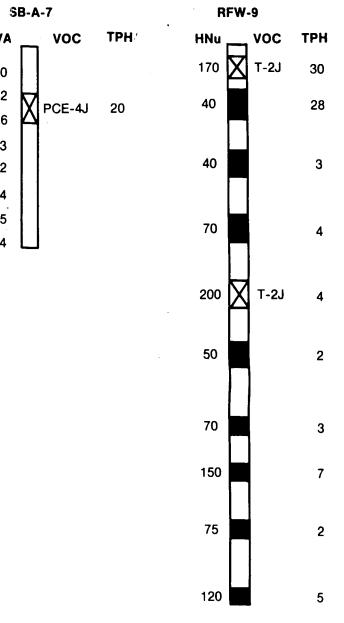
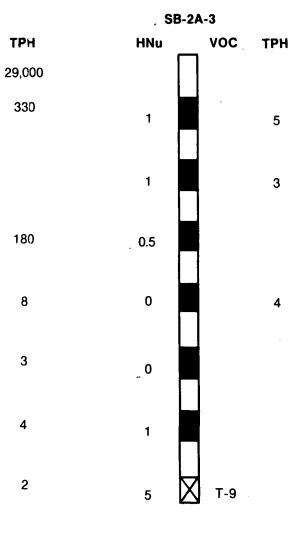



FIGURE 4-3 PHASE I AND IIa SOIL BORINGS, RESULTS OF TPH AND VOC ANALYSIS, TANK FARM 1

RFW-8 SB-2A-2 SB-A-1 SB-2A-1 TPH HNu OVA voc HNu VOC TPH HNu VOC VOC TPH 0 k 35 0 20 8 170 71 2.6 300 14 3.4 10.5 3 4 PCE-380,000 150,000 V 100 TCE-2,400 13 480 6.5 0 14 32 25 10' -TCA-220 60 14 5 20 210 . 14 19.5 5 Depth BGS (Ft.) 5.5 45 210 18 20' י 1 200 6 30 16 1 0 10 17 30' -50 15 2 17 13 85 4 3 12 21 5 40' -Sample Submitted for VOC Analysis 25 15 PCE-25 14 - Petroleum Hydrocarbons Curb in mg/kg OVA/HNU Head . بعانيت موأث Space in VOC Analysis Units Above đΝ (PPB) Bkgd. Analytes 5- 58-2A-🖶 SB-2A-3 RFW-8 8.000 C Т Toluene Interval PCE Tetrachloroethene Legend TCE Trichlorethene SBA-1 Soil Boring Location TCA 1,1,2-Trichloroethane

Building

WISSIAN

4

3

FIGURE 4-4 PHASE I AND IIa SOIL BORINGS, RESULTS OF TPH AND VOC ANALYSIS, TANK FARM 2

the volatiles, toluene, styrene, and ethyl benzene were detected in SB-2A-7 and RFW-9, which are located several feet south of the underground tanks. In SB-2A-6 and SB-2A-7, HNu headspace readings, and, in particular, HNu readings at the borehole, were higher with increasing moisture content in the sediments. The VOC concentrations above 1 ppm generally correlated to TPH concentrations of above 100 ppm. Exceptions to this correlation are samples taken near or into the water table in SB-2A-6 and SB-2A-7, which may have been influenced by groundwater contamination. The correlation of the VOC concentrations with HNu readings appears to be less reliable, possibly due to solvation effects.

In Tank Farm 2 borings, shown in Figure 4-4, the Phase II VOC analysis was generally negative. SB-2A-3 was the exception; toluene was detected at 9 ppb in the sample at 34 feet. HNu headspace readings were considerably lower than those for Tank Farm 1 borings, with the exception of SB-2A-2, although in this boring there was no corresponding detection of VOCs in the sample analyzed. During the Phase I investigation, concentrations of PCE, TCE, and 1,1,2-TCA totalling several ppm were detected in SB-A-1 in the same interval that 150,000 ppm TPH was detected. These VOC compounds were not detected in RFW-8, which was placed directly adjacent to SB-A-1 or in any soils from the other Tank Farm 2 borings. This unexpected result could be due to the RFW-8 sample being collected near the surface. With the exception of this result, it appears that the VOCs in the soils of Tank Farm 2 are also associated with TPH.

The complete VOC analysis results are presented in Appendix E.

4.1.2 Phase IIb

The results from the Phase IIa soil analyses suggested the need for supplemental data collection to accurately define the contaminated soil profile within the tank farms. Field screening with an HNu had been conducted in part to estimate VOC concentrations in the soils, instead of having to analyze each sample for VOCs, in the laboratory. Due to the poor correlation of the HNu readings to the concentration of volatiles in the soils, and the relatively small size of the areas of concern, closely spaced, continuously sampled borings were proposed for both tank farms as part of the Phase IIb investigation. To further determine the impact of the soil contaminants on the groundwater, representative samples from the borings were proposed to be analyzed for VOCs using TCLP procedures.

Field Activity

Eighteen soil borings, 8 in Tank Farm 1 and 10 in Tank Farm 2, were performed using an all-terrain-vehicle-mounted hollow stem auger. Boring locations, shown in Figures 4-5 and 4-6, roughly form a grid covering the tank farm areas. It was necessary to

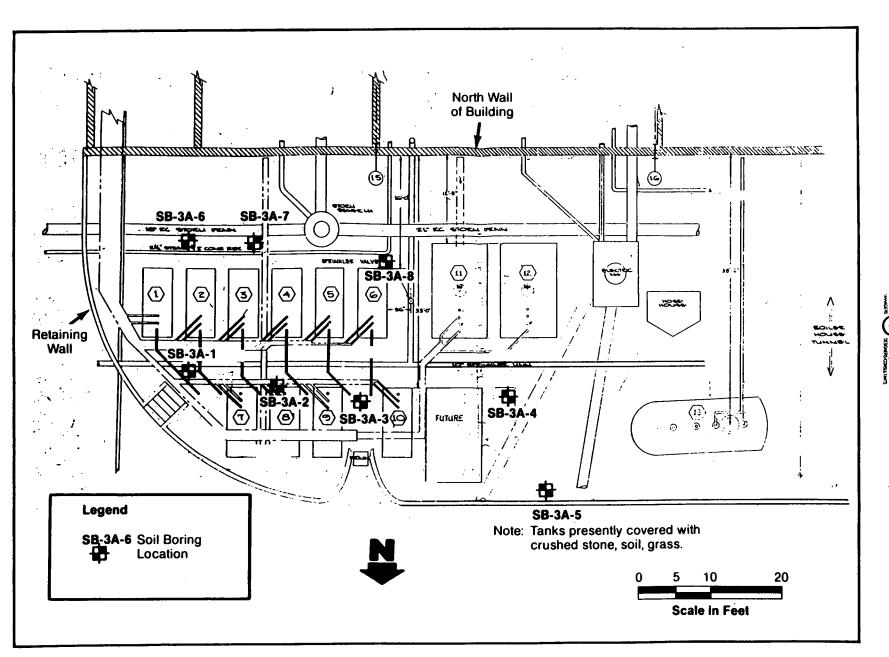


FIGURE 4-5 LOCATION OF PHASE IIb SOIL BORINGS, TANK FARM 1

4-9

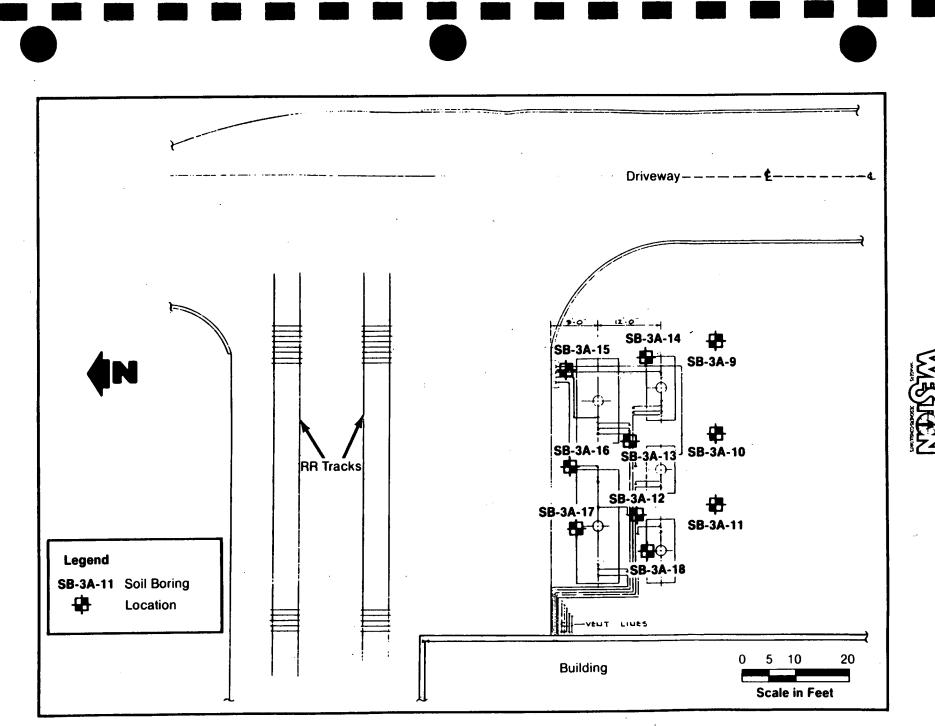


FIGURE 4-6 LOCATION OF PHASE IIb SOIL BORINGS, TANK FARM 2

4-10

adjust the proposed locations to avoid underground utility lines. The placement of the borings and depth of sampling in each boring were selected to define the horizontal and vertical limits of local soil contamination as indicated by the Phase IIa investigation. A field laboratory was set up on-site for rapid turnaround sample analysis, in order that field decisions could be made to extend the grids to the limits of soil contamination. The field laboratory consisted of an infrared spectrophotometer (IR) for total petroleum hydrocarbon analysis (TPH), a gas chromatograph electron capture detector (GCECD) for detecting chlorinated hydrocarbons (CH), and a gas chromatograph photoionization detector (GCPID) for benzene, xylene, ethyl benzene, and toluene (BXET) detection.

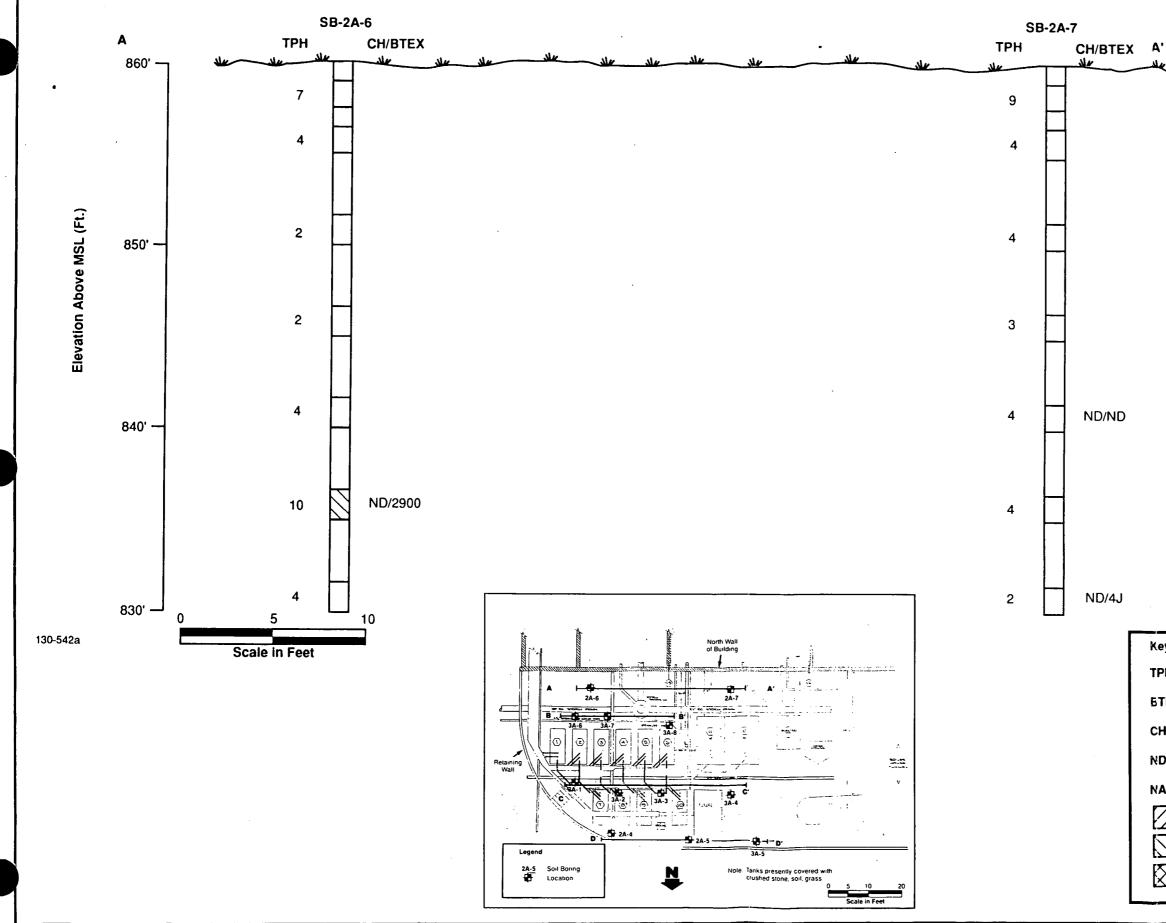
Soil samples were collected at 2-foot intervals with a split spoon using Standard Penetration Test techniques (ASTM D-1586). As the boreholes were advanced, the boreholes and split spoons were screened with a Model 101 HNu with a 10.2-eV probe. In each borehole, continuous sampling was concluded at 16 feet bgs, with a final sample taken from 18 to 20 feet bgs; a depth suggested by the Phase IIa results to represent the limit of contamination. In borehole SB-3A-6, an additional sample was taken at the 25- to 27-foot bgs interval because of relatively high HNu readings at the 18- to 20-foot interval. In borehole SB-3A-7, additional samples were taken at 20- to 22-foot and 25- to 27-foot intervals because of high HNu readings at the 18- to 20-foot interval. Visual descriptions of soil color, texture, and moisture content were made during sampling.

Two samples at each 2-foot interval were collected and contained in 125-ml laboratory clean jars. One sample was designated for VOC analysis, the other was designated for TPH analy-All TPH samples were submitted immediately for analysis sis. in the field laboratory set up in the wastewater treatment fa-The VOC samples were stored at temperatures below 30°F cility. When the TPH analysis was completed, the results were (-1°C). used to determine which samples would be analyzed for CH (PCE, TCE, and 1,1,1-TCA) and BXET. Samples were selectively analyzed to define the upper and lower limits of the volatile contaminants in a particular borehole. Samples identified as high or moderately high in TPH were considered most likely to contain volatiles, as indicated by the Phase IIa results. In most cases, one or two samples were initially selected for analysis, and additional samples from the same borehole were selected after reviewing the analytical results. For quality control, duplicate samples were submitted for TPH and VOC analysis of every twentieth sample.

At the completion of the VOC analysis, four samples (two from each tank farm area) were selected for analysis using TCLP procedures to provide an indication of constituent mobility in soils. Samples from borings SB-3A-2 and SB-3A-12 at 10 to 12

feet bgs were selected as representative of samples having the highest level of contamination for each tank farm. Samples from SB-3A-3 at 8 to 10 feet bgs and SB-3A-18 at 4 to 6 feet bgs were selected as representative of samples exhibiting average levels of contamination.

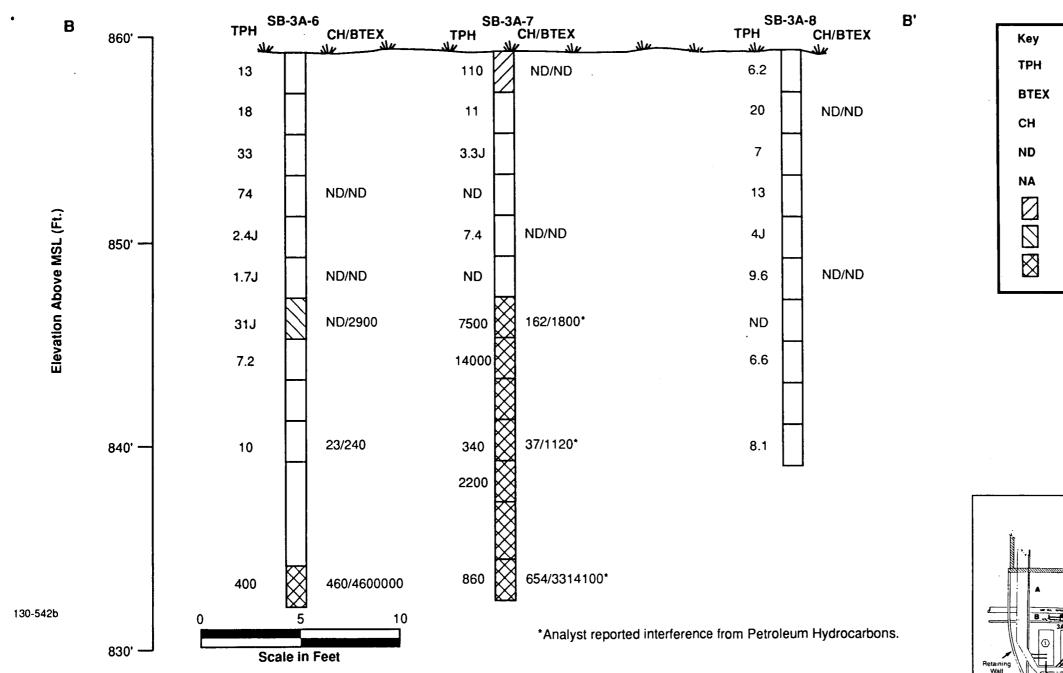
For drilling and sampling, standard decontamination procedures were followed. After each sampling event, split spoons were scrubbed with Alconox and water, followed by a potable water rinse and a deionized water rinse. The back of the rig, augers, and spoons were steam-cleaned before each boring. Latex gloves were worn and changed between each sampling interval. At the conclusion of drilling, the boreholes were backfilled with cuttings, except for SB-3A-6 and SB-3A-7, which were grouted to the surface with a Portland cement/bentonite mixture because they had been sampled to the top of the water table. The remaining cuttings were contained in 55-gallon drums.


Results

A complete tabulation of results, which lists all compounds tested for each analysis and all blank, spike, and duplicate results, is provided in Appendix G. The validity of all chemical analyses in this section was confirmed in accordance with the WESTON quality assurance and quality control programs as described in Appendix C of the Work Plan.

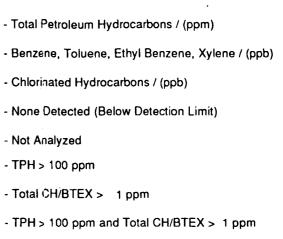
Eight soil borings were completed in Tank Farm 1 and 10 in Tank Farm 2. Soils encountered in the borings were similar to those encountered in previous borings in these areas. Soils were described generally as yellowish-brown to reddish-brown clayey silt above 845 feet (MSL) in Tank Farm 1 and above 847 feet (MSL) in Tank Farm 2. Highly weathered schist was described below these elevations. The clayey silt probably represents fill collected from another part of the property placed in and around the Tank Farms during their installation and subsequent excavation. Complete lithologic descriptions of samples are presented in Appendix H.

The results of the TPH and VOC analyses of the soils at Tank Farm 1 are summarized in cross-sections (Figures 4-7 through 4-10). Several Phase IIa borings are included to provide a complete overview of the available analytical data. In each diagram the borings are schematically represented, showing the sample intervals and the corresponding concentrations of TPH and CH. The locations of the borings are shown in the inset maps. The complete analysis for each compound is listed in Table 4-1.


The results for Tank Farm 1 indicate that the levels and types of contamination are as indicated in the Phase IIa borings. Most soil samples had TPH concentrations of less than 100 ppm.

WISTON

Key	
ТРН	- Total Petroleum Hydrocarbons / (ppm)
BTEX	- Benzene, Toluene, Ethyl Benzene, Xylene / (ppb)
СН	- Chlorinated Hydrocarbons / (ppb)
ND	- None Detected (Below Detection Limit)
NA	- Not Analyzed
\square	- TPH > 100 ppm
	- Total CH/BTEX > 1 ppm
	- TPH > 100 ppm and Total CH/BTEX > 1 ppm


FIGURE 4-7 PHASE II SOIL BORINGS, RESULTS OF TPH AND VOC ANALYSIS CROSS SECTION A-A', TANK FARM 1

.

2A-6

WILL THE REAL

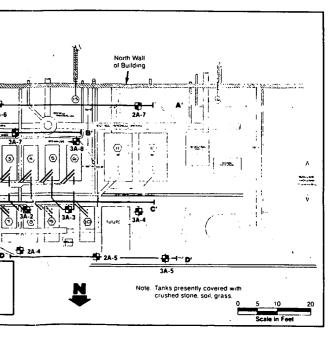
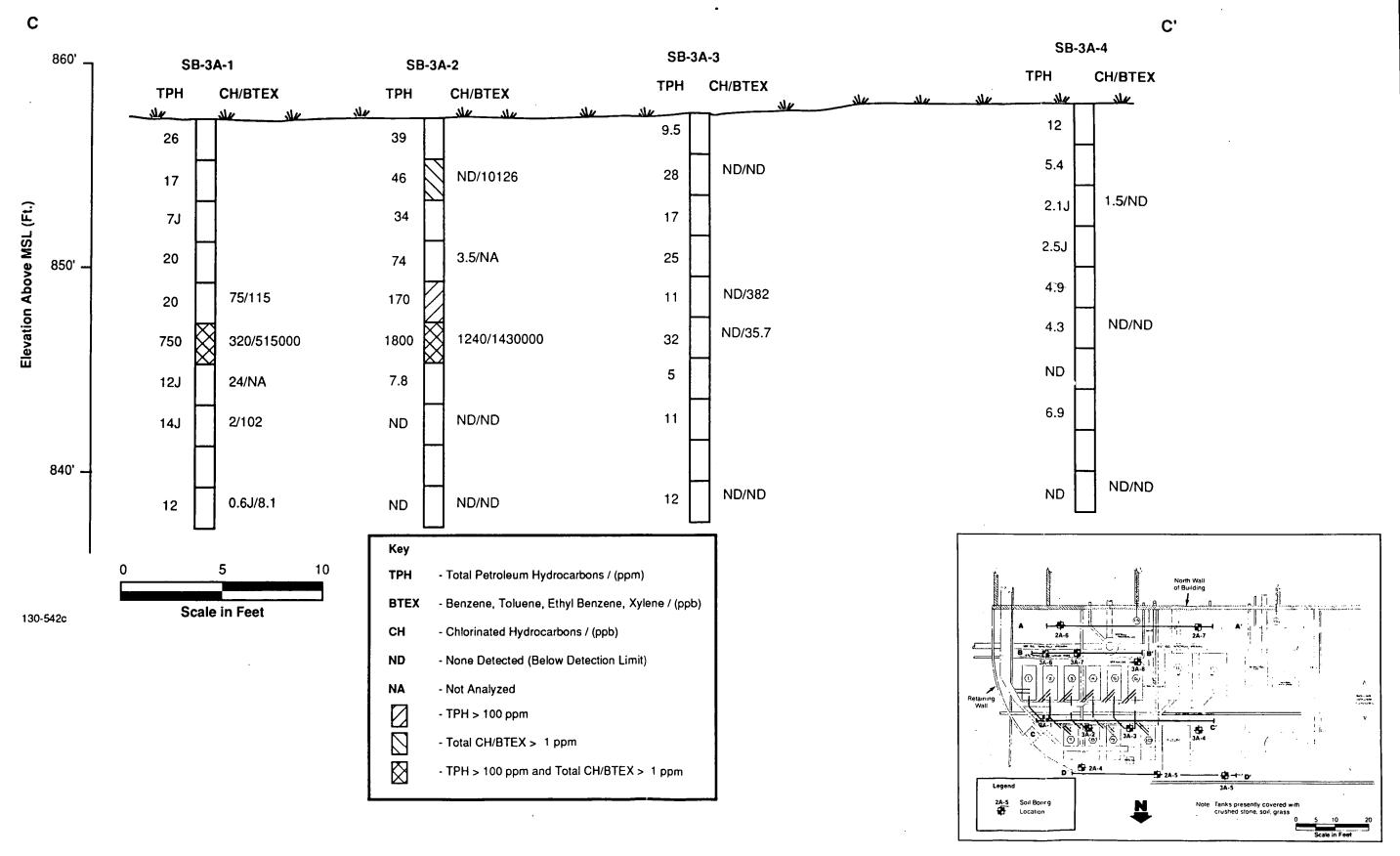
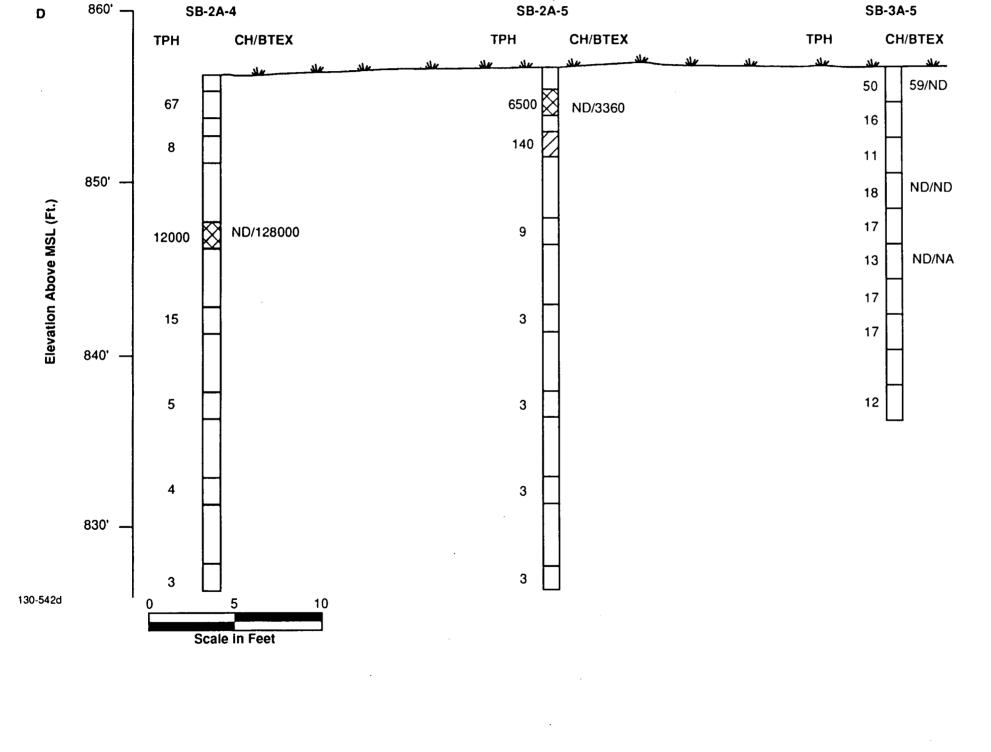
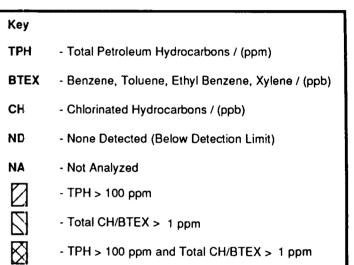




FIGURE 4-8 PHASE II SOIL BORINGS, RESULTS OF TPH AND VOC ANALYSIS CROSS SECTION B-B', TANK FARM 1

WARGE AND

FIGURE 4-9 PHASE II SOIL BORINGS, RESULTS **OF TPH AND VOC ANALYSIS** CROSS SECTION C-C', TANK FARM 1



D'

Retainin Wall

Legend

WAS THE

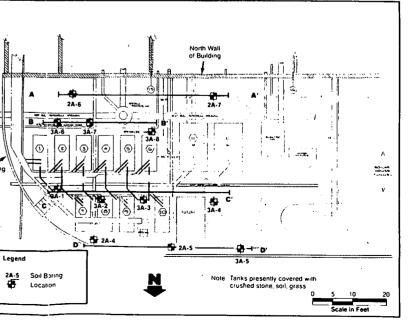


FIGURE 4-10 PHASE II SOIL BORINGS, RESULTS OF TPH AND VOC ANALYSIS CROSS SECTION D-D', TANK FARM 1

WASSEN

Table 4-1

Results of VOC Analysis: Phase IIb Soil Samples, Tank Farm 1

	Depth	TPH	TCA	TCE	PCE	Benzene	Toluene	E.Benzene ug/kg	Xylene ug/kg
Sample ID	ft bgs	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
SB-3A-101	0-2	26							
-101D	0-2	44							
- 102	2-4	17							
- 103	4-6	7 J	•						
- 104	6-8	20							
-104D	6-8	12 J							
- 105	8-10	20	31	ND	44	ND	22	ND	93
- 106	10-12	750	150	0.8 J	170	ND	480000	E 35000	
- 107	12-14	12 J	24	ND	ND				
- 108	14-16	14 J	2	ND	ND	ND	100	E 2.J	l .
-109	18-20	12 J	0.6 J	ND	ND	ND	5.9	2.2 5	l
Blank		3.9 J							
SB-3A-201	0-2	39	<u> </u>		· • - ,				
-202	2-4	46	ND	ND	ND	ND	26	1500	8600
-203	4-6	34							
-204	6-8	74	ND	ND	3.5				
-204D		68							
-205	8-10	170							
-205	10-12	1800	210	30	1000	ND	1000000	120000	310000
-208 -206D	10-12	1000	80	7.2	1000				
-2080	12-14	7.8	50	1.2	1000				
	14-16	V.O ND	ND	ND	ND	ND	ND	ND	NC
-208					ND	ND	ND	ND	NE
-209	18-20	ND	NĎ	ND	NU	NU	NU	NU	NL
Blank		5.1							
SB-3A-301	0-2	9.5						<u></u>	
-302	2-4	28	ND	ND	ND	ND	ND	NÐ	NC
-302D	2-4		ND	ND	ND	ND	ND	ND	NE
-303	4-6	17							
-304	6-8	25							
-305	8-10	11	ND	ND	ND	ND	48	34	300
-3050	8-10		ND	ND	ND	ND	5.3	6	65
-306	10- 12	32	ND	ND	ND	ND	3.7	J 3.	J 29
-307	12-14	5							
-308	14-16	11				·			
-309	18-20	12	ND	ND	ND	ND	ND	ND	N
-309D	18-20	11	ND						
Blank	10 20	ND							
SB-3A-401	0-2	12							
-402	2-4	5.4							
-402	4-6	2.1 J	1.5	ND	ND	ND	ND	. ND	N
-403	4-0 6-8	2.1 J 2.5 J		NU		NU			
-404	8-10	4.9							
		4.9 3.3 J							
-405D	8-10 10-13			ND	-	ND	ND	ND	N
-406	10-12	4.3	ND	ND	ND	UM	NU		PU.
-407	12-14	ND							
-408	14-16	6.9						NP	
-409	18-20	ND	ND	ND	ND	ND	ND	ND	N
-409D	18-20		ND	ND	ND				
Blank		ND							

J - Detected at less than the lower quantification limit ND - Not detected

E - Estimated, out of calibration range

4-17

Table 4-1 (continued)

Results of VOC Analysis: Phase IIb Soil Samples, Tank Farm 1

	Depth	TPH	TCA	TCE	PCE	Benzene	Toluene	E.Benzene	Xylene
Sample ID	ft bgs	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
SB-3A-501	0-2	50	59	ND	ND	ND	ND	ND	NC
-502	2-4	16						7	
-503	4-6	11							
-504	6-8	18	ND	ND	ND	ND	ND	ND	NC
-504D	6-8	11							
-505	8-10	17							
-506	10-12	13							
-507	12-14	17	ND	ND	ND				
-508	14-16	17							
-509	18-20	12							
Blank		9.9							
SB-3A-601	0-2	13							
-602	2-4	18							
-603	4-6	33							
-604	6-8	74	ND	ND	ND	ND	ND	ND	N
-605	8-10	2.4 J	1 [•] .						
-606	10-12	1.7 J	ND	ND	ND	ND	ND	ND	N
-607	12-14	3.1 J	ND	ND	ND	ND	2900	ND	N
-6070	12-14		· ND	ND	ND				
-608	14-16	7.2							
-609	18-20	10	20	ND	2.7	ND	240	ND	N
-6090	18-20		32	ND	2.7	ND	100	ND	N
-611	20-22	400	130	ND	300	ND	4600000	E ND	N
SB-3A-701	0-2	110	ND	ND	ND	ND	ND	ND	N
-701D	0-2	71							
-702	2-4	11							
- 703	4-6	3.3 J	J						
-704	6-8	ND							
- 705	8-10	7.4	ND	ND	ND	ND	ND	ND	N
-706	10-12	ND							
-7060	10-12	21							
-707	12-14	7500	12	ND	150		I	I	I 180
-708	14-16	14000							
-709	18-20	340	4.6	ND	32	· ND	750	I 100	I 27
-711	20-22	2200							
-712	25-27	860	64	0.6 J	590	ND	3300000	E 4100	1000
Blank		4.7							
SB-3A-801	0-2	6.2							
-802	2-4	20	ND	ND	ND	ND	ND	ND	N
-803	4-6	7							
-803D	4-6	4.8							
-804	6-8	13							
-805	8-10	4.	J						
-806	10-12	9.6	ND	ND	ND	ND	ND	ND	N
-807	12-14	ND							
-808	14-16	6.6							
-809	18-20	8.1							
Blank		1.4							

J - Detected at less than the lower quantification limit ND - Not detected

E - Estimated, out of calibration range I - Interference from petroleum hydrocarbons

4-18

1

Limited horizons in borings SB-3A-1, SB-3A-2, SB-3A-6, and SB-3A-7 had TPH concentrations above 100 ppm. Of volatile compounds, xylene, ethyl benzene, and toluene (XET) were detected in concentrations greater than 1 ppm in borings SB-3A-1, SB-3A-2, SB-3A-6, and SB-3A-7. Chlorinated hydrocarbons were a small percentage of the total VOCs. Only SB-3A-2 had a single sample with PCE in concentrations exceeding 1 ppm. As in the Phase IIa borings, the highest VOC concentrations were associated with the higher TPH concentrations.


The three-dimensional distribution of the highest levels of TPH (>100 ppm) and total VOCs (>1 ppm and predominantly XET) in Tank Farm 1 is schematically presented as a fence diagram in In the fence diagram, the soil borings and soil Figure 4-11. intervals within those borings are used as nodes. The actual soil analyses are extrapolated between nodes to depict a probable contaminated soil profile of the tank farm. Figure 4-11 indicates that the highest levels of TPH and VOCs were found in the southeast part of Tank Farm 1 centered at SB-3A-7. In SB-3A-7, TPH >100 ppm was found from 0 to 2 feet bgs. Similar TPH concentrations and VOCs >1 ppm are found from 12- to 27-feet bgs (847 feet MSL to 832 feet MSL). The 12- to 27-foot interval roughly corresponds to the zone from 2 feet above the base of the tank farm fill to 2 feet below the top of the water table.

In SB-3A-2, adjacent to SB-3A-7, the highest levels of TPH and VOCs were detected in the 2- to 12-foot bgs interval (855 feet MSL to 845 feet MSL). The 845-foot depth corresponds to the base of the fill.

TPH concentrations >100 ppm and VOCs >1 ppm at the 847- to 845 -foot MSL depth were also found in SB-3A-6, SB-3A-1, and SB-2A-4, downgradient of or lateral to SB-3A-7. In SB-3A-6 and SB-2A-6, higher contaminant levels were found in samples from the top of the water table, at 834 feet MSL. In SB-2A-5, TPH >100 ppm and VOCs >1 ppm were found in the top 5 feet of soil only.

Borings SB-3A-5, SB-3A-3, and SB-3A-8 define the southern and western boundaries of the contaminated soil profile. The northern and eastern limits of the soil contaminants were assumed to be the roadway. The roadway represents the boundary of the tank farm and is a barrier to the infiltration of rainwater.

The pattern of TPH and XET distribution in Tank Farm 1 soil borings suggests that below 845 feet MSL in the vadose zone, concentrations of TPH >100 ppm and XET >1 ppm, are found in a limited area (approximate 10-foot radius) close to SB-3A-7. Similar concentrations in soils at the top of the water table have a slightly greater areal extent. Above 845 feet (MSL) the highest levels of contaminants are found in soils throughout and downgradient of the immediate area of Tanks 1 through 9, an approximately 1,600-square foot area.

TCLP tests were conducted on the 10- to 12-foot sample from SB-3A-2. The leachate was analyzed to determine the typical VOC concentration that could leach into groundwater from soils exhibiting the highest levels of VOCs in Tank Farm 1. The 8- to 10-foot sample from SB-3A-3 was analyzed to represent VOC concentrations leaching from soils with average levels of contaminants. The results are shown in Table 4-2.

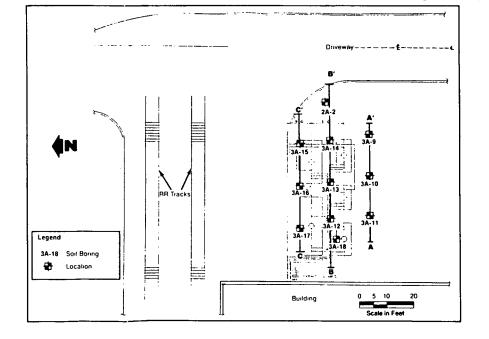
In the SB-3A-2 sample, toluene, ethyl benzene, and xylene were detected at 1,600 ppb, 350 ppb, and 2,200 ppb, respectively. PCE was detected at less than the lower quantification limit. In the SB-3A-3 sample, toluene and xylene were detected at 11 ppb and 42 ppb, respectively. None of the chlorinated hydrocarbons were detected in this sample. The concentration of toluene, ethyl benzene, and xylene from both samples are below EPA's draft proposed Maximum Contaminant Levels (MCLs) for drinking water of 2,000 ppb, 700 ppb, and 10,000 ppb. The proposed MCL values are taken from Inside EPA, Vol. 9, No. 23, 10 June 1988.

The TCLP samples, which show BXET concentrations below proposed MCLs and no chlorinated hydrocarbons above quantification limits, suggest that contaminants in Tank Farm 1 soils are currently not impacting the local groundwater.

This conclusion in regard to BXET is corroborated by analysis results of groundwater samples from monitor well RFW-9, as discussed in Subsection 4.2.3. RFW-9 is located on the southwest perimeter of the tank farm hydraulically downgradient of the affected soils and screened from 49 to 39 feet bgs (809 to 819 feet MSL). Of the BTEX compounds, only toluene was detected in the groundwater sample at 8 ppb. Therefore, it is apparent that shallow groundwater immediately downgradient of Tank Farm 1 is not being impacted significantly by the concentrations of TPH and BXET found in the tank farm soils.

The results for Tank Farm 2 (Figures 4-12 to 4-14) again corroborate the levels and types of contamination observed in the Phase I and Phase IIa borings. As in Tank Farm 1, the majority of soil samples had TPH concentrations of less than 100 ppm. Limited intervals in borings SB-3A-12, SB-3A-13, SB-3A-14, SB-3A-15, SB-3A-16, SB-3A-17, and SB-3A-18 had TPH concentrations above 100 ppm. Of the BXET compounds, benzene and toluene were only detected in concentrations in excess of 1 ppm in borings SB-3A-12 and SB-3A-18. The CHs, in contrast to the Tank Farm 1 results, were found to be the predominant VOCs in Tank Farm 2. In Tank Farm 2, PCE was typically detected in concentrations 10 times greater than TCE, and 100 times greater than 1,1,1-TCA. Again, the highest concentrations of VOCs occurred in samples also exhibiting the highest TPH concentrations. The complete analysis for each boring is listed in Table 4-3.

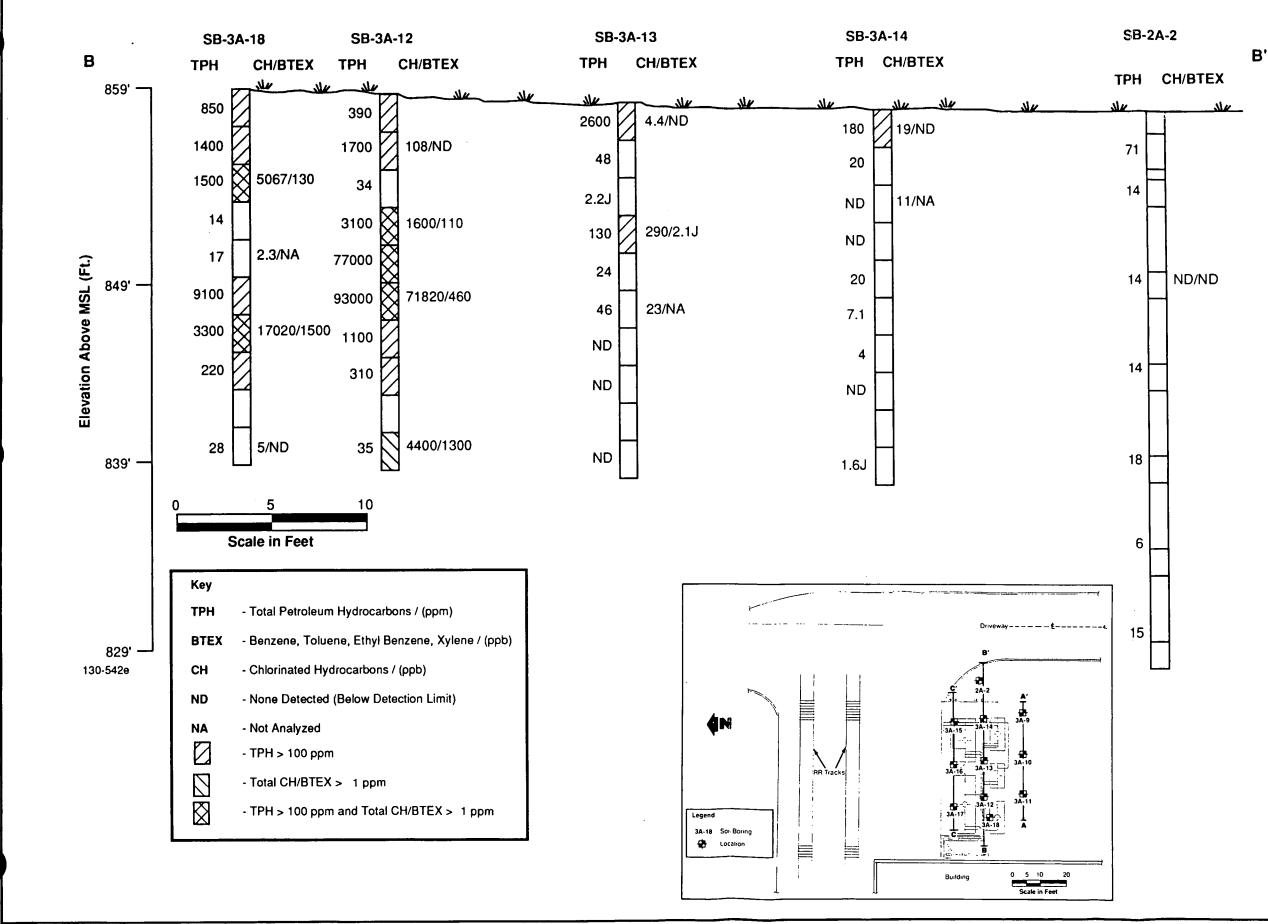
Table 4-2


Results of VOC Analysis: TCLP Soil Samples, Tank Farm 1

Sample ID	Depth	TPH	TCA	TCE	PCE	Benzene	Toluene	E.Benzene	Xylene
	ft bgs	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
SB-3A-206	10-12		ND	ND	4 J	ND	1600	350	2200
-305	8-10		ND	ND	ND	ND	11	ND	42

J - Detected at less than the lower quantification limit

ND - Not detected


Α SB-3A-10 SB-3A-11 SB-3A-9 TPH CH/BTEX TPH CH/BTEX TPH CH/BTEX 14 859' -سلا 11 10/ND 16 180/ND 34 3.5J 45/ND 52 25 ND 17 24 Elevation Above MSL (Ft.) ND 20 26 ND/ND ND/ND 3.6J 120/ND 64 21 849' -ND 4.6 3.8J ND/ND 7.4 ND/NA 5.2 9.4 ND 2.7J 17 3.6J ND 4.2 839' — Key TPH - Total Petroleum Hydrocarbons / (ppm) 10 BTEX - Benzene, Toluene, Ethyl Benzene, Xylene / (ppb) 130-542g СН - Chlorinated Hydrocarbons / (ppb) **Scale in Feet** ND - None Detected (Below Detection Limit) NA - Not Analyzed \square - TPH > 100 ppm - Total CH/BTEX > 1 ppm \boxtimes - TPH > 100 ppm and Total CH/BTEX > 1 ppm

Α'

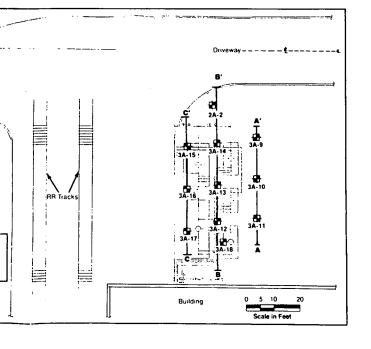

WISSIAN

FIGURE 4-12 PHASE II SOIL BORINGS, RESULTS OF TPH AND VOC ANALYSIS CROSS SECTION A-A', TANK FARM 2

SB-3A-16 SB-3A-17 SB-3A-15 С **C'** TPH TPH CH/BTEX CH/BTEX ТРН CH/BTEX SI. 859' 467/ND 220 57 4.0/NA 1200 23 98/ND 39 ND ND/ND 13 3415/25 1100 1800 165/ND Elevation Above MSL (Ft.) 9 4.8/ND 22 400/ND 35 29 2.6J 8.4 849' -13 27 5.7/ND 5 2.4/NA 8.5 20 ND 2.5/ND 23 ND 18 18 15 ND 839' Key 10 TPH - Total Petroleum Hydrocarbons / (ppm) 130-542f Scale in Feet BTEX - Benzene, Toluene, Ethyl Benzene, Xylene / (ppb) СН - Chlorinated Hydrocarbons / (ppb) - None Detected (Below Detection Limit) ND NA - Not Analyzed \square - TPH > 100 ppm - Total CH/BTEX > 1 ppm \boxtimes - TPH > 100 ppm and Total CH/BTEX > 1 ppm

(N

Legend 3A-18 Soil Boring

Location

FIGURE 4-14 PHASE II SOIL BORINGS, RESULTS OF TPH AND VOC ANALYSIS CROSS SECTION C-C', TANK FARM 2

.(

Table 4-3

Results of VOC Analysis: Phase IIb Soil Samples, Tank Farm 2

	Depth	TPH	TCA	TCE	PCE	Benzene	Toluene	E.Benzene	Xylene
Sample ID	ft bgs	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
SB-3A-901	0-2	34	ND	ND	180	ND	ND	ND	ND
-902	2-4	25							
-903	4-6	24							
-904	6-8	26	ND	ND	ND	ND	ND	ND	NC
-905	8-10	21							
-906	10-12	3.8 J	ND	ND	ND	ND	ND	ND	NC
-907	12-14	9.4							
-908	14-16	17							
-908D	14-16	12							
-909	18-20	4.2							
Blank		1.3							
SB-3A-1001	0-2	16							
- 1002	2-4	52	0.6 J	ND	45	ND	ND	ND	N
- 1003	4-6	17							
- 1004	6-8	20							
- 1005	8-10	64	120	ND	ND	ND	ND	ND	N
-10050	8-10		140	ND	ND				
- 1006	10-12	4.6							
-1007	12-14	5.2	ND	ND	ND				
- 1008	14-16	2.7 J							
-1009	18-20	ND							
Blank		2.4							
SB-3A-1101	0-2	11	ND	ND	10	ND	· ND	ND	N
-1102	2-4	3.5 J							
-1103	4-6	ND							
-1104	6-8	ND							
-1105	8-10	3.6 J	ND	ND	ND	ND	ND	ND	N
-1105D	8-10	•	1.8	ND	ND	ND	ND	ND	N
-1106	10-12	ND							
- 1107	12-14	7.4			•				
-1108	14-16	ND							
-1108D	14-16	ND							
-1109	18-20	3.6 J							
Blank	10 20	ND				·			
SB-3A-1201	0-2	390					·-··	, <u> </u>	
-1202	2-4	1700	2.7 J	5.5	100	ND	ND	ND	N
- 1203	4-6	34					-		
-1203D	4-6	27							
-1204	6-8	3100	140	360	1100	110	ND	ND	N
-1205	8-10	77000							
-1206	10-12	93000	520	1300	70000	460	ND	ND	N
- 12060	10-12	,	250			280	ND	ND	N
- 12000	12-14	1100				200			
- 1207	14-16	310							•
- 1208	18-20	35	63	30	4300	190	1100	E ND	N
	10-20		05	50	4000	190	1100		
Blank		ND							

J - Detected at less than the lower quantification limit

ND - Not detected

·

E - Estimated, out of calibration range

.

•

Table 4-3 (continued)

Results of VOC Analysis: Phase IIb Soil Samples, Tank Farm 2

	Depth	TPH	TCA	TCE	PCE	Benzene	Toluene	E.Benzene	Xylene
Sample ID	ft bgs	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
SB-3A-1301	0-2	2600	ND	ND	4.4	ND	ND	ND	N
- 1302	2-4	48							
- 1303	4-6	2.2 J							
-1303D	4-6	4.2							
- 1304	6-8	130	ND	ND	290 E	E 2.1 J	I ND	ND	N
- 1305	8-10	24							
- 1306	10-12	46	ND	ND	23				
- 1307	12-14	ND							
-1308	14-16	ND							
- 1309	18-20	ND							
SB-3A-1401	0-2	180	ND	ND	19	ND	ND	ND	N
-1402	2-4	20							
- 1403	4-6	ND	ND	ND	11				
- 1404	6-8	ND							
- 1405	8-10	20							
-1406	10-12	7.1							
-1406D	10-12	6.8							
-1407	12-14	4							
-1408	14-16	ND							
-1409	18-20	1.6 J							
Blank		ND							
SB-3A-1501	0-2	1200							
- 1502	2-4	ND	ND	ND	ND	ND	ND	ND	N
-1502D	2-4		ND	ND	6.5				
- 1503	4-6	1800	ND	ND	165	ND	ND	ND	N
- 1504	6-8	35	ND	ND	400	ND	ND	ND	N
- 1505	8-10	8.4							
- 1506	10-12	5	ND	ND	2.4				
- 1507	12-14	ND							
- 1508	14-16	18							
- 1509	18-20	ND							
Blank		ND							
SB-3A-1601	0-2	57	ND	ND	4		•		
- 1602	2-4	39							
- 1603	4-6	1100	2.3	12	3400	25	ND	ND	N
- 16030	4-6					ND	ND	ND	N
- 1604	6-8	22	ND	ND	4.8	ND	ND	ND	N
- 1605	8-10	2.6 J							
- 1606	10-12	27	ND	ND	5.7	ND	ND	ND	N
- 1607	12-14	20							
- 1608	14-16	ND							
- 1609	18-20	15							
- 16090	18-20	19.5							
Blank		8.4							

J - Detected at less than the lower quantification limit

E - Estimated, out of calibration range

ND - Not detected

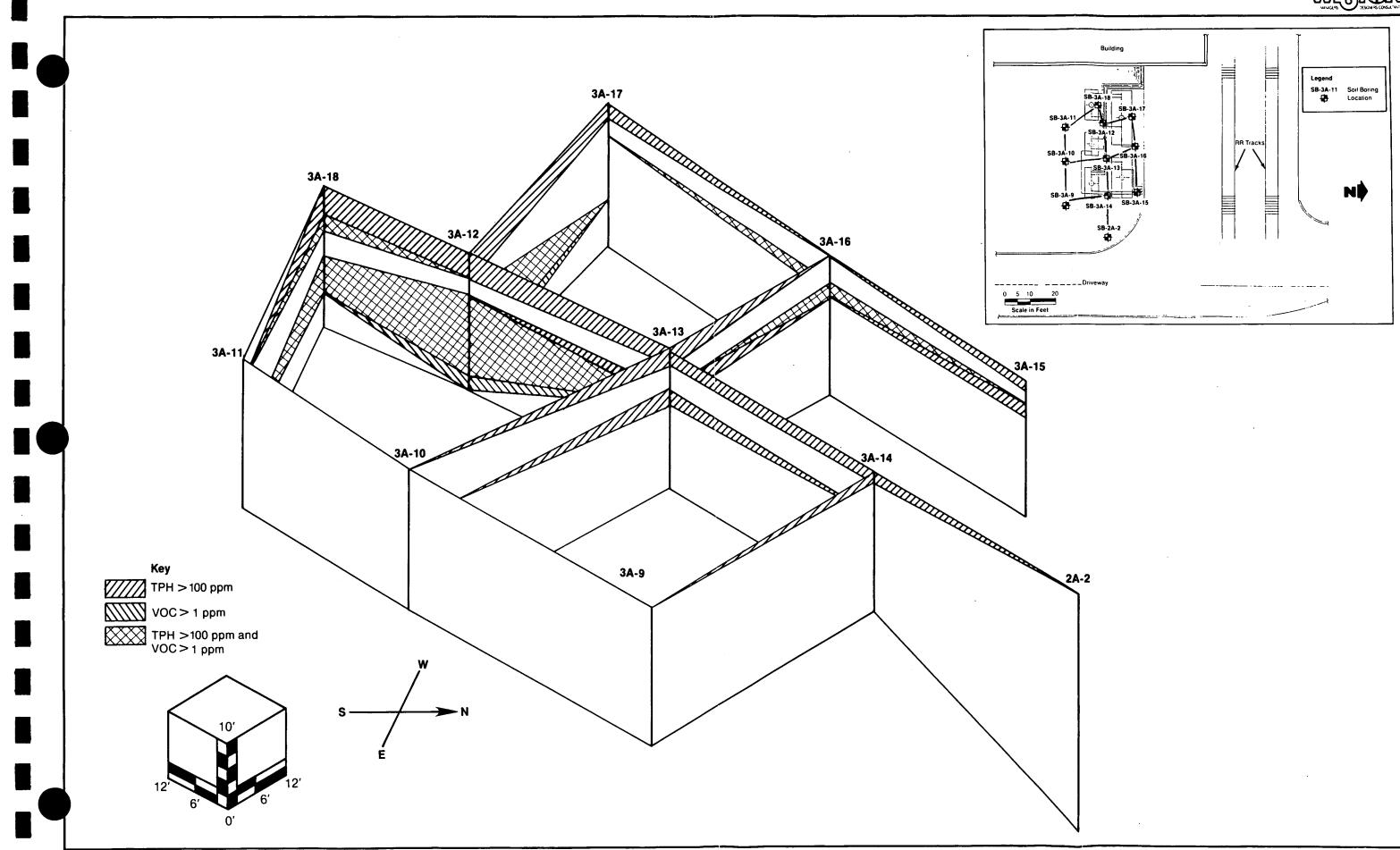
Table 4-3 (continued)

Results of VOC Analysis: Phase 11b Soil Samples, Tank Farm 2

Sample 1D	Depth ft bgs	TPH mg/kg	TCA ug/kg	TCE ug/kg	PCE ug/kg	Benzene ug/kg	Toluene ug/kg	E.Benzene ug/kg	Xylene ug/kg
SB-3A-1701	0-2	220	1.8	5.5	460	ND	ND	ND	ND
-1702	2-4	23							
- 1703	4-6	13	1.1	6.2	91	ND	ND	ND	ND
- 1704	6-8	9							
- 1705	8-10	29							
-1706	10-12	13							
- 1707	12-14	8.5							
- 1708	14-16	23	ND	ND	2.5	ND	ND	ND	ND
-1709	18-20	18							
SB-3A-1801	0-2	850							
- 1802	2-4	1400							
- 1803	4-6	1500	4.6	62	5000	130	ND	ND	ND
- 1804	6-8	14							
- 1805	8-10	17	ND	ND	2.3				
- 1806	10-12	9100							
- 1807	12-14	3300	420	1600	15000 E	1500 E	E ND	ND	NE
- 1808	14-16	220		•					
- 1809	18-20	28	0.9 J	ND	4.1	ND	ND	ND	NC
Blank		ND							

J - Detected at less than the lower quantification limit ND - Not detected

E - Estimated, out of calibration range



The three-dimensional distribution of the higher levels of TPH (>100 ppm) and total VOCs (>1 ppm and predominantly CH) in Tank Farm 2 is schematically presented in Figure 4-15. The higher levels of TPH and VOCs are found in the central area of the tank farm, centered at SB-3A-12 and SB-3A-18. In SB-3A-12, TPH >100 ppm and/or VOCs >1 ppm were detected in all but the 4-to 6-foot bgs (854 to 856 feet MSL) sample. In SB-3A-18, intervals from the surface to 6 feet bgs (869 to 859 feet MSL) and from 10 to 16 feet bgs (849 to 843 feet MSL) contained containing borings, SB-3A-15, SB-3A-14, and SB-3A-13, TPH >100 ppm and VOCs >1 ppm are limited to soils from the surface to 6 feet bgs (859 to 853 feet MSL). The base of fill in Tank Farm 2 corresponds to the 847 feet MSL.

The pattern of TPH and VOC distribution in Tank Farm 2 soil borings suggests that high levels of TPH and VOCs (particularly PCE) are present within an approximately 1,800-square foot area including the tanks. Soil contaminants over much of this area are limited to the top 6 feet of soil (853 feet MSL). In the central part of the tank farm the zone of TPH >100 ppm and/or VOCs >1 ppm extends to 20 feet bgs (839 feet MSL), an area inclusive of SB-3A-12 and SB-3A-18. The size of the drilling rig prevented determination of the SW horizontal limit of contaminants.

TCLP procedures were used in the analysis of the 10- to 12-foot sample from SB-3A-12 to represent leachate from soils exhibiting the highest contaminant levels in Tank Farm 2. The 4- to 6-foot sample from SB-3A-18 was analyzed to represent VOC concentration leaching from soils with average levels of contami-The results are presented in Table 4-4. PCE, TCE, and nants. TCA were detected at 170 ppb, 60 ppb, and 21 ppb in the SB-3A-12 sample. Xylene was detected at 3 ppb, and ethyl benzene, benzene, and toluene were not detected above the lower quanti-fication limit. In the leachate from the SB-3A-18 sample, PCE In the leachate from the SB-3A-18 sample, PCE was detected at 52 ppb. Xylene was detected at 3 ppb. The other VOCs were not detected above the lower quantification An MCL of 5 ppb has been established for TCE in drinklimit. ing water (Federal Register, Vol. 52, No. 130, 8 July 1987, p. The SB-3A-12 leachate sample exceeds the TCE guide-25689). Federal drinking water standards for PCE have not been line. implemented yet.

4169B

Table 4-4

Results of VOC Analysis: TCLP Soil Samples, Tank Farm 2

Sample ID	Depth ft bgs	TPH mg/kg	TCA ug/kg	TCE ug/kg	PCE ug/kg	Benzene ug/kg	Toluene ug/kg	E.Benzene ug/kg	Xylene ug/kg
 SB-3A-1206	10-12		21	60	170	ND	1	J ND	3
- 1803	4-6		ND	2 J	52	ND	ND	ND	3

 ${\sf J}$ - Detected at less than the lower quantification limit ${\sf ND}$ - Not detected

.

The comparison of TCLP leachate VOC concentrations against Federal drinking water standards is a conservative approach. The low rate of leachate generation (due to the characteristic low permeability of these soils) compared to the rate of lateral groundwater flow suggests that leachate from the soils in situ would be diluted significantly. However, the TCLP leachate concentration of one to two orders of magnitude above the Federal drinking water guidelines indicates that the CHs in the leachate may have an impact on groundwater in at least the immediate area of Tank Farm 2.

The apparent impact, particularly of PCE, to the groundwater is exemplified by the analysis results of the groundwater sample analysis from monitor well RFW-8 (discussed in Subsection 4.2.3). RFW-8 is located between SB-3A-12 and SB-3A-13 in the center of the Tank Farm, and screened from 53 to 43 feet bgs.

In the Tank Farm 2 groundwater, PCE was detected at a concentration of 150 ppb. TCE was detected at a concentration of 1,700 ppb.

Based on analysis of the groundwater and TCLP samples, it is apparent that the Tank Farm 2 soils represent a current source of CHs that are presently leaching into the shallow groundwater in the Tank Farm 2 area.

4.2 GROUNDWATER

As in the Tank Farm soils investigation, the groundwater investigation in Phase II involved two stages. Phase IIa was designed to evaluate the hydrogeology and groundwater quality upgradient and downgradient of possible source areas at the Black & Decker facility. Results from Phase IIa indicated that a northeast component of groundwater flow was directed from Tank Farm 2 toward State Route 30. Significant concentrations of TCE and PCE in groundwater samples from Tank Farm 2 suggested that groundwater between the plant and the northeast boundary of the site warranted evaluation. As a result, Phase IIb monitor wells were proposed to evaluate the hydrogeology and groundwater quality of the eastern boundary of the plant property.

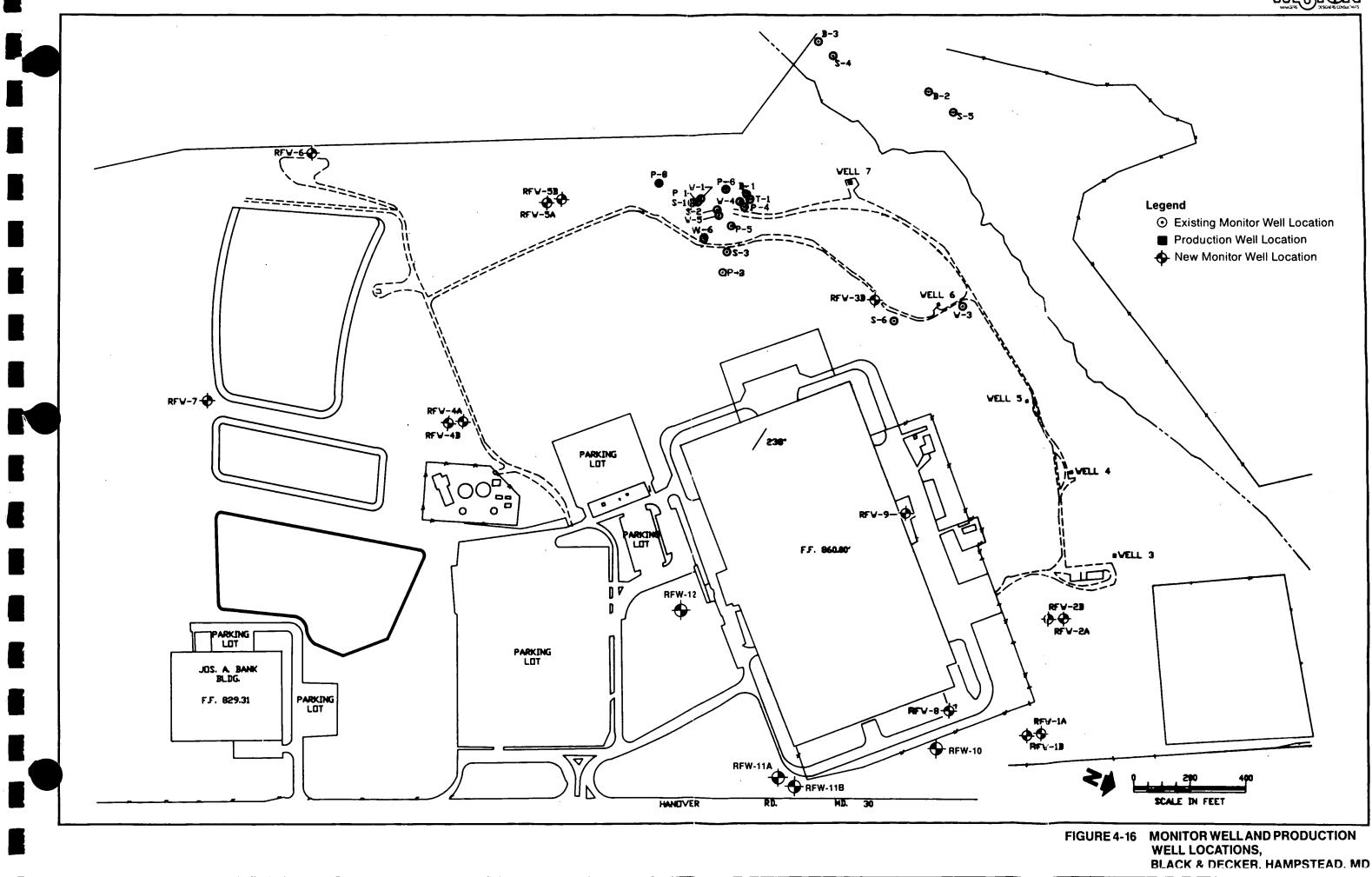
Subsection 4.2.1 describes the Phase IIa and Phase IIb field programs. Subsection 4.2.2 describes the hydrogeology at the Black & Decker property, inclusive of both the Phase IIa and IIb results. Subsection 4.2.3 describes the groundwater quality again, including both Phase IIa and Phase IIb results.

4169B

4.2.1 Monitor Well Installation and Groundwater Sampling

<u> Monitor Well Installation - Phase IIa</u>

In Phase IIa, 13 monitor wells, RFW-1A through RFW-9, were installed across the western half of the plant site, as shown in Figure 4-16. Seven shallow wells were installed near the saprolite/bedrock interface. Six deep wells were installed into competent bedrock to a depth where a yield of approximately 1 gpm was sustained or to a maximum depth of 200 feet.


Three of the shallow wells, RFW-7, RFW-8, and RFW-9, were installed with a hollow-stem auger drilling rig, which allowed concurrent soil sampling in the boreholes of RFW-8 and RFW-9. Four shallow wells, RFW-1A, RFW-2A, RFW-4A, and RFW-5A, were installed with an air rotary rig within 10 feet of a deep monitor well. A continuous lithologic log from drill cuttings was kept as each borehole was advanced.

The shallow wells were constructed of 4-inch (ID), Schedule 40, threaded, flush-joint, PVC casing with a 10-foot, continuous 0.01-inch slot PVC screen. The annular space around the well screen was filled with No. 2 sand to approximately 3 feet above the top of the screen. A 4-foot bentonite pellet seal was placed above the gravel pack. The remaining annular space was pressure-grouted with a Portland cement/bentonite slurry. Then 6-inch (ID) low carbon steel protective casings with locking caps were placed over the PVC casing and grouted in place.

Upon completion, each shallow well was developed using a surge block and pump. The wells were first surged by hand drawing a circular rubber block attached to a PVC pipe several times across the well screen. Following surging, a truck-mounted Grundfos pump was lowered into each well. Starting at the base of the well, the pump was set at 2-foot intervals along the screen; water was purged at a rate of 10 gpm from each interval until the purge water was visibly free of particulates. If the water did not clear with the initial pumping, the well was surged and pumped a second time. Development water was contained in drums and discharged to the site wastewater treatment facility. During drilling, cuttings were collected and placed on plastic sheets. At the conclusion of well installation, the cuttings were screened with the HNu. No elevated HNu readings were detected, and, therefore, the cuttings remained on-site.

Prior to the installation of each well, the drilling rig and drilling and development equipment were steam-cleaned. The pump was purged with Alconox and water and rinsed with potable water before each use. Well construction materials were removed from their original shipping containers just prior to use.

4169B

WESTEN

The six deep monitor wells (RFW-1B, -2B, -3, -5B, -6) were installed with an air rotary rig. Boreholes were initially drilled to approximately 5 feet into competent bedrock. A 6-inch (ID) low carbon steel surface casing was then set and grouted in place with a Portland cement/bentonite slurry, which was allowed to harden for a minimum of 12 hours. A 5 5/8-inch borehole was advanced through the casing to depths where waterbearing fractures were encountered in the bedrock. A continuous lithologic log was kept of the cuttings during drilling. The deep wells were developed over a period of 20 to 30 minutes by alternatively surging with air and allowing for recovery.

Before installation of each well the back of the drill rig, pipe, and bits were steam-cleaned. Cuttings were collected and placed on plastic sheets during drilling. After well completion, the cuttings were monitored for VOCs with the HNu and since no elevated readings were detected the cuttings were disposed of on-site by Black & Decker employees.

Well construction details for the monitor wells are presented in Appendix F. A schematic diagram showing the depths and screened or open hole interval of all on-site monitor wells is presented in Figure 4-17.

Monitor Well Installation - Phase IIb

Four Phase IIb monitor wells, RFW-10, RFW-11A, RFW-11B, and RFW-12, were installed on the eastern half of the plant site in locations shown in Figure 4-16. RFW-12 was proposed for a location south of RFW-11A along the eastern boundary of Black & Decker property, but was relocated at the request of MDE.

RFW-10, RFW-11A, and RFW-12 were installed as shallow wells to the saprolite/bedrock interface with an air rotary drilling rig. Well construction details are identical to the construction details described for shallow wells installed in Phase IIa.

RFW-11B was installed as a deep well into bedrock with an air rotary rig. RFW-11B was constructed of 4-inch (ID), Schedule 40 threaded flush-joint PVC casing with a 20-foot continuous 0.01-inch slot PVC screen. The screen was set 10 feet into bedrock. A temporary steel casing, which could not be retrieved, was set at 84 feet to separate the PVC casing from the borehole wall. The steel casing was grouted in place with a Portland cement/bentonite slurry. Although originally proposed as a 6-inch cased well to be used as a recovery well, RFW-11B was completed with 4-inch casing because the yield of the well was less than 10 gpm. Well construction details are otherwise identical to the details described for the shallow wells in Phase IIa.

Upon completion, each well was developed using an air compressor and pump. The wells were surged with for one-half hour. After surging the wells were purged at a rate of not greater

Feet Above MSL 865 —	RFW-1A	 RFW-2A	RFW-2B	RFW-3B	RFW-4A	RFW-48	RFW-5A	RFW-5B	RFW-6	RFW-7	RFW-8	RFW-9	RFW-10	RFW-11A	RFW-11B	RFW-12		<u>-</u>	S-2	S-3	S-4	S-5	S-6	W-1	W-3	W-4	W-5	9-W	P-1	P-3	P-4
840																							1								
815 —												1																			
790.— 765—							±														Ŧ	Ŧ			1 1 1 1						
740 —	5 9 																														
715																	-	Ē					‡s ₫o	pen E	ed Ini Boreho	ole Inf	(Shali terval			vells)	
690 — 665 —																							-	/ell Be			sed Not F	lecor	ded		
640 —																															

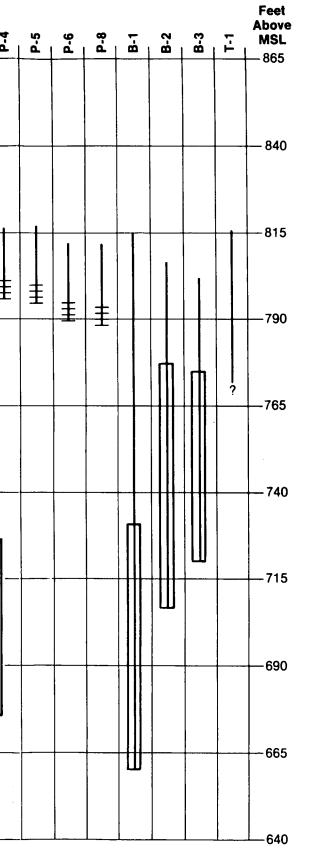


FIGURE 4-17 MONITOR WELL CONSTRUCTION, BLACK & DECKER, HAMPSTEAD, MD

than 20 gpm until the purge water was free of particulates. Development water drained into the storm sewer system.

Prior to installation of each well, the back of the drilling rig, pipe, and bits were steam-cleaned. Prior to development of each well the compressor hose and pump were steam-cleaned. Cuttings were monitored for VOCs with an HNu and, since no elevated readings were detected, the cuttings were disposed of onsite by Black & Decker employees. Well construction details for the Phase IIb monitor wells are presented in Appendix H. A schematic diagram showing the depths and screened or open hole intervals of all on-site monitor wells is presented in Figure 4-17.

<u>Groundwater Sampling - Phase IIa and Phase IIb</u>

In Phase IIa, groundwater samples were collected from the 13 newly installed monitor wells, from seven of the wells installed by Geraghty and Miller in Zone B, and from Black & Decker production wells 5, 6, and 7. In Phase IIb, groundwater samples were collected from RFW-10, -11A, -11B, and -12. The samples were submitted for VOC analysis.

Prior to sampling with a Teflon bailer, each monitor well was purged of at least three well volumes using a Grundfos pump in the 4-inch wells and a Johnson Keck pump in the 2-inch wells. Three deep wells, RFW-1B, RFW-3, and RFW-6, were purged dry before three volumes could be evacuated. These wells were allowed to recover and were then sampled. The conductivity, temperature, and pH were recorded at the time of sampling. The depth to water measurements of all sampled wells were collected prior to sampling. Purged water was contained in 55-gallon drums and discharged at the on-site wastewater treatment facility.

Both pumps and bailers were scrubbed with Alconox and water and rinsed with potable water followed by deionized water before being used in each well. Latex gloves were worn and changed between each sample.

Production wells were sampled from a tap in the well houses after allowing the tap to flow for 10 minutes. For the purposes of quality control, a duplicate sample was collected from RFW-4B and RFW-11A. Field and trip blanks were also collected.

<u>Groundwater Elevation Survey and Measurements - Phase IIa and</u> <u>Phase IIb</u>

Licensed surveyors located Phase IIa and Phase IIb wells with respect to the previous well survey grid and the southwest corner of the main warehouse. Elevations of the top of the inner casing for each monitor well were taken in reference to the overflow lip of the dam on the west end of the West Lagoon, elevation 800.15 feet above MSL. The elevations of the top of the innermost casing for all Phase II wells are listed in Table 4-5.

Table 4-5

Well Construction Details -- Phase II Monitor Wells

Well	Permit No.	Depth (ft bgs) ¹	Screened Interval (ft bgs)	Cased Interval (ft bgs)	Well Yield (gpm)	Elevation TIC ² (ft above MSL) ³
						•
RFW-1A	CL-81-5755	78	68-78	0-68	40	864.37
RFW-1B	CL-81-5764	200	~~-	0-80	<0.5	864.23
RFW-2A	CL-81-5756	35	25-35	0-25	>10	857.41
RFW-2B	CL-81-5765	75		0-56	20	857.73
RFW-3B	CL-81-5766	153		0-86.5	<1	839.21
RFW-4A	CL-81-5758	62	52-62	0-52	8	830.37
RFW-4B	CL-81-5767	120		0-65	1.5	830.37
RFW-5A	CL-81-5759	30	20-30	0-20	15	817.50
RFW-5B	CL-81-5768	78		0-58	60	818.14
RFW-6	CL-81-5760	120		0-78	0.3	785.04
RFW-7	CL-81-5761	29	19-29	0-19	>10	805.14
RFW-8	CL-81-5762	53	43-53	0-43	8	860.07
RFW-9	CL-81-5763	49	39-49	0-39	>10	858.21
RFW-10	CL-81-6225	58	48-58	0-48	15	852.06
RFW-11A	CL-81-6226	72	62-72	0-62	< 5	849.32
RFW-11B	CL-81-6227	116	96-116	0-96	2	849.62
	CL-81-6228	55	45-55	0-45	20	844.58

³msl - Mean sea level.

11

4-38

Following the Phase IIa well installation and groundwater sampling, two sets of groundwater level measurements were taken from all monitor and production wells on Black & Decker's property. One set of measurements was taken after plant production wells had been shut off for 24 hours. A second set of measurements was taken 5 hours after the pumps had been turned on and allowed to operate normally. Both sets of measurements were taken from the top of the monitor well inner casing to within one hundredth of a foot.

4.2.2 Hydrogeology

Information on site hydrogeology was gathered from groundwater monitor wells installed in the Phase II investigation. Lithologic logs for both the shallow and deep wells installed by WESTON are included in Appendices F and H. The depths of water-bearing zones and fractures are noted in the logs. A summary of well construction details for Phase II wells is presented in Table 4-5.

The shallow wells, RFW-2A, RFW-4A, RFW-5A, RFW-7, RFW-8, RFW-9, RFW-10, RFW-11A, and RFW-12, were screened in weathered bedrock in a transition zone between the highly decomposed saprolite and competent bedrock. The depths to this zone varied across the site from approximately 30 to 96 feet. RFW-1A was screened in a fractured quartz vein, which was located at the saprolite bedrock interface. The yields of all shallow wells were typically in excess of 10 gpm.

The deep wells, RFW-1B, RFW-2B, RFW-3B, RFW-5B, and RFW-6, intersect fractures within competent bedrock of the albite-chlorite schist facies of the Wissahickon Formation. The RFW-11B screen intersects 10 feet of weathered bedrock and 10 feet of competent bedrock. One to two fractures, typically within 50 feet of the saprolite-bedrock interface, were encountered in each well. The most highly producing fractures were associated with quartz veins. For example, a quartz vein encountered at 65 to 67 feet in RFW-5B yielded approximately 60 gpm. Wells that intersected fractures within the schist-phylite or possibly in weathered zones along planes of schistosity, of which RFW-3B, RFW-6, RFW-1B and RFW-11B are examples, yielded less than a few gpm.

Groundwater elevations were collected from previously existing and the new monitor wells and Black & Decker production wells on 14 July 1988, 8 August 1988, and 29 December 1988. On 8 August 1988, measurements were taken after the plant pumping wells were idle for 24 hours and again 5 hours after normal pumping rates were resumed. Normal pumping rates for supply wells 3, 4, 5, and 6 are typically 42 gpm, 42 gpm, 18 gpm, and 15 gpm, respectively, for 0 to 5 hours per day, depending on the plant's demand. The main supply well, 7, is pumped periodically throughout the day for a total of 3 to 10 hours at 42 gpm.

On 14 July 1988 and 29 December 1988 measurements were collected during a period when the pumps were operating under typical conditions.

As illustrated in Table 4-6, there are no significant differences were noted among groundwater elevations collected after the Black & Decker production wells had been idle for 24 hours, groundwater elevations collected 5 hours after the wells had resumed normal operations, and groundwater elevations collected during routine operations of the wells. This is probably due to the 300- to 400-foot distance between plant well 7 and the nearest monitor wells, as well as the relatively low pumping rate and duration of pumping of the Black & Decker supply wells.

No significant differences are seen between July groundwater elevations and December elevations. In December, groundwater elevations in monitor wells on the topographic high near the plant were 1 to 2 feet lower than elevations in the late summer months. In the monitor wells near Zone B and in most of the production wells, the December groundwater elevations were typically 1 foot higher. However, these minor variations do not significantly alter flow patterns across the property.

Elevation differences between the groundwater in the shallow and deep well pairs are small, on the average less than 0.5 foot. Vertical gradients between the shallow and deep zones are downward, varying approximately from 1.0 x 10^{-2} to 1.0 x 10^{-3} , as measured between the base of the shallow well screened interval and the water-bearing fractures in the deep well. These gradients are relatively low, probably indicating that considerable interconnection exists between the shallow and deeper groundwater.

Water elevations of both the shallow and deep groundwater are contoured in Figures 4-18 and 4-19, respectively. The contour patterns are similar for both shallow and deep zones, again reflecting the interconnection between the shallow and deeper groundwater.

In the shallow groundwater, flow is perpendicular to the elevation contour lines, and directed downgradient. The highest groundwater elevation is in the vicinity of RFW-2A, which also corresponds to a topographic high on-site. Examination of the contour maps reveals the presence of a groundwater divide trending northeast-southwest from the northern corner of the plant site. Groundwater moving through the saprolite away from the northwest to southwest perimeter of the main building is directed west to southwest toward the stream crossing the Black & Decker site along a lateral hydraulic gradient of approximately 0.025 (2.5 feet of head loss per 100 feet). Shallow groundwater just east of the divide is directed toward the east and southeast toward the lagoon and State Route 30.

Table 4-6

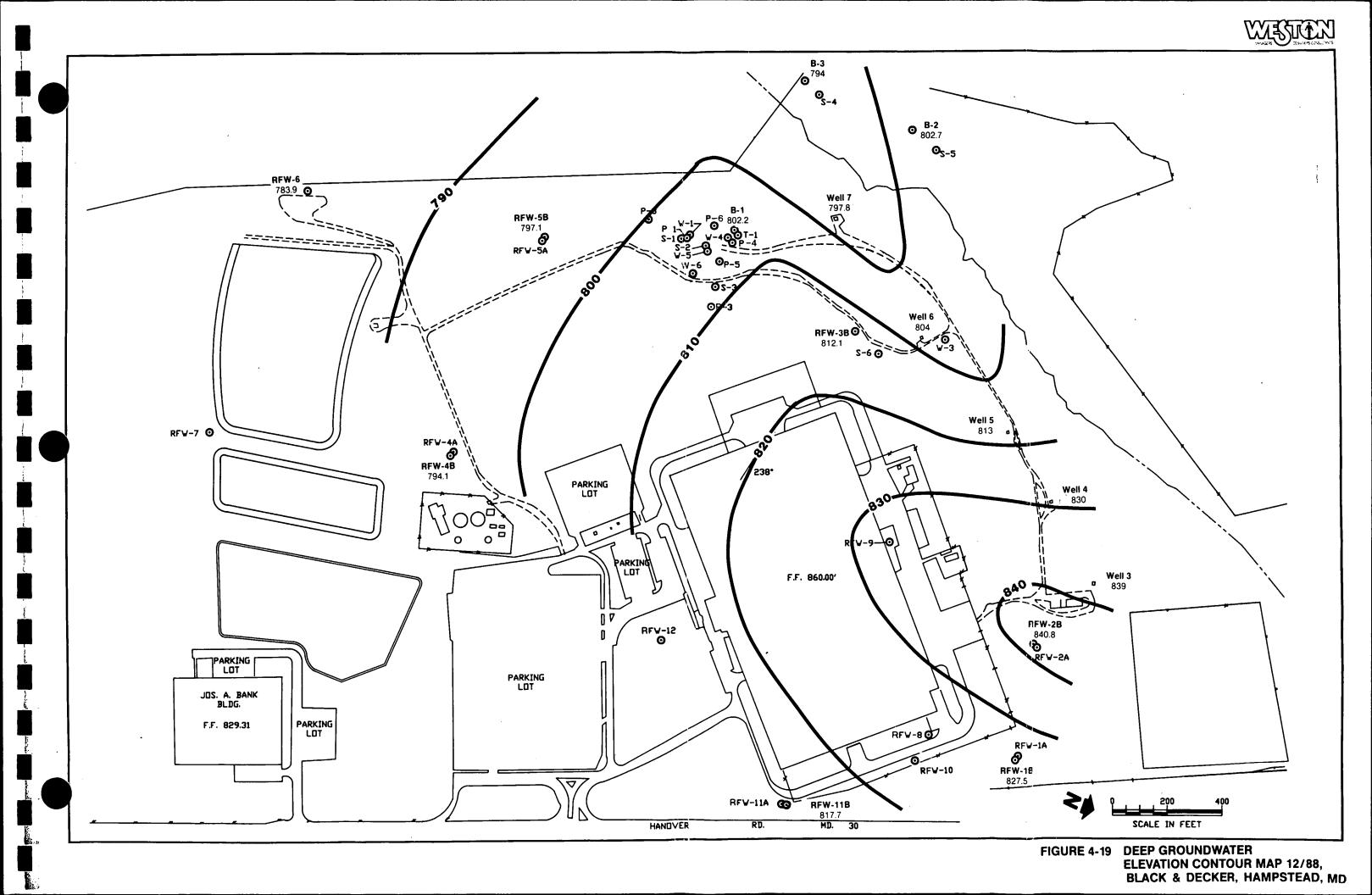
Groundwater Elevations in Black & Decker Wells

	Groundwater	Groundwater	Groundwater	Groundwater Elevation
Well	Elevation	Elevation	Elevation	
	14 July 88	8 August 88	8 August 88	29 December 8 (3)
	(3)	(1)	(2)	(3)
RFW-1A	830.60	830.60	830.27	827.68
RFW-1B	830.45	830.12	830.14	827.54
RFW-2A	842.80	842.79	842.73	841.16
RFW-2B	842.49	842.42	842.42	840.79
RFW-3B	814.46	813.53	813.50	812.15
RFW-4A	795.87	795.95	795.93	794.33
RFW-4B	795.71	795.87	795.83	794.15
RFW-5A	799.06	799.00	798.63	797.54
RFW-5B	798.80	798.39	798.39	797.17
RFW-6	783.76	784.11	784.09	783.91
RFW-7	797.44	797.91	797.92	798.01
RFW-8	827.11	826.87	826.89	824.75
RFW-9	834.56	834.55	834.51	833.48
RFW-10				822.83
RFW-11A				817.93
RFW-11B				817.67
RFW-12				818.55
B1	800.77	800.80	800.83	802.18
B2		801.78	801.79	802.75
B3		795.16	795.18	793.97
Tl		800.92	800.86	802.37
S1	803.19	803.31	803.30	803.70
S2		803.82	803.82	807.19
S3		808.69	808.67	807.90
S4		795.23	795.18	794.49
S5		797.60	797.62	799.15
S6		805.22	804.79	805.49
P1		803.62	803.65	804.02
P3		808.19	808.18	807.10
P4		804.48	804.43	804.87
P5		805.01	805.01	805.17
P6		801.84	801.84	806.00
P8	802.93	802.99	803.08	803.62

¹Pumping wells idle for 24 hours. ²Pumping wells resumed normal operation for 5 hours.

³Pumping wells operating under normal conditions.

WESTERN


Table 4-6 (continued)

Well	Groundwater Elevation 14 July 88 (3)	Groundwater Elevation 8 August 88 (1)	Groundwater Elevation 8 August 88 (2)	Groundwater Elevation 29 December 89 (3)
W1	803.41	803.54	803.53	803.97
W3		807.83	807.72	809.44
W4	804.25	804.39	804.32	804.75
W5		804.07	804.04	804.4
WG		806.99	806.99	806.50
3		840	806	839
4		830	815	830
5		812	790	814
6		803	792	804
7		796	750	798

¹Pumping wells idle for 24 hours. ²Pumping wells resumed normal operation for 5 hours.

³Pumping wells operating under normal conditions.

When the groundwater flow pattern is viewed together with the local topography (Figure 2-1), it is apparent that the shallow groundwater contours roughly conform to topographic contours. Therefore, on the southern border of the site, the direction of shallow groundwater flow can be inferred from the local topography to be north toward the lagoons. This is confirmed by the higher groundwater elevation at RFW-7 relative to RFW-4A. The surface topography also indicates that the groundwater flow from a small area of the facility northeast of the main build-ing may be directed toward the east, which is confirmed by the higher groundwater elevation at RFW-8 relative to RFW-10. The topography further indicates that the shallow groundwater flow-ing from monitor wells S-4 and S-5 on the west side of the stream.

4.2.3 Groundwater Quality

The 17 monitor wells installed by WESTON, three Black & Decker supply wells, and seven of the previously installed monitor wells, were sampled and analyzed for VOCs. A summary table of the sample analysis is presented in Table 4-7. A complete tabulation of results is presented in Appendix E.

The VOCs detected in the highest concentrations were TCE and PCE. The majority of the other compounds listed in Table 4-7 are chlorinated hydrocarbons, which were found just above or below quantification limits. Of the VOCs found at lower concentrations, trans-1,2-dichloroethane was the most commonly detected ranging in concentration from 2 to 22 ppb. Toluene, just above or below quantification limits, was found in RFW-2B and RFW-9. Benzene below quantification limits was found in RFW-1A, RFW-1B, RFW-2B, and RFW-4A. Carbon disulfide was detected in RFW-1B, RFW-2A, RFW-2B, RFW-4A, W-1, and W-4 in concentrations ranging from 170 ppb to just below the quantification limits. Methylene chloride and acetone were detected at relatively low levels in all water samples, including the laboratory blanks. Chloroform was detected below quantification limits in RFW-6, RFW-8, RFW-11A, RFW-11B, and RFW-12. Chloroform was also detected in all field and trip blanks.

TCE Distribution

The distribution of TCE concentrations detected in the groundwater is presented in Figure 4-20 using interpretive contours. In general, the TCE concentrations in the groundwater samples are highest on the eastern half of Black & Decker's property, and decrease toward the west-southwest. The highest concentrations of TCE, in excess of 1 ppm, were detected in monitor wells RFW-8 and RFW-12, which are included in the 1,000-ppb contour. Both wells are hydraulically downgradient of the former TCE aboveground storage tank (shown in Figure 3-4). RFW- 10, east of and downgradient of RFW-8, is the only well included in the 100 ppb contour, with TCE detected at 340 ppb.

•

Table 4-7

Results of VOC Analysis: Phase II Groundwater Samples

Compound Detected	RFW 1A ug/l	RFW 1B ug/l	RFW 2A ug/l	RFW 2B ug/l	RFW 3B ug/l	RFW 4A ug/l	RF₩ 4B ug/l	RFW 5A ug/l	RFW 5B ug/l	RFW 6 ug/l	RFW 7 ug/l	RFW 8 ug/l	RFW 9 ug/l
Methylene Chloride	25 B	16 B	4 JB	3 JB	2 JB	14 B	9 B	6 B	2 JB	5 B	2 JB	4 JB	18 B
Acetone	200 B	40 B	4 JB	6 JB	5 JB	14 B	30 B	72 B	4 JB	8 B	4 JB	3 JB	
Carbon Disulfide		110	130	4 J		170							
1,1-Dichloroethene					5							3 J	
1,1-Dichloroethane					1 J							9	
Trans-1,2-Dichloroethene					33	22		2 J	10	7	2 J	20	14
Chloroform										2 J		1 J	
1,2-Dichloroethane													
1,1,1-Trichloroethane		10			6				3 J			23	
Trichloroethene	2 J	5			19	24	24	1 J	12		2 1	1700	4 J
Benzene	3 J	2 J		1 J		2 J							
Tetrachloroèthene	4 J	2 J			250	330	500	14	110	59	4 J	150	46
Toluene				4 J									8

B - Detected in laboratory blanks

J - Below detection limits

4-46

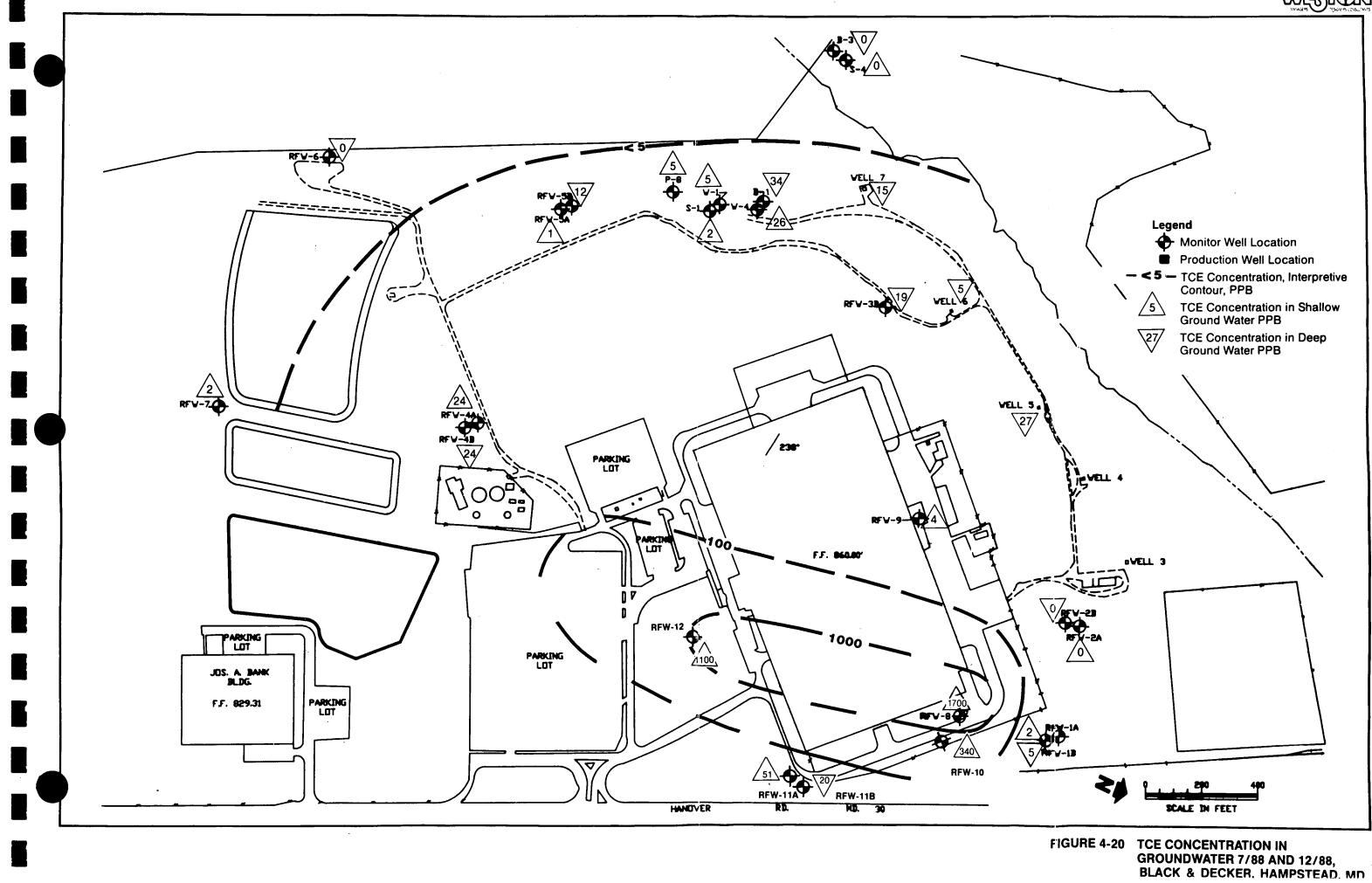
Table 4-7 (continued)

Compound Detected	B&D 5 ug/l	B&D 6 ug/l	B&D 7 ug/l	B-1 ug/l	B-3 ug/l	S-1 ug/l	S-4 ug/l	P-8 ug/l	₩-1 ug/l	₩-4 ug/l	field Blank ug/l	Trip Blank 1 ug/l	Trip Blank 2 ug/l
Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene	4 JB	i 4 Ji 5 Ji		3 JB 13 B	6 B 7 JB	3 JB	3 JB 4 JB		2 JB 14	2 JB 34	2	JB 3. 4.	
1,1-Dichloroethane Trans-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane	19	3 J		23		7			5	8	5	8	8
Trichloroethene Benzene	27	5	15	34		2 J		5	5	26			
Tetrachloroethene Toluene	26	12	3100	2500		240		110	180	1500	2	J 2	J 1 J

B - Detected in laboratory blanks

J - Below detection limits

NATIN


Table 4-7 (continued)

Compound Detected	RFW 10 ug/l	RFW 11A ug/l	RFW 11B ug/l		RFW 12 ig/l		Field Blank ug/l		Trip Blan ug/l	
Methylene Chloride	3 JB	15 B	6	в	6	B	5	B	16	B
Acetone	2 J	52 B	120	В	79	B	8	JB	5	JB
Carbon Disulfide										
1,1-Dichloroethene										
1,1-Dichloroethane										
Trans-1,2-Dichloroethene										
Chloroform		2 J	1	J	1	J	1	J	2	J
1,2-Dichloroethane										
2-Butanone	6 J				8	J				
1,1,1-Trichloroethane										
Trichloroethene	340	51	20	1	100					
Benzene										
Tetrachloroethene	1 J				12					
Toluene										
Styrene		2 J	l				1	J		

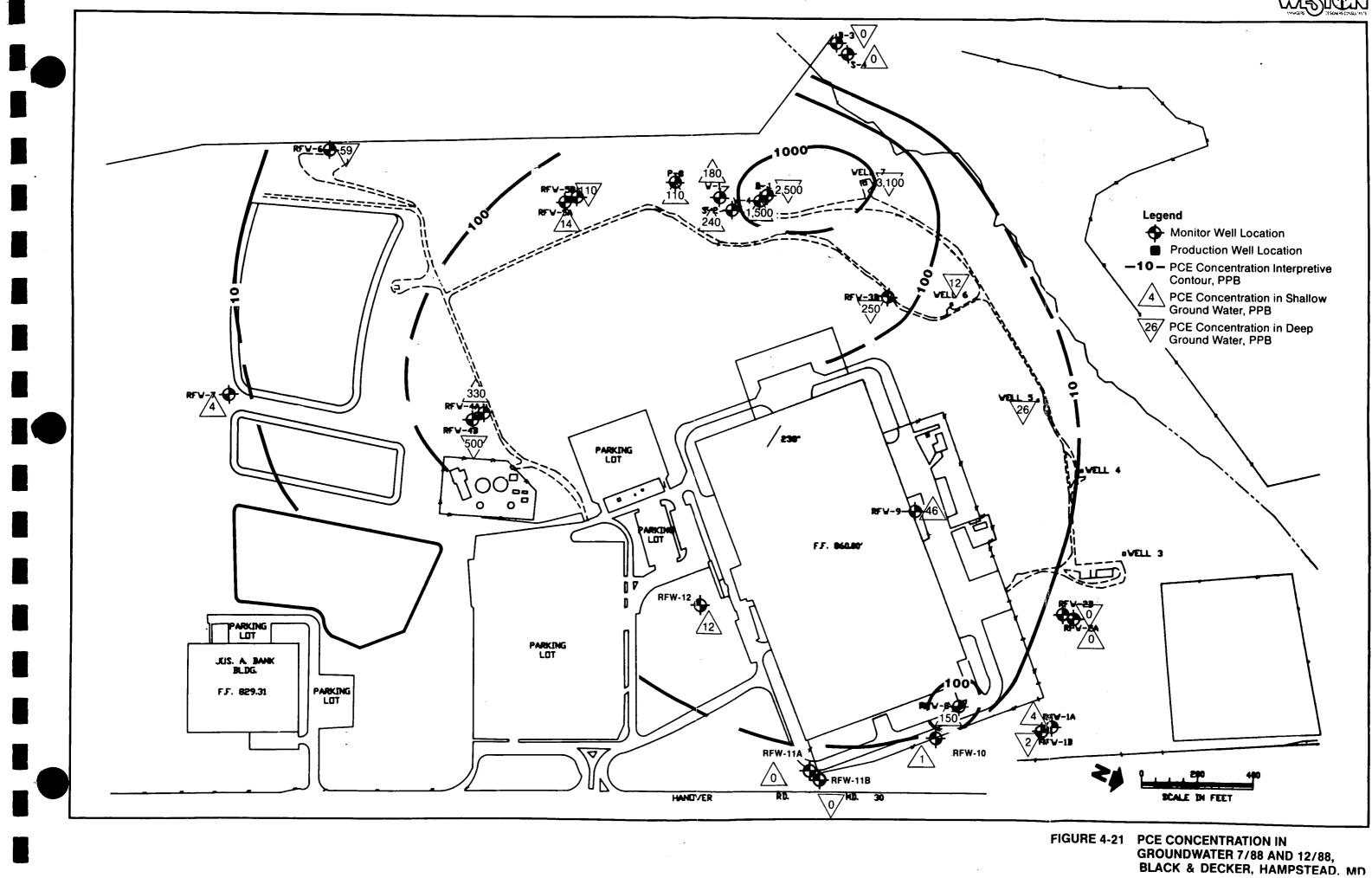
B - Detected in laboratory blanks

J - Below detection limits

NEW

WESTER

TCE concentrations in the remaining monitor wells ranged from 51 ppb to none detected. An interpretive contour line in Figure 4-19, representing a TCE concentration of less than 5 ppb (the EPA proposed MCL for TCE in drinking water), is drawn to the north-northeast of a line connecting monitor wells RFW-7, RFW-6, and B-3. South-southwest of this contour, TCE concentrations in the groundwater were found to be lower than the MCL.


The apparent distribution of TCE on the eastern half of Black & Decker property suggests that there is a significant component of groundwater flow from the RFW-1A/2A area south toward RFW-12 and the lagoons. The relatively higher concentration of TCE in the eastern half of the property relative to PCE and the other volatile compounds, and hydraulically downgradient position of RFW-7 and RFW-12, suggests that activities at the former aboveground TCE storage tank may have been the historical source of TCE presently found in the groundwater.

No significant difference in the pattern of TCE concentration in groundwater from the shallow versus the bedrock wells was noted.

PCE Distribution

The distribution of PCE in the on-site groundwater is illustrated in Figure 4-21 using interpretive contours. The highest concentrations of PCE, in excess of 1 ppm, were detected in W-4, B-1, and production well 7. These three wells are located together on the plant site, downslope and west of the main building and are the only wells included in the 1,000-ppb interpretive contour. A larger area southwest of the main building, and a localized area centered at RFW-8 (Tank Farm 2) are RFW-6, RFW-9, included in the 100 ppb interpretive contour. RFW-12, and production wells 6 and 5, fell within the 10-ppb interpretive contour, with PCE concentrations ranging from 12 ppb to 59 ppb. PCE was found at concentrations below quantification limits in RFW-10, RFW-7, RFW-1A, and RFW-1B. These levels may not be significant since similar concentrations were found in the trip and field blanks. No PCE was detected in the shallow or deep upgradient wells (RFW-2A and RFW-2B), the shallow and deep well pair on the east plant boundary (RFW-11A and RFW-11B), or in wells on the west side of the stream (B-3 and S-4).

The interpretation of historic source areas of PCE based on the hydraulic gradient and the distribution of PCE is difficult. The highest concentrations of PCE are found hydraulically downgradient and west of the Black & Decker plant. Lower concentrations are found south and downgradient of the plant but are also found upgradient of the higher concentrations. This pattern of PCE on the western half of the site does not suggest that a specific source area of PCE existed.

WISSERN

On the eastern half of the site, higher concentrations of PCE in RFW-8 relative to the surrounding monitor wells, suggest that PCE in the groundwater at this location is a function of PCE found locally in the Tank Farm 2 soils.

As for TCE, no significant difference was noted in the pattern of PCE concentrations in the groundwater between the shallow and the bedrock wells.

Distribution of Other VOCs

Of the constituents found at generally lower concentrations in the groundwater, toluene is of importance due to its occurrence in soil samples at Tank Farm 1. As noted, toluene was detected in RFW-2B and RFW-9 at 4(J) ppb and 8 ppb, respectively. These values are considerably below the MCL of 2,000 ppb proposed for drinking water.

Carbon disulfide was detected in several upgradient and downgradient wells on the property. The presence of carbon disulfide in upgradient wells RFW-2B, RFW-1B, RFW-2A, and benzene in RFW-1A, RFW-1B, and RFW-2B, and the presence of these compounds in downgradient wells RFW-4A and 4B, indicates that a significant component of groundwater flow may be directed south from north of the main building in the RFW-2A/1A area toward RFW-4/ 4B and the lagoons. A potential exists that carbon disulfide and benzene found in the Black & Decker groundwater may have originated off-site, upgradient.

4.3 CONCLUSIONS

4.3.1 Tank Farm Soils - Source Characterization

The characterization of contaminant concentrations and distribution in Tank Farm 1 and 2 soils was accomplished in the Phase II investigation. Closely spaced borings covering each Tank Farm area, were sampled at depth and analyzed for VOCs and TPH. The impact of the existing soil contaminants on local groundwater was also assessed. Analysis of TCLP leachate from select soil samples provided an indication of the mobility of contaminants in the soil. The analysis of samples from monitor wells placed at the Tank Farms assessed the local groundwater quality.

Tank Farm 1

Tank Farm 1 characteristics can be summarized as follows:

- Elevated concentrations of petroleum hydrocarbons, toluene, ethyl benzene, and xylene are present in the soils.
- TPH concentrations >100 ppm and VOC concentrations >1 ppm are distributed in the soils:

- Above 845 feet MSL (12 to 14 feet bgs) throughout the areas of tanks 1 through 9 an approximately 1,600-square foot area.
- Below 845 feet MSL in the vadose zone limited to an approximately 100-square foot area centered at SB-3A-7.
- At the top of the water table in an area greater than 100-square feet, proximal to SB-3A-7.
- The distribution of TPH and VOCs in the soils appears to be controlled vertically by the depth of the fill/ saprolite boundary at 845 feet MSL.
- Soils that exhibit high VOC concentrations also exhibit high TPH concentrations.
- Concentrations of toluene, ethyl benzene, and xylene in leachates extracted by TCLP testing from representative soils are below proposed Federal guidelines for drinking water.
- Concentrations of toluene, ethyl benzene, and xylene in the Tank Farm 1 groundwater samples are below the TCLP leachate concentrations and proposed Federal guidelines for drinking water.
- The mobility of TPH and VOCs from the soil to local groundwater, as indicated by TCLP soil samples and groundwater samples, appears to be low due to soil-water partition and hydrologic characteristics.

An overall assessment of Tank Farm 1 suggests that the TPH and VOCs in the soils are present below concentrations or quantities necessary to significantly impact groundwater on-site.

Tank Farm 2

Tank Farm 2 characteristics can be summarized as follows:

- Elevated concentrations of petroleum hydrocarbons and PCE, TCE, 1,1,1- TCA, benzene, and toluene are present in the soils.
- TPH concentrations >100 ppm and VOC concentrations >1 ppm are distributed in the soils.
 - Throughout the tank area above 853 feet MSL (top 6 feet of soil), an approximately 1,800-square foot area.
 - In the central part of the Tank Farm, closest to the building wall, from surface to 839 feet MSL (20 feet bgs).

- Soils that exhibit high VOC concentrations also exhibit high TPH concentrations.
- Concentrations of TCE in leachate extracted by TCLP testing from representative soils are above Federal standards for drinking water.
- Concentrations of TCE in Tank Farm 2 groundwater samples are above Federal standards for drinking water.
- The mobility of VOCs from the soil to local groundwater, as indicated by TCLP soil samples and groundwater samples, appears to be significant.

An overall assessment of Tank Farm 2 suggests that the volatile organic compounds, particularly PCE and TCE, in the soil are present at significant concentrations and quantities to potentially migrate into the groundwater on-site.

4.3.2 Groundwater

Hydrogeology

The site hydrogeology was assessed in the Phase II investigation based on information gathered from 17 new monitor wells, 26 existing monitor wells, and the 5 Black & Decker supply wells.

Two principal water-bearing zones occur on-site. A shallow water-bearing zone exists at the bedrock/saprolite interface, 30 to 96 feet bgs. Water in this zone is contained under unconfined conditions in pore spaces of the saprolite and infrequently in fractured residual quartz veins. A deep water-bearing zone exists within fractures and along planes of schistosity in the phillite/schist bedrock and in fractured quartz veins. The deep water-bearing zone appears to be limited to a depth less than 150 feet bgs.

A groundwater divide trends northeast-southwest across the Black & Decker property, roughly aligned with the topographic high on which the main building lies. Shallow groundwater flow east of the divide is directed southeast toward the lagoons and east toward State Route 30. Shallow groundwater west of the divide is directed west-southwest across most of the plant. The local topography suggests that shallow groundwater along the south-southeast boundary of the site is directed west-northwest toward the topographically lower lagoons. The topography also suggests that shallow groundwater west of the stream is directed east toward the stream. Although flow directions of the shallow groundwater are generally perpendicular to the hydraulic gradient, pathways of flow may be partially controlled by the residual texture within the saprolite.

Groundwater flow directions and the lateral hydraulic gradient within the deep aquifer are similar to those of the shallow aquifer. These similarities and a low vertical downward gradient, varying from 1.0×10^{-2} to 1.0×10^{-3} , between the shallow and deeper zones, suggest that considerable interconnection exists between these zones to the extent that the two zones function as a single unconfined aquifer. Groundwater in the bedrock is generally directed across the site in accordance with the local hydraulic gradient. The specific local pathway or route of groundwater transport is dictated by joints, fractures, and planes of schistosity within the bedrock. As a result, the distribution of groundwater contaminants can be strongly influenced by the distribution and interconnection of fractures and other zones of weakness within the bedrock.

Groundwater Quality

Groundwater quality was assessed in the Phase II investigation based on information gathered from 17 new monitor wells, 7 existing monitor wells, and Black & Decker production wells.

The Phase II investigation confirmed that the major contaminants of concern in the groundwater at the Black & Decker property are PCE and TCE. Several other volatiles were present in lower concentrations, the most prevalent being trans-1,2,-dichloroethene. Carbon disulfide was detected in several wells, including the upgradient well pair, with no discernible pattern. Separate plumes of PCE and TCE appear to be migrating in both the shallow water-bearing zone and in the deeper, bedrock zone to a depth of 150 feet along the local hydraulic gradient.

TCE is of concern on the eastern half of the plant. Concentrations of TCE in excess of 1 ppm in two monitor wells define a plume possibly originating at the former aboveground TCE storage tank and extending south toward the lagoons. While the mapping of the TCE concentrations indicates that most of the plume has moved south toward the lagoons, an eastern component of groundwater flow from the northeast corner of the plant toward State Route 30 does exist and should be addressed in the remedial strategy. The concentration of TCE in the groundwater near the western and southern site boundaries is apparently less than 5 ppb, the MCL for drinking water.

PCE is the predominant groundwater contaminant of concern on the western half of the plant site. The highest concentrations, in excess of 1 ppm, appear to be limited to a small area that includes Black & Decker supply well 7. Lower concentrations of PCE were found in wells across most of the site. PCE was not detected in the upgradient wells, RFW-2A and -2B, in RFW-11A and -11B on the eastern site boundary, or in wells B-3 and S-4 on the western side of the stream. However, PCE concentrations between 50 and 100 ppb were detected in wells adjacent to the western site boundary.

SECTION 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

The environmental investigation for the Black & Decker Hampstead, Maryland facility generally achieved the objectives of the study. Of the potential source area "zones" identified by Black & Decker, the investigation results clearly indicate that six are not current sources of groundwater contaminants. One zone, Zone A, Storage Tank Areas, was found to contain petroleum hydrocarbons (TPH) and volatile organic compunds (VOCs) in soils located in Tank Farms 1 and 2. Of these two areas, only soils in Tank Farm 2 appear to present a potential continuing source of groundwater contaminants.

The overall groundwater flow and VOC distribution characterization indicates that Tank Farm 2 was not the only, or was it the principal source of, PCE and TCE in the groundwater. More likely, historical use of solvents at the Hampstead facility have contributed to the current quality of groundwater on-site. The current distribution of TCE and PCE probably reflects the migration of a plume or plumes of these contaminants from a source or sources, no longer existing, along pathways of preferred shallow and deep groundwater flow.

The investigation has confirmed that the principal direction of groundwater movement is to the south-southwest. An additional component of flow to the east has been identified at the northeastern edge of the facility. Groundwater migration pathways in the bedrock are expected to be preferentially oriented along fracture zones and schistosity planes. Shallow groundwater flow appears to be perpendicular to the hydraulic gradient, which corresponds generally with the surface topography. Preferred flow pathways within the saprolite may partially reflect trends in the underlying bedrock.

Characterization of the VOC distribution in the groundwater indicates that essentially separate plumes of TCE and PCE exist on the eastern half and western half of the facility, respectively. The TCE plume appears to extend south from an origin near the aboveground storage tank area. Eastern components of flow in this area suggest that groundwater containing TCE may be migrating toward Route 30. A PCE plume with the highest concentrations at production well 7, encompasses the western half of the facility. Evidence suggests that groundwater with significant concentrations of PCE extends southwest of the plant building.

5.2 RECOMMENDATIONS

Tank Farm Soils

Based on field and soil water partition data and the concentration of groundwater contaminants in RFW-8, the impact of soil contaminants in Tank Farm 2 on local groundwater may be significant, and, therefore, remediation of the Tank Farm 2 soils is warranted. Considerations in selecting a strategy are:

- The relatively small volume of contaminated soil.
- Physical boundaries of the facility road and building, which limit the unsaturated zone soil contamination.
- The association of the VOCs, which are the groundwater contaminants with TPH in the soils.

The proposed plan for soil remediation includes evaluation of various alternatives, selection of an appropriate method and its implementation. Relevant options for the relatively small soil quantities involved include:

- Excavation/off-site disposal
- Excavation/on-site treatment
- In-situ treatment

Methods of treatment generally considered for these materials include:

- Biological
- Stripping
- Flushing/leaching
- Thermal

Relevent treatment alternatives are more limited for soils containing both the relatively nonvolatile petroleum hydrocarbons from the cutting oils and the relatively volatile compounds PCE and TCE. The selection will be based on the probability of successful treatment. For this application, the most effective methods appear to be thermal (i.e., low temperature thermal) treatment and in situ bioreclamation.

Groundwater

Based on the distribution of PCE and TCE in the groundwater onsite and groundwater flow directions, a remediation plan is recommended to recover contaminated groundwater on-site and prevent its migration off-site. The proposed plan incorporates pumping several recovery wells to create a hydraulic barrier to contaminated groundwater flow along the northeast and southwest property boundaries.

4169B

Due to the complexity of the hydrogeology at the Black & Decker site, the remedial plan is designed to be implemented in three stages. Evaluation of information collected during each stage will enable the successive stages to be designed as a complement to preceding stages. Although this approach will require more time to activate than a single-stage implementation, overdesign or under-design of the system will be avoided. As a result, maximum efficiency of the recovery system will be achieved.

The stages are designed as follows:

Stage 1

- Evaluate the potential use of monitor well RFW-12 as a TCE recovery well for the eastern boundary of the facility by conducting a pumping test on the well. The critical factor in the evaluation will be identifying the area of hydraulic influence obtained by pumping RFW-12.
- Construct an "ideal" recovery well on the southwestern boundary of the property in an expected high yield fracture zone, south of production well 7. Perform a pumping test to evaluate the extent of pumping influence achieved.

Stage 2

- If hydraulic influence in the area of Tank Farm 2 cannot be achieved by pumping RFW-12, construct and test an additional bedrock recovery well in the vicinity of Tank Farm 2.
- If hydraulic influence on the west side cannot be achieved by pumping at the western "ideal" recovery well, evaluate the use of an additional pumping well by pump testing existing deep monitor well RFW-5B.

Stage 3

• If necessary, based on the results of Stage 3, complete the evaluation of the hydraulic influence by development of an analytical flow model and placement of additional wells as indicated by the results of the model.

Installation of piping to route recovered groundwater and of additional treatment equipment would follow each successive stage as needed. During operation of the recovery system, the effectiveness of the hydraulic control would be monitored, with adjustment to the system as warranted.

SECTION 6

REFERENCES

Duigon, M.T. 1981. Hampstead Quadrangle: Hydrogeology. Maryland Geological Society, Quadrangle Atlas No. 12.

Meyer, G., and R.M. Beal. 1958. "The Water Resources of Carroll and Frederick Counties," Maryland Board of Natural Resources, Department of Geology, Mines, and Water Resources, Bulletin 22.

APPENDIX A

PHASE I ANALYTICAL DATA

x

WATER

DATA QUALIFIERS

- U = Compound was analyzed for but not detected. The associated numerical value is the estimated sample quantitation limit which is included and corrected for dilution and percent moisture.
- J = Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero; for example, if the limit of detection is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- B = This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination. This flag is also used for a TIC as well as for a positively identified TCL compound.
- E = Indicates that the compound was detected beyond the calibration range and was subsequently analyzed at a dilution.
- I = Interference.
- X = Additional qualifiers used as required are explained in the case narrative.

ABBREVIATIONS

- BS = Indicates blank spike in which reagent grade water is spiked with the CLP matrix spiking solutions and carried through all the steps in the method. Spike recoveries are reported.
- BSD = Indicates blank spike duplicate.
- MS = Indicates matrix spike.
- MSD = Indicates matrix spike duplicate.
- DL = Indicates that surrogate recoveries were not obtained because the extract had to be diluted for analysis.
- NA = Not applicable.
- DF = Dilution factor.
- NR = Not required.

SOIL GAS ANALYSIS RESULTS

4178B

,

WES	ANALYTICS
GC DATA	SUMMARY
VOLATILE	COMPOUNDS

RFW Batch Number:	C	lient:					Page: 1
Sample	 Cust ID: RFW#:	SG 1	SG 2	SG 3	SG 4	SG 5	SG 6
Information	Matrix:	Air	Air	Air	Air	Air	Air
	D.F.:	1	1	1	1	1	1
	Units:	ng/ml	ng/ml	ng/ml	ng/ml	ng/ml	ng/ml
		======fl=	=======fl=	=====fl=	=====fl	fl	=== = === f]
Tetrachloroethene		0.04 J	0.57	0.02 J	0.40	0.35	0.04 J
Trichloroethene	• • • • • • • • • • • • • •	0.06 U	0.04 J	0.06 U	0.45	0.32	0.08

Cust ID:	SG 7	SG 8	SG 9	SG 10	SG 11	SG 12
Matrix:	Air	Air	Air	Air	Air	Air
D.F.: Units:	l ng/ml	l ng/ml	l ng/ml	ng/ml	ng/ml	l ng/ml
	=====fl:	=====fl:	=====fl=	:=====fl:	=====fl=	=====f]
••••••••	0.09	0.04 J 0.07	2.3 1.1	0.71 0.03 J	1.5 0.03 J	0.02 J 0.06
	RFW#: Matrix: D.F.: Units:	RFW#: Matrix: Air D.F.: 1 Units: ng/ml 	RFW#: Matrix: Air Air D.F.: 1 1 Units: ng/ml ng/ml 	RFW#: Matrix: Air Air D.F.: 1 1 1 Units: ng/ml ng/ml ng/ml	RFW#: Matrix: Air Air Air D.F.: 1 1 1 Units: ng/ml ng/ml ng/ml	RFW#: Matrix: Air Air Air Air D.F.: 1 1 1 1 1 Units: ng/ml ng/ml ng/ml ng/ml ng/ml

[]	Cust ID:	SG 13	SG 14	SG 15	SG 16	SG 17	SG 18
Sample Information	RFW#: Matrix:	Air	Air	Air	Air	Air	Air
	D.F.:	1	1	1	1	1	1
	Units:	ng/ml	ng/ml	ng/ml	ng/ml	ng/ml	ng/ml
*	.~~	=====fl=	=====fl=	:=====fl:	=====fl=	======fl=	=====f[
Tetrachloroethene		0.02 J	0.07 J	1.1	1.8	0.07 J	1.0
Trichloroethene	••• ••••	0.04 J	0.33	1.3	0.02 J	0.06 U	0.02 J

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit. NR=Not requested.

WESTON ANALYTICS GC DATA SUMMARY VOLATILE COMPOUNDS

RFW Batch Number:	c	Client:					Page:
	Cust ID: RFW#:	SG 19	SG 20	SG 21	SG 22	SG 23	SG 24
Sample Information	Matrix:	Air	Air	Air	Air	Air	Air
	D.F.:	1	1	1	1	1	1
و کی کہ خان است سے بھی جو جو ہو جو ہوں ہوں ہوں ہوں اور اس خط خان خان اس سے خان ہ	Units:	ng/ml	ng/ml	ng/ml ======fl=	ng/ml =====fl=	ng/ml	ng/ml ======
Setrachloroethene		0.03 J	0.16	13	0.12	0.31	160
Trichloroethene) • • • • • • • • • • • • •	0.06	0.42	0.07	0.06 U	0.11	0.15
Sample	Cust ID: RFW#:	SG 25	SG 26	SG 27	SG 28	SG 29	SG 30
Information	Matrix:	Air	Air	Air	Air	Air	Air
	D.F.:	1	1 n <i>a (</i> m1	1	1	1 ng/ml	1
	Units: ====================================	ng/ml =====fl=	ng/ml =====fl	ng/ml _====fl=	ng/ml =====fl=	ng/ml =====fl=	ng/ml
Tetrachloroethene Trichloroethene		0.02 J 0.02 J	2.2 0.16	1.8 0.01 J	0.72 0.02 J	0.01 J 0.03 J	0.07 0.08
Sample	Cust ID: RFW#:	SG 31	SG 32	SG 33	SG 34	SG 35	SG 36
Information	Matrix:	Air	Air	Air	Air	Air	Air
	D.F.:	1	1	1	1	1	1
	Units:	ng/ml	ng/ml	ng/ml =====fl=	ng/ml	ng/ml	ng/ml
Tetrachloroethene		0.09	0.10	0.07	0.14	0.66	0.19
Trichloroethene		0.08	0.40	0.10	0.03 J	0.45	0.34

U=Analyzed, not detected. B=Present in Mank. NRP=Not Reported J=Present at less than detection limit NR=Not requested.

RFW Batch Number:	C	lient:					Page: 3
Sample	Cust ID: RFW#:	SG 37	SG 38	SG 39	SG 40	SG 41	SG 42
Information	Matrix:	Air	Air	Air	Air	Air	Air
	D.F.:	1	1	1	1	· 1	1
	Units:	ng/ml	ng/ml	ng/ml	ng/ml	ng/ml	ng/ml
		======fl;	=====fl	======fl	======f1=	:=====fl=	======fl
Tetrachloroethene		0.04 J	0.25	0.09	0.01 J	0.07 J	0.27
Trichloroethene	•••••	0.07	0.75	0.15	0.09	0.03 J	0.03 J

Sample	Cust ID: RFW#:	SG 43	SG 44	SG 45	SG 46	SG 47	SG 48
Information	Matrix:	Air	Air	Air	Air	Air	Air
	D.F.:	1	1	1	1	1	1
	Units:	ng/ml	ng/ml	ng/ml	ng/ml	ng/ml	ng/ml
		=====fl	=====fl:	=====fl=	========fl=	=======fl:	======fl
Tetrachloroethene		0.54	0.07 J	0.20	0.06 J	0.20	0.89
Trichloroethene	••••	0.32	0.45	0.03 J	0.17	0.12	5.5

Sample	Cust ID: RFW#:	SG 49	SG 50	SG 51	SG 52	SG 53	SG 54
Information	Matrix:	Air	Air	Air	Air	Air	Air
	D.F.:	1	1	1	1	1	1
	Units:	ng/ml	ng/ml	ng/ml	ng/ml	ng/ml	ng/ml
		======fl	=====fl=	======f1=	======fl=	=====fl	======f1
Tetrachloroethene		1.9	0.03 J	0.08 U	0.08 U.	0.12	0.02 J
Trichloroethene		2.9	0.27	8.4	8.2	150	5.5

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit. NR=Not requested.

WESTON ANALYTICS GC DATA SUMMARY VOLATILE COMPOUNDS

RFW Batch Number:		Client:					Page:
	Cust ID:	 SG 55	SG 56	SG 57	 SG 58	SG 59	 SG 60
Sample	RFW#:	59 55	56 50				20.00
	Matrix:	Air	Air	Air	Air	Air	Air
	D.F.:	· 1	1	1	1	1	1
و و و و و و و و و و و و و و و و و و و	Units:	ng/ml	ng/ml	ng/ml	ng/ml	ng/ml	
[etrachloroethene		1.4	0.08 U	0.01 J	0.48	22	42
Trichloroethene	• • • • • • • •	240	3.6	12	10	16	. 120
	Cust ID:	SG 61	SG [·] 62	SG 63	SG 60 RP	SG 60 RP	BLANK A
Sample	RFW#:	1 d	8 d m	Air	Air	Air	Air
Information	Matrix: D.F.:	Air 1	Air 1			1	
	Units:	ng/ml	ng/ml	nq/ml	ng/ml	ng/ml	ng/ml
Setrachloroethene		=====f] 9.5	[======f] 0.05 J	L======1 0.06 J		[]====== 44	0.14
Trichloroethene	••••		0.17	1.3	125	89	0.03
	Cust ID:	BLANK B	BLANK A	BLANK B	BLANK A	BLANK B	BLANK
Sample	RFW#:						
Information	Matrix:	Air	Air	Air	Air	Air	Air
	D.F.:	1.	1	1	1	1	1
	Units:	ng/ml	ng/ml	ng/ml	ng/ml	ng/ml fl======f	ng/ml]=========
Tetrachloroethene	• • • • • • •	0.08 U	0.08 U	0.58	0.01	J 0.02 J	0.01
Trichloroethene	• • • • • • •	0.03 J	0.06 U	0.50	0.05	0.08	0.06
U=Analyzed, not dete J=Present at less th					orted		

VOC ANALYSIS RESULTS: SOIL AND SEDIMENT SAMPLES

4178B

	VOLATILE		IS DA		ARY Ce 1			s		
RFW Batch Number: 8712-007	C]	ient:	BL	ACK AND						Page: 1
 Sample Information	Cust ID: RFW#: Matrix: D.F.: Units:	BLANK BLANK Water 1 ug/l	TR	IP BLK 003 Water 1 ug/l	TI	P VOA BL 009 Water 1 ug/l	к			
Surrogate To Recovery Bromofluor (%) 1,2-Dichloroe	thane-d4:	96 100 92	१ १	96 102 90	१ १	94 92 88	१ १	% % ≈======f1=====	% % % =====f]==	१ १ २ ===============================
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane Trans-1,2-Dichloroethene. Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Trans-1,3-Dichloropropene. Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane cis-1,3-Dichloropropene 2-Chloroethylvinylether Bromoform 4-Methyl-2-pentanone		$ \begin{array}{c} 10\\ 10\\ 10\\ 13\\ 10\\ 5\\ 5\\ 5\\ 10\\ 5\\ 10\\ 5\\ 5\\ 5\\ 5\\ 5\\ 10\\ 5\\ 5\\ 5\\ 5\\ 10\\ 5\\ 5\\ 5\\ 5\\ 10\\ 5\\ 5\\ 10\\ 5\\ 5\\ 10\\ 5\\ 5\\ 10\\ 5\\ 5\\ 5\\ 10\\ 5\\ 5\\ 5\\ 5\\ 5\\ 10\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\$		10 10 10 3 10 5 5 5 5 7 5 25 5 5 10 5	υυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυυ	10 10 10 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	U U U J B U U U U U U U U U U U U U U U			

•	-	•

E=====================================	lient: B	BLACK AND DE	======================================	Page: 1
Cust ID: RFW#:	BLANK	003	P VOA BLK 009	f]======f]======f]
Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Total Xylenes	5 U 5 U 1 J 5 U 5 U 5 U 5 U 5 U	5 U 5 U 2 JB 5 U 5 U 5 U 5 U 5 U	5 U 5 U 1 JB 5 U 5 U 5 U 5 U 5 U	

U=Analyzed, not detected. B=Present in Mark. NRP=Not Reported J=Present at less than detection limit. R=Not requested.

ALYTICS WESTO GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

======================================	Client:	BLACK AND	DECKER			Page: 2
Cust ID:	BLANK	TPD3-1	TPF3-1	TPF3-1	TPF3-1	TPF1-1
Sample RFW#:	BLANK	001	008	008 MS	008 MSD	006
Information Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
D.F.:	1	1.3	1.2	1.2	1.2	1.2
Units:	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Surrogate Toluene-d8:	82	% 96				
Recovery Bromofluorobenzene:	84		-	•	•	
(%) 1,2-Dichloroethane-d4:	70					
Chloromethane						
Bromomethane	. 10	U 13	U 12	U 12	U 12	U 12 U
Vinyl Chloride	. 10	U 13	U 12	U 12	U 12	
Chloroethane		U 13	U 12	U 12	U 12	•
Methylene Chloride	. 3	J 18	B 21	B 42	B 47	-
Acetone	. 10	บ 5	J 9	J 18	23	19
Carbon Disulfide	. 5	บ 7	U 6	U 6		U 6 U
1,1-Dichloroethene		-		U 80	-	
1,1-Dichloroethane	. 5	U 7	-	•	-	U 6U
Trans-1,2-Dichloroethene	. 5	U 7		•	U 6	+
Chloroform			-		-	U 6 U
1,2-Dichloroethane	. 5	บ 7	U 6	U 6		U 6 U
2-Butanone				-		
1,1,1-Trichloroethane				-		U 6 U
Carbon Tetrachloride	. 5	U 7	U 6	U 6		U 6 U
Vinyl Acetate		U 13	U 12			
Bromodichloromethane	. 5	U 7		-	-	U 6 U
1,2-Dichloropropane		•	U 6			U 6 U
Trans-1,3-Dichloropropene	. 5	U 7	• •		U 6	
Trichloroethene			-	U 81		
Dibromochloromethane	. 5	U 7	-	• •	-	U 6 U
1,1,2-Trichloroethane	. 5	U 7	U 6	U 6	U 6	
Benzene	. 5	U 7	-	U 86	•	
cis-1,3-Dichloropropene	. 5	U 7	U 6	-	-	U 6 U
2-Chloroethylvinylether	. 10	U 13	U 12	U 12		
Bromoform		U 7	U 6	U 6		U 6 U
4-Methyl-2-pentanone		U 13	U 12			
2-Hexanone		U 13	U 12	U 12	U 12	U 12 U

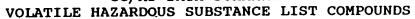
RFW Batch Number: 8712-007	Client:	BLACK AND	DECKER			Page: 2
Cust ID: RFW#:	BLANK BLANK	TPD3-1 001	TPF3-1 008	TPF3-1 008 MS	TPF3-1 008 MSD	TPF1-1 006 ======f1
Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Total Xylenes	. 5 t . 5 t . 5 t . 5 t . 5 t	J 7 J 7 J 2 J 7 J 7 J 7 J 7 J 7 J 7 J 7	U 6 U 6 U 6 U 6 U 6 U 6	U 6 U U 6 U J 85 S U 96 S U 6 U U 6 U	J 6 U J 6 U S 92 % S 101 % J 6 U J 6 U	6 U 6 U 2 J 6 U 6 U 6 U 6 U

.

.

.

U=Analyzed, not detected. B=Present in honk. NRP=Not Reported J=Present at less than detection limit. R=Not requested.


•

.

. .

.

WEST NALYTICS GC/MS DATA SUMMARY

		LLE HAZARDO		====================================	JUND3 ==================	**********	============
	mber: 8712-096	Client:	BLACK & DE				Page: 4
		BLK 12/25	BLK 12/27	BLK 12/28	METHOD BLK		SBA1-6-8' 011
Sample	RFW#:	VSBLK	VSBLK	VSBLK	VMBLK	010 2-11	Soil
Information	Matrix:	Soil	Soil	Soil	Soil	Soil	
	D.F.:	1	1	. 1	130	1.3	6
	Units:	ug/kg	ug/kg	ug/kg	ug/kg 	ug/kg	ug/kg
Surrogate	Toluene-d8:	110 %				98 %	•
Recovery	Bromofluorobenzene:	118 %				100 %	
(%)	1,2-Dichloroethane-d4:	96 %	88 %	102 %		80 %	79 %
		===#====f	1=====f	1=====f	1======f]	[=====================================	
Chloromethan	e					13 U	
	* • • • • • • • • • • • • • • • • • • •					13 U	
	de					13 U	
	•••••					13 U	
	loride				1300	20 B	
				22	2400	26 B	
	fide						
1,1-Dichloro	ethene	. 5U				7 U	
	ethane						
Trans-1,2-Di	chloroethene					7 U 7 U	— -
•	ethane			-		7 U	
						11 J	
	oroethane				1	7 U	
Carbon Tetra	chloride						
	e					13 U	
	omethane					7 U	
	propane			-			
	chloropropene						
	ene			-			
Dibromochlor	omethane						
1,1,2-Trichl	oroethane						
Benzene							
	loropropene		-				
	lvinylether					•	
4-Methyl-2-p	entanone						
2-Hexanone		. 10 0	J 10 U	J 10 U	1300 U	13 U	60 U

3

			=======================================	==================			
RFW Batch Number: 8712-096	Client:	BLACK & DECKER		Page: 4			
Cust ID: RFW#:	BLK 12/25 VSBLK	BLK 12/27 BLK 12/28 VSBLK VSBLK	METHOD BLK SBA7 4- VMBLK 03	LO 011			
Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Total Xylenes	. 5 U . 5 U . 2 J . 5 U . 5 U . 5 U	5 U 5 U 5 U 5 U	J 650 U J 650 U	4 J 20000 * 7 U 30 U 2 JB 88 7 U 30 U 7 U 30 U			

Other: * See dilution

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit R=Not requested. *******

WESTO VALYTICS GC/MS A SUMMARY

VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

	umber: 8712-096	Client:	BLACK & I	DECKI	ER				Page: 5
	Cust ID:	SBA1 6-8'	SBA2 2-4		BA3 14-1			SBA4 4-6	SBA4 12-14
Sample	RFW#:	011 DIL	012		013		014	014 DIL	015
Information	Matrix:	Soil	Soil		Soil	£	Soil	Soil	Soil
	D.F.:	5300	1.3		1.3		5.8	150	1.3
	Units:	ug/kg	ug/kg		ug/kg	uq	g/kg 	ug/kg	ug/kg
Surrogate	Toluene-d8:	DL			94		102		
Recovery	Bromofluorobenzene:	DL			92		106	•	
(%)	1,2-Dichloroethane-d4:	DL	€ 78		77		81		-
	ne				13		 58		U 13 U
	e		U 13	U	13	U	58	U 1500	
Vinyl Chlor	ide	. 53000	U 13	U	13	U	58		
	e		U 13	U	13	U	58		
Methylene C	hloride	. 51000	B 26	В	21	B	120		
	• • • • • • • • • • • • • • • • • • • •		B 15	В	17	В	200		
Carbon Disu	lfide	. 27000	บ 7	U	7	-	29	-	
1,1-Dichlor	oethene		- ·	U	7	-	29		
1,1-Dichlor	oethane			U	7	-	29		
Trans-1,2-D	ichloroethene	. 27000		U	7	•	29	-	
Chloroform.			•	U	7	-	. 29		
	oethane		-	U	7	-	29		
				-	6		29		
• •	loroethane		• •	U	7	-	29		-
	achloride		• ·	U	7	-	29	-	-
	te			-	13	-	58	-	
	romethane			U	•	U	29		-
•	opropane			U	•	U	29		• • •
	ichloropropene		• •	U	•	U	29		•
	hene		•	U		U	. 9		0 10
	romethane		•	U	•	U	29		• • •
	loroethane			U	•	U	29	-	
	••••••		•	U	-	U	29 29		
	hloropropene		-	U		U	29 58		• • •
	ylvinylether			-	13	-	28		
	•••••••••••••••••••••••		• •	U		U	29 55	-	
	pentanone			-	13 13		58		
2-Hexanone.		. 53000	U 13	U	13	U	00	0 100	5 I) (

5

RFW Batch Number: 8712-096	Client:		====== K & DE						age: 5
Cust ID:	SBA1 6-8 011 DIL	SBA2	2-4' 012	SBA3	14-16'SBA4 013	4-6' 014	SBA4 4-6 014 DII	SBA4	12-14' 015
Tetrachloroethene		-11	r 7 U		11 7 U	340	850		2 J
1,1,2,2-Tetrachloroethane	. 27000	U	7 U	ſ	7 U	29 U	J 750	U	7 U
Toluene	. 27000	U	2 J	В	2 JB	46	190	J	2 J
Chlorobenzene	. 27000	U	7 U	ſ	7 U	29 t	J 750	U	7 U
Ethylbenzene	. 27000	U	7 U	I	7 U	510	750	U	7 U
Styrene	. 27000	U	7 U	l i	7 U	29 t	J 750) U	7 U
Total Xylenes		U	7 U	ſ	7 U	8000 1	t 1600		7 U

Other: *See dilution

.

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit VR=Not requested. :9 [

WEST NALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

RFW Batch Number: 8712-096 Client: BLACK & DECKER						====#		Page: 6
	SBA4 12-1 015 DIL Soil 6	4′SBA3 S		SBA3 4-6 017 MS Soil 1.3 ug/kg	SBA3 017			DUPSBE4-10-11 020 Soil 1.3 ug/kg
Surrogate Toluene-d8: Recovery Bromofluorobenzene: (%) 1,2-Dichloroethane-d4:	102 95 91	१ १	102 106 81	\$ 106 \$ 87	8 8	96 96 83	¥ 103 ¥ 80	%
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride	. 60 . 60 . 60 . 60	บ บ บ บ	13 (13 (13 (13 (13 (19)	J 13 J 13 J 13 J 13 J 13	บ บ บ บ	13 13 13 13 13 42	U 46 U 46 U 46 U 46 U 46	U 13 U U 13 U U 13 U U 13 U U 13 U
Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane	. 510 . 30 . 30 . 30	B U U U	15 1 7 t 7 t 7 t	3 12 J 7 J 71 J 71 J 71	JB U そ U	14 7 67 7	B 310 U 6 % 23 U 23	B 9 J B J 7 U U 7 U U 7 U U 7 U
Trans-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane	. 30 . 30 . 23	U U JB	7 (7 (7 (13 (7 (J 7 J 7 J 7	บ บ บ บ บ	7 7 7 13 7	U 23 U 23 U 20	U 7 U U 7 U J 13 U
Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane	. 30 . 60 . 30 . 30	บ บ บ	7 (13 (7 (7 (7 (J 13 J 7 J 7	บ บ บ บ	7 13 7 7 7	U 46 U 23 U 23	U 13 U U 7 U U 7 U
Trans-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene	. 30 . 30 . 30	บ บ บ	7 (7 (7 (7 (7 (J 79 J 7 J 7	* U U	81 7 7 88	% 23 U 23 U 23 % 23	U 7 U U 7 U U 7 U U 7 U U 7 U
cis-1,3-Dichloropropene 2-Chloroethylvinylether Bromoform 4-Methyl-2-pentanone 2-Hexanone	. 60 . 30 . 92	U U	7 (13 (7 (13 (13 (J 13 J 7 J 13	U U	7 13 7 13 13	U 46 U 23 U 140	U 13 U U 7 U 13 U

5

RFW Batch Number: 8712-096	Clien	:====== nt:	BLACK	ε===== ζ & Ε	DECI	======================================						!! !	Page: (6
 Cust ID RFW#	015	DIL		017		SBA3 4-64 017 MS		SBA3 017	MSD		019		4-10-1 020 ======	
Tetrachloroethene	••	30 U 30 U		2		2	J	•	7 7	U	13 23	J	7 7	U
1,1,2,2-Tetrachloroethane Toluene Chlorobenzene	• •	8 J 30 U		2	JB U	86 96			86 98	_	43 23	ប	5 7	JB U
Ethylbenzene	••	30 U 30 U		•	U U	•	U U U		7	0	18 23	-	7 7	U U
Styrene Total Xylenes		30 U		7	Ŭ	7	Ū		7	Ų	400		7	U

Other:

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit IR=Not requested.

()) ())

WEST CANALYTICS GC/MS DATA SUMMARY

VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

						==============
RFW Batch Number: 8712-096	Client:	BLACK & DI				Page: 7
Cust ID:	SBE1 4-6'	SBE2 4-6'	SBE3 6-7'	SBE5 4-6'	SBE5 4-6'	SBE5 4-6'
Sample RFW#:	021	023	024	025	025 MS	025 MSD
Information Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
D.F.:	1.2	1.9	1.1	1.1	1.1	1.1
Units:	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Surrogate Toluene-d8:	96 ⁹	s 88 %				
Recovery Bromofluorobenzene:	98 9	\$ 91 ^{\$}	t 94 %			·
(%) 1,2-Dichloroethane-d4:	80 5					
Chloromethane						
Bromomethane	. 12 0	J 19 U	J 11 U	11 U	J 11 U	11 U
Vinyl Chloride		J 19 U	j 11 U	11 U	J 11 U	11 U
Chloroethane		J 19 (J 11 U	11 U	J 11 U	11 U
Methylene Chloride		3 29 1	3 25 B	15 E	3 38 B	
Acetone		3 29 1	3 36 B	25 H	3 19 B	23 B
Carbon Disulfide		J 10 U	J 6 U	6 U	J 6 U	
1,1-Dichloroethene		J 10 U	J 6 U	6 L	J 74 %	
1,1-Dichloroethane		J 10 U	J 6 U	6 L		
Trans-1,2-Dichloroethene		J 10 (
Chloroform		J 10 U				
1,2-Dichloroethane		J 10 t	-			
2-Butanone	. 12 1	J 19 (-			
1,1,1-Trichloroethane	. 61	J 10 U	J 6 U			
Carbon Tetrachloride	. 61	J 10 U	-			• -
Vinyl Acetate	. 12 1	J 19 (J 11 U			
Bromodichloromethane	. 61	J 10 U	-			
1,2-Dichloropropane	. 61	J 10 U	J 6 U			-
Trans-1,3-Dichloropropene	. 61	J 10 (
Trichloroethene	. 61	J 10 U	J 6 U			
Dibromochloromethane			J 6 U		-	
1,1,2-Trichloroethane						
Benzene	. 61		J 6 U	-		
cis-1,3-Dichloropropene	. 61					• -
2-Chloroethylvinylether	. 12 0	J 19 (
Bromoform	. 61	J 10 U	J 6 U		-	
4-Methyl-2-pentanone			J 11 U			
2-Hexanone	. 12 1	J 19 U	J 11 U	11 (J 11 U	11 U

======================================	Clien	:===== 1 t :	===== BL <i>i</i>	ACK & DI	ECKER	=====		=====			Page:	; 7
Cust ID RFW#	:	021		E2 4-6' 023		6-7' 024	SBE5	025	SBE5 4-6 025 MS		SBE5 4-6 025 MSD	D
Tetrachloroethene		1 J		10		6 1	J	6	U 6	U	e	6 U
1,1,2,2-Tetrachloroethane Toluene		6 U 2 J	-	10 U 5 J	-	6 1 2 1	•	6 2		U 8	-	6U 7%
Chlorobenzene	••	6 1	U	10	-	6		6	• •	8		1 % 6 U
Ethylbenzene Styrene		6 I 6 I	•	10 10	-	6 ⁻	-	6 6	•	5 U 5 U		6 U
Total Xylenes		6 1	U	10	U	6	U	6	U é	5 U	1	6 U

Other:

U=Analyzed, not detected. B=Present in plank. NRP=Not Reported J=Present at less than detection limit R=Not requested.

	GC/MS	A SUMMARY SUBSTANCE LIST COMPOUNDS	
RFW Batch Number: 8712-096	Client:	BLACK & DECKER	Page: 8
	Cust ID: SBE5 8-10'	SBE6 14-16'	

.

<u>î</u>

	Cust ID:	SBE5 8-10'	SBE6 14-1	.6'				
Sample	RFW#:	026	027					
Information	Matrix:	Soil	Soil					
	D.F.:	1.3	1.2					
	Units:	ug/kg	ug/kg					
Surrogate	Toluene-d8:	98 %	100	* *	 ۶	* *	* *	8
Recovery	Bromofluorobenzene:	100 %	92	8	8	8	*	· *
(%)	1.2-Dichloroethane-d4:	78 %			8	<u>م</u>	8 f1	<u>}</u>
					=====11====		[1	
	2							
	ide							
	2							
	loride							
	lfide			Ū				
	bethene		I 6	U				
	bethane		I 6	U				
	ichloroethene		J 6	U				
			I 6	U				
	bethane		J 6	U				
			r 7	J				
	loroethane		J 6	U				
	achloride		J 6	U				
Vinyl Acetat	te	13 U	12	U				
	romethane		J 6	U				
1,2-Dichloro	opropane	. 7 U	J 6	U				
	ichloropropene		J 6	U		•		
-	nene		J 6	U				
Dibromochlo	romethane	. 7 U	J 6	U				
1,1,2-Trich]	loroethane	. 7 U	J 6	U				
			J 6	U				
	nloropropene		J 6	U				
2-Chloroethy	/lvinylether	. 13 U	J 12	U				
	· • • • • • • •		J 6	U				
4-Methyl-2-p	pentanone	13 U	J 12	U				
			J 12	U				

RFW Batch Number: 8712-096	Client:	BLACK & DECKER	Page: 8
Cust ID: RFW#:	026	SBE6 14-16' 027]=======f]========	f]=====f]=====f]
Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Total Xylenes	. 7 U 7 U 2 J . 7 U . 7 U . 7 U	6 U 6 U 8 2 J 6 U 6 U 6 U	

Other:

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit R=Not requested.

	VOLATII	WES GC/M Le Hazari	IS	S SUBSTAN	IAF ICF	RY E LIST COM							
	mber: 8712-997	lient:	===	BLACK & I								Page:	2
Sample Information	Cust ID: RFW#: Matrix: D.F.: Units:	TPB5-1 010 Soil 1.2 ug/kg		TPD2-1 012 Soil 1.2 ug/kg		TPB2-1 013 Soil 1.2 ug/kg	•	BLK 12/20 WBLK Water 1 ug/L		TRIP BLANH 006 Water 1 ug/L	с В	LANK TP 007 Water 1 ug/L	
Surrogate Recovery (%)	Toluene-d8: Bromofluorobenzene: 1,2-Dichloroethane-d4:	114 87 70	%	100 120 77	१ १	113 108 72	8 8	99 103 88	8 8	102 108 105	t t	103 105 100	8 8
Chloromethan Bromomethane Vinyl Chlori	e de	12 12 12	U U U	12 12 12	U U U	12 12 12	บ บ บ	10 10 10	U U U	10 1 10 1 10 1 10 1	U U U	10 10 10 10	บ บ บ
Methylene Ch Acetone	loride	-				12 16 12 6		10 17 14 5		4	JB JB	4 4	JB JB U
1,1-Dichloro 1,1-Dichloro	ethene ethane chloroethene	6 6 6	U U U	6	U U U	6	U U U	5 5 5	U U	5	U	5	U U U
1,2-Dichloro 2-Butanone	ethane	6 12	บ บ บ บ	6 12	U U U U	6 8	U U J U	5 5 10 5	U U	7 5 24 5	บ บ	5	U J U
Carbon Tetra Vinyl Acetat	oroethane chloride comethane	6 12	U	6 12	Ū	6 12	Ū	5 10 5	U U	5 10	U U	5 10 5	บ บ บ
1,2-Dichloro Trans-1,3-Di	opropane chloropropene	6 6 6	U U U	6	U U U	6	บ บ บ	5 5 5	U U	5	U U U	5 5	U U U
	comethane		U		U		U	5	-	-	U	-	U U

6 U

6 U

6 U

6 U

12 U

12 U

12 U

6 U

6 U

6 U

6 U

12 U

12 U

12 U

1,1,2-Trichloroethane.....

Benzene.....

cis-1,3-Dichloropropene.....

2-Chloroethylvinylether.....

Bromoform.....

4-Methyl-2-pentanone.....

2-Hexanone.....

6 U

6 U

6 U

6 U

12 U

12 U

12 U

5 U

5 U

5 U

5 U

10 U

10 U

10 U

5 U

5 U

5 U

5 U

10 U

10 U

10 U

5 U

5 U

5 U

5 U

10 U

10 U

10 U

RFW Batch Number: 8712-997	Client:	BLAC	CK & DECK	======================================				Page:	2
Cust ID: RFW#:	010		2D2-1 012 =====fl==	TPB2-1 013		WBLK	TRIP BLANK 006 ==================================	007	
Tetrachloroethene 1,1,2,2-Tetrachloroethane	. 6	U U	6 U 6 U	6 U 6 U	J	5 U 5 U	5 U 5 U	J 5	บ บ
Toluene	. 15	•	1 JB 6 U	3 J 6 L	-	2 J 5 U	3 J 5 L	-	JB U
Ethylbenzene	. 6	U U	6 U 6 U	6 U 6 U		5 U 5 U	5 U 5 U	·	U U
Total Xylenes		U	6 U	6 U	J	5 U	5 U	J 5	U

Other:

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit VR=Not requested.

 ∞

S

WEST CONNALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

	volat.	ILE HAZARDO			:=====================================	===========	============
	mber: 8712-997	Client:	. BLACK & DEC				Page: 1
	Cust ID:	BLK 12/20	AREA C-SED	TPB4-1	TPB3-1	TPB3-1	TPB3-1
Sample	RFW#:	SBLK	002	008	009	009 MS	009 MSD
Information	Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
Information	D.F.:	1	1.7	1.2	1.3	1.3	1.3
	Units:	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Surrogate	Toluene-d8:	82 9		88 %	98 %	113 %	108 %
Recovery	Bromofluorobenzene:	83 9	\$ 90 %	76 %	87 %	100 %	96 %
(%) -	1,2-Dichloroethane-d4:	70 %	s 72 %	70 %	72 %	75 % fl	73 %
	======================================		J 17 U	12 U	13 U	13 U	13 Ū
		· · · · · · · · · · · · · · · · · · ·		12 U	13 U	13 U	13 U
	de		J 17 U	12 U	13 U	13 U	13 U
-			J 17 U	12 U	13 U	13 U	13 U
	loride		J 21 B	27 B	22 B	48 B	39 B
	••••••		J 5 J	4 J	7 J	6 J	6 J
	fide		J 9 U	6 U	7 U	7 U	7 U
	ethene		J 9 U	6 U	7 U	80 %	65 %
•	ethane		J 9 U	6 U	7 U	7 U	7 U
	chloroethene			6 U	7 U	7 U	7 U
			J 9 U	6 U	7 U	7 U	7 U
1,2-Dichloro	ethane	. 51	J 9 U	6 U	7 U	7 U	7 U
2-Butanone		. 10 0		12 U	13 U	13 U	13 U
1,1,1-Trichl	oroethane	. 51		6 U	7 U	7 U	7 Ų
Carbon Tetra	chloride			6 U	7 U	7 U	7 U
Vinyl Acetat	e	. 10 1		12 U	13 U	13 U	13 U
Bromodichlor	omethane			6 U	7 U	7 U	7 U 7 U
	propane		- ·	6 U	7 U	7 U 7 U	7 U 7 U
Trans-1,3-Di	chloropropene	. 51		-	7 U		68 %
Trichloroeth	ene			6 U	7 U	82 %	585 711
Dibromochlor	omethane			6 U	7 U	7 U 7 U	
1,1,2-Trichl	oroethane	. 51		6 U	7 U		77 %
				6 U	7 U	92 % 7 U	778 7U
	loropropene				7 U		13 U
. –	lvinylether				13 U	· 13 U	13 U 7 U
					7 U	13 U	13 U
	entanone				13 U 13 U	13 U	13 U
2-Hexanone		. 10	U 17 U	12 U	12 0	13 0	13 0

	=====		=====	=======	=========	===============	===========	===========
RFW Batch Number: 8712-997	Cli	ent:	BLAC	K & DECK	ER			Page: 1
Cust ID RFW#	:	SBLK		C-SED 002 =====fl=	TPB4-1 008	TPB3-1 009 ======f]	TPB3-1 009 MS	TPB3-1 009 MSD =fl======fl
Tetrachloroethene	• •	5 U 5 U	J	14 9 U	6 U 6 U	7 U 7 U	7 7	U 7 U U 7 U
Toluene Chlorobenzene	••	1 J 5 U 5 U	J	3 JB 9 U 9 U	3 JB 6 U 6 U	6 J 7 U 7 U	98	-
Ethylbenzene Styrene Total Xylenes	••	5 U 5 U 5 U	J	9 U 9 U 9 U	6 U 6 U	7 U 7 U 7 U	7	U 7 U U 7 U

Other:

U=Analyzed, not detected. B=Present in nk. NRP=Not Reported J=Present at less than detection limit. R=Not requested.

VOC ANALYSIS RESULTS: GROUNDWATER AND SURFACE WATER SAMPLES

.

4178[.]B

WEST ANALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

	======================================	Client:		BLACK AND)	DECKER	:==			Page: 3
	Cust ID:	BLANK		EL1 SED		EL2 SED		ELISED DUP	ELISED DUP	
Sample	RFW#:	BLANK		003		006		004	004 MS	004 MSD
Information	Matrix:	Soil		Soil		Soil		Soil	Soil	Soil
	D.F.:	1		45		2.4		45	45	45
	Units:	ug/kg		ug/kg		ug/kg		ug/kg	ug/kg	ug/kg
Surrogate	Toluene-d8:	104		112		116		116 %		
Recovery	Bromofluorobenzene:	104	-	88				100 %		
(%)	1,2-Dichloroethane-d4:	100		84		92		94 %		
				======== 450		24		450 U		
				450				450 U		
	e			51	_	24	-	72 J		
	· · · · · · · · · · · · · · · · · · ·		-	450	_	24		450 U		
	oride		-	290	-	14	В	450 B		650 B
-	••••••••••••••		J	1100	В	35	В	1100 B	770 B	860 B
	ide		U	150		12	U	230	200 J	260
	thene		U	230	U	12	U	23 ⁰ U	128 %	
	thane		U	230	U	12	U	230 U	230 U	
	hloroethene		U	2000		4	-	3000	2600	2600
Chloroform		. 5	U	230		12		230 U		
1,2-Dichloroe	thane	. 5	U	230	U	12	U	230 U		
			U	450	-		_	310 J		
	roethane		U	230				230 U		
Carbon Tetrac	hloride		U	230			-	230 U		
Vinyl Acetate	• • • • • • • • • • • • • • • • • • • •	. 10	U	450	_	24		450 U		
Bromodichloro	methane	. 5	U	230				230 U		-
-	ropane		U	230				230 U		
-	hloropropene	• •	U	230				230 U		
	ne	• •	U	100	-	12		110 J		
	methane	• •	U	230		12	-	230 U		
1,1,2-Trichlo	roethane		U	230		12		230 U		
			U	230	-			230 U		
	oropropene		U	230	-		_	230 U		
-	vinylether		-	450			-	450 U		
	• • • • • • • • • • • • • • • • • • • •		U	230	_		-	230 U		
	ntanone			450				450 U		
2-Hexanone		. 10	U	450	U	24	U	450 U	450 U	450 U

_
-
-

.

.

RFW Batch Number: 8712-102	Client:				DECKER						age:	3
Cust ID: RFW#:	BLANK BLANK	EL	L SED 003		EL2 SE 00		ELISED D	UP	ELISED DUP		ED DI MSD	
		fl====		=f]		-	•••	=f]	001 110			
Tetrachloroethene	. 5	U	45	J	1	12 U	J 230	U	230 U	I	230	ប
1,1,2,2-Tetrachloroethane	. 5	U	230	U	1	12 U	J 230	U	230 U	ſ	230	U
Toluene	. 5	U	8300			6 J	r 8000		72 %	;	77	*
Chlorobenzene	. 5	U	230	U	1	ι2 τ	J 230	U	112 🖁	i	112	Ł
Ethylbenzene	. 5	U	900		1	L2 U	J 1100		1000		1100	
Styrene	_	U	230	U	1	ι2 τ	J 230	U	230 U	Γ	230	U
Total Xylenes	·	U	3100		1	12 U	J 3400		3300		3500	

•

U=Analyzed, not detected. B=Present in thank. NRP=Not Reported J=Present at less than detection limit NR=Not requested.

-1

WEST CANALYTICS GC/MS DATA SUMMARY VOLATILE HĄZARDOUS SUBSTANCE LIST COMPOUNDS

	umber: 8712-102	Client:		LACK AND) [DECKER						Page: 4
Sample	Cust ID: RFW#:	EL3 SED 007	E	EL4 SED 008		WL1 SED 010		WL2 SED 011		WL3 SED 012		WL4 SED 013
Information	Matrix:	Soil		Soil		Soil		Soil		Soil		Soil
	D.F.:	9.9		15		3.6		3.9		1.8		13
	Units:	ug/kg		ug/kg		ug/kg		ug/kg		ug/kg		ug/kg
Surrogate	Toluene-d8:	112		112		110		116		112		114 %
Recovery	Bromofluorobenzene:	86	-	94		82		76	-	86		74 8
(१)	1,2-Dichloroethane-d4:	90		88		86		92		90		88 %
				==== = == 150		 36			=1] J	L=====================================		130 U
	2			150	-	36	-	39	-	18		130 U
	de		-	150		36	-	39	-	18	U	130 U
-	2		Ū	150		36	U	39	U	18	U	130 U
	loride		В	170	В	25	В	· 28	В	16	В	130 B
-	· · · · · · · · · · · · · · · · · · ·		В	590	В	71	В	200	В	47	В	300 B
	fide		J	74	J	5	J	8	J	9	U	65 U
	bethene		U	75	U	18	U	20	U	9	U	65 U
	bethane		U	75	U	18	U	20	U	9	U	65 U
Trans-1,2-Di	chloroethene	14	J	15	J	18	U	14		2	J	65 U
Chloroform		11	J	16	-	18	U	20		9	U	65 U
1,2-Dichlord	bethane			75	U	18	-	20	U		U	65 U
2-Butanone		85	J	170		26	J	74		20		130 U
1,1,1-Trichl	loroethane	50	U	75		18	-	20		9	U	65 U
Carbon Tetra	achloride		-	75	-	18	-	20		9	U	65 U
	:e		U	150	-	36	-	39	-	18	-	130 U
	comethane		-	75	-	18		20	-		U	65 U
	propane		-	75	-	18	-	20		-	U	65 U
	ichloropropene		-	75	-	18	-	20		-	U	65 U
	nene		-	75	-	18		20	-	9	U	110
	comethane		-	75		18	-	20	-	9	บ บ	65 U
	loroethane		-	75	-	18		20				65 U
			-	75	-	18	-	20	-	9	U U	65 U 65 U
•	loropropene		-	75	-	18	-	20	_	9 18	-	130 U
-	vlvinylether		-	150		36		39 20	-		U	130 U 65 U
			-	75	-	18	-	20 39	-	18	-	130 U
	pentanone		-	150	-	36	_	39		18	-	130 U
z-Hexanone	•••••••••••••••	99	U	150	U	36	U	39	U	10	U	120.0

ド

	==========	===	=====	====	==		====	===	=====		==	=====	====	===	:====	====	:==
RFW Batch Number: 8712-102	Client:		BLACK	C AND) D	DECKER	ł								Pa	ige:	4
				~													
Cust ID:	EL3 SED		EL4	SED		WL1	SED		WL2	SED		WL3	SED		WL4	SED	
RFW#:	007			008			010			011			012			013	
		=f1	=====		:f]	L=====	====	=f1	=====	====	=f1	=====	=====	=f1=			=fl
Tetrachloroethene	. 50	U		75	U		18	U		20	U		9	U		65	U
1,1,2,2-Tetrachloroethane	. 50	U		75	U		18	U		20	U		9	U		65	U
Toluene	. 32	J		61	J		6	J		6	J		7	J		23	J
Chlorobenzene		U		75	U		18	U		20	U		9	U		65	U
Ethylbenzene	. 29	J		27	J		18	U		20	U		9	U		65	Ŭ
Styrene		U		75	U		18	U		20	U		9	U		65	U
Total Xylenes		U		75	U		18	U		20	U		9	U		65	U

U=Analyzed, not detected. B=Present in Ponk. NRP=Not Reported J=Present at less than detection limit R=Not requested.

WEST	N	ALYTICS

GC/MS TA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

RFW Batch Number: 8712-096	Client:	BLACK & DECK				Page: 1
Cust ID: Sample RFW#: Information Matrix: D.F.: Units:	BLK 12/23 VWBLK Water 1 ug/L	BLK 12/25 VWBLK Water 1 ug/L	MW S-1 001 Water 1 ug/L	MW S-3 002 Water 1 ug/L	MW S-3 002 MS Water 5 ug/L	MW S-3 002 MSD Water 5 ug/L
Surrogate Toluene-d8: Recovery Bromofluorobenzene: (%) 1,2-Dichloroethane-d4:	90 % 94 % 90 %	108 % 88 %	94 % 92 % 80 %	98 % 92 % 78 %	98 % 100 % 90 %	97 % 100 % 89 %]======fl
Chloromethane. Bromomethane. Vinyl Chloride. Chloroethane. Methylene Chloride. Acetone. Carbon Disulfide. 1,1-Dichloroethene. 1,1-Dichloroethene. Trans-1,2-Dichloroethene. Chloroform. 1,2-Dichloroethane. 2-Butanone. 1,1,1-Trichloroethane. 2-Butanone. 1,1,1-Trichloroethane. 2-Butanone. 1,1,2-Dichloroethane. 1,1,2-Dichloroethane. 2-Butanone. 1,1,2-Dichloroethane. 1,1,2-Dichloroethane. 1,1,2-Dichloromethane. 1,2-Dichloromethane. 1,2-Dichloromethane. 1,2-Dichloropropane.	. 10 U . 5 U	10 U 10 U 10 U 10 U 3 J 6 J 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	10 U 10 U 10 U 10 U 3 JB 10 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 10 U 5	10 U 10 U 10 U 10 U 6 B 10 U 5 U 5 U 5 U 27 5 U 27 5 U 5 U 10 U 1 JB 5 U 10 U 1 0 U 5 U 5 U 5 U		50 U 50 U 50 U 50 U 130 B 29 JB 25 U 60 % 25 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U
Trans-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethylvinylether Bromoform 4-Methyl-2-pentanone 2-Hexanone	. 5 U . 10 U . 5 U	5 U 5 U 5 U 5 U 5 U 10 U 5 U 10 U	5 U 2 J 5 U 5 U 5 U 5 U 10 U 5 U 10 U 10 U	5 U 8 5 U 5 U 5 U 5 U 10 U 5 U 10 U 10 U	25 U 77 % 25 U 25 U 80 % 25 U 50 U 50 U 50 U	77 % 25 U 25 U 80 % 25 U 50 U 25 U 50 U

1~

RFW Batch Number: 8712-096	Client:	BLACK & DECI	 KER			Page: 1
Cust ID: RFW#:	BLK 12/23 VWBLK	BLK 12/25 VWBLK	MW S-1 001 fl-	MW S-3 002	MW S-3 002 MS	MW S-3 002 MSD =======f1
Tetrachloroethene	_		140	280 *	260	260
1,1,2,2-Tetrachloroethane		5 U	5 U	5 U	25 U	25 U
Toluene		. 5 U	1 JB	5 U	84 %	84 %
Chlorobenzene		5 U	5 U	5 U	92 %	92 %
Ethylbenzene		1 5 U	5 U	5 U	25 U	25 U
Styrene		1 5 U	5 U	5 U	25 U	25 U
Total Xylenes		I 5 U	5 U	5 U	25 U	25 U

Other: * See the MS/MSD for dilution

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit requested.

.

 ∞

WEST CANALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

_____ _____ RFW Batch Number: 8712-096 Client: BLACK & DECKER Page: 2 Cust ID: MW P-3 MW P-4MW W-4MW W-4MW B-1 MW TB Sample RFW#: 003 004 007 005 005 DIL 006 Information Matrix: Water Water Water Water Water Water D.F.: 1 10 1 100 10 1 Units: ug/L uq/L ug/L ug/L ug/L ug/L Surrogate Toluene-d8: 94 % 103 % 96 % 99 % 99 % 90 % Bromofluorobenzene: Recovery 92 % 105 % 94 % 96 % 94 % 100 % 1.2-Dichloroethane-d4: (%) 80 % 87 % 80 % 78 % 86 % 80 % Chloromethane..... 10 U 100 U 10 U 1000 U 100 U 10 U Bromomethane..... 10 U 100 U 10 U 1000 U 100 U 10 U Vinyl Chloride..... 100 U 10 U 10 U 1000 U 100 U 10 U Chloroethane..... 100 U 10 U 10 U 1000 U 100 U 10 U Methylene Chloride..... 7 JB 83 B 3 JB 89 B 3 JB 1300 B Acetone...... 10 U 2 JB 59 JB 1300 B 70 JB 1 JB Carbon Disulfide..... 5 U 50 U 5 U 50 U 5 U 500 U 1,1-Dichloroethene..... 5 U 50 U 5 U 500 U 50 U 5 U 1,1-Dichloroethane..... 5 U 50 U 5 U 500 U 50 U 5 U Trans-1,2-Dichloroethene..... 13 50 U 7 500 U 50 U 5 U Chloroform..... 5 U 50 II 5 U 500 U 50 U 5 1,2-Dichloroethane..... 5 U 5 U 500 U 50 U 5 U 50 U 2-Butanone..... 10 U 100 U 10 U 1000 U 100 U 18 1,1,1-Trichloroethane..... 5 U 50 U 5 U 500 U 50 U 5 U Carbon Tetrachloride..... 5 U 50 U 5 U 500 U 50 U 5 U Vinyl Acetate..... 100 U 100 U 10 U 10 U 1000 U 10 U Bromodichloromethane..... 5 U 50 U 5 U 500 U 50 U 5 U 1,2-Dichloropropane..... 5 U 50 U 5 U 500 U 50 U 5 U Trans-1, 3-Dichloropropene..... 5 U 50 U 5 U 500 U 50 U 5 U Trichloroethene..... 5 J 50 U 16 500 U 38 J 5 U Dibromochloromethane..... 5 U 50° U 5 U 500 U 50 U 5 U 1,1,2-Trichloroethane..... 5 U 50 U 8 500 U 50 U 5 U Benzene..... 5 U 5 U 50 U 5 U 500 U 50 U cis-1,3-Dichloropropene..... 5 U 50 U 5 U 500 U 50 U 5 U 2-Chloroethylvinylether..... 10 U 100 U 10 U 1000 U 100 U 10 U Bromoform..... 5 U 50 U 5 U 500 U 50 U 5 U 4-Methyl-2-pentanone..... 10 U 100 U 10 U 1000 U 100 U 10 U 2-Hexanone..... 100 U 10 U 10 U 100 U 10 U 1000 U

RFW Batch Number: 8712-096	Client:	==== E	BLACK & I	DEC	KER	*==:	*========	:===	=======	====	Page:	2
Cust ID: RFW#:	MW P-3 003	- f1-	MW P-4 004	=f]	MW W-4 005	=f];	MW W-4 005 DIL	-fl-	MW B-1 006	f]==	MW TB 007	=f]
Tetrachloroethene			650	- 1 1	1200		1600		1700	· L L		U
1,1,2,2-Tetrachloroethane	. 5	U	50	U	5	U	500	U	· 50	U	5	U
Toluene	. 1	JB	12	J	· 1	JΒ	120	JB	10	J	2	JB
Chlorobenzene	. 5	U	50	U	5	U	500	U	50	U	5	U
Ethylbenzene	. 5	U	50	U	5	U	500	U	50	U	5	U
Styrene		U	50	U	5	U	500	U	50	U	5	U
Total Xylenes		U	50	U	5	U	500	U	50	U	5	U

Other: * See dilution

U=Analyzed, not detected. B=Present in Mank. NRP=Not Reported J=Present at less than detection limit NR=Not requested.

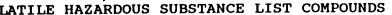
C:

WESTO NALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

RFW Batch Number: 8712-096	Client:		ACK & DE					 Page: 3
Cust ID: Sample RFW#: Information Matrix: D.F.: Units:	MW FB 008 Water 1 ug/L	MW	P-3 DUP 009 Water 1 ug/L	9 SB FI 010 Water ug/1	5	SB TB 028 Water 1 ug/L		
Surrogate Toluene-d8: Recovery Bromofluorobenzene: (%) 1,2-Dichloroethane-d4:	100 98 82	¥ ¥	102 % 102 % 92 %	5 94 5 70	5 8 1 8 5 8 == f 1	96 92 78	96 96 96	 * * * *
Chloromethane. Bromomethane. Vinyl Chloride. Chloroethane. Methylene Chloride. Carbon Disulfide. 1,1-Dichloroethene. Carbon Disulfide. 1,1-Dichloroethane. Trans-1,2-Dichloroethene. Chloroform. 1,2-Dichloroethane. 2-Butanone. 1,1,1-Trichloroethane. Carbon Tetrachloride. Vinyl Acetate. Bromodichloromethane. 1,2-Dichloropropane. Trans-1,3-Dichloropropene. Trichloroethene. Dibromochloromethane. 1,1,2-Trichloroethane. 1,1,2-Trichloroethane. 2-Chloroethylvinylether.	10 10 10 6 2 5 5 5 5 5 5 5 10 5 5 10 5 5 5 5 5 5 5 5		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			10 10 10 6 2 5 5 5 5 5 5 5 10 5 5 10 5 5 5 5 5 5 5 5	U U U B J B U U U U U U U U U U	L I

RFW Batch Number: 8712-096	Client:	BLACK & DECK	======================================		Page: 3
Cust ID: RFW#:	008	MW P-3 DUP 009 f]======f]=	SB FB 016 ======f]=	SB TB 028 ===================================	=====f1======f1
Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Total Xylenes	5 1 5 1 5 1 5 1 5 1 5 1	U 140 U 5 U U 1 J U 5 U U 5 U U 5 U U 5 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	

(


Other:

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit R=Not requested.

10

WESTONALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

======================================	Client:	BLACK AND				Page: 1
Cust ID:	BLANK	EL1	EL1 DUP	EL1 DUP	EL1 DUP	EL2
Sample RFW#:		001	002	002 MS	002 MSD	005
Information Matrix:	Water	Water	Water	Water	Water	•
D.F.:		1	1	1	1	1
Units:	ug/l	ug/l	ug/1	ug/1	ug/1	ug/1
Surrogate Toluene-d8:	100	% 102				
Recovery Bromofluorobenzene:					-	
(%) 1,2-Dichloroethane-d4:	96	% 92	ع 92			
Chloromethane				U 10	U 10	U 10 U
Bromomethane			U 10	U 10	_	-
Vinyl Chloride		U 10	U 10	U 10	-	
Chloroethane		U 10	U 10	U 10	U 10	
Methylene Chloride		9	B 10		-	-
Acetone		U 20	18	14	13	12
Carbon Disulfide			•	-	U 5	
1,1-Dichloroethene		U 5	U 5	U 108		
1,1-Dichloroethane		U 5	U 5	U 5	•	U 5 U
Trans-1,2-Dichloroethene		U 16	27	26	28	5 U
Chloroform	. 5		11	11	11	5
1,2-Dichloroethane	. 5		-	•	U 5	
2-Butanone	. 10			-		-
1,1,1-Trichloroethane		U 5		•	U 5	-
Carbon Tetrachloride	. 5	U 5	• •	•	U 5	
Vinyl Acetate		-		-	-	-
Bromodichloromethane	-	U 1	-	-	J 1	
1,2-Dichloropropane		U 5	-	-	0	0 0 0
Trans-1,3-Dichloropropene		U 5	•	•	•	
Trichloroethene		U 5	•	U 100		-
Dibromochloromethane		U 5	•	• •	U 5	
1,1,2-Trichloroethane	-	U 5	-	•	U 5	
Benzene		บ 5	•	U 100	-	
cis-1,3-Dichloropropene		U 5	•	-	U 5	
2-Chloroethylvinylether		•	-			
Bromoform	•• -	U 5		• -	U 5	
4-Methyl-2-pentanone		-	-			
2-Hexanone	10	U 10	U 10	U 10	U 10	U 10 U

***************************************			=======		=======================================	=========
RFW Batch Number: 8712-102	Client: B	LACK AND DECKE	R 			Page: 1
Cust ID: RFW#:	BLANK BLANK	001	002	EL1 DUP 002 MS	EL1 DUP 002 MSD	EL2 005
	======fl=	=======fl=====	====f1	======fl	_=======fl=:	=====ti
Tetrachloroethene	. 5 U	5 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	. 5 U	5 U	5 U	5 U	5 U	5 U
Toluene	. 5 U	1 J	2 J	104 %	102 %	1 J
Chlorobenzene	. 5 U	5 U	5 U	106 %	106 %	5 U
Ethylbenzene	. 5 U	5 U	5 U	5 U	5 U	5 U
Styrene		5 U	5 U	5 U	5 U	5 U
Total Xylenes		5 U	5 U	5 U	5 U	5 U

۰.

۰.

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit R=Not requested.

 (\Box)

ANALYTICS WEST

GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

======================================		Client:		EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE			:==		==	=================	Pa	 ge:	
Sample	Cust ID: RFW#:	WL1 009		WLE PIPE 014 Water		WLE PIPE 014 DIL Water		WLW PIPE 015 Water		LFB 016 Water	(LTB 017 ter	
Information	Matrix: D.F.:	Water 1		water 1		water 10		1		· 1		1	
	Units:	ug/l		ug/l		ug/l		`ug/l		ug/l	u 	g/l 	
	oluene-d8:	100	-	100		98		102		98 8		100 106	-
	robenzene:	102 96	-	102 92		100 90	-	108 96		102 ¥ 88 ¥		100	-
(%) 1,2-Dichloro			=f1	_==========	= f]	L=========	= f]	L========	f1:	===============================	1=====	====	= f 1
Chloromethane				10 10	-	100 100		10 10		10 U 10 U		10 10	
Bromomethane Vinyl Chloride			-	10	-	100		10	-	10 0		10	
Chloroethane		10	U	10	-	100	-	10	-	10 U	-	10	
Methylene Chloride		-	B	8		73	_	8 9	B J	7 E 10 U	-	•	B J
Acetone Carbon Disulfide		_	J U	10 5	U U	66 50	-	5	-	. 5 t		-	U
1,1-Dichloroethene		-	Ŭ	-	U	50		5		5 t	J	5	U
1,1-Dichloroethane			U	5	U	50	U	5	-	5 U		-	U
Trans-1,2-Dichloroethene.		-	U	5		50	-	2 5	-	5 U 6	J	56	U
Chloroform			U	9	U	50 50	-	5	-	5 t	J	-	U
1,2-Dichloroethane 2-Butanone			-	10	-	100		10	-	10 0	-	10	U
1,1,1-Trichloroethane			Ū	1	J	50	U	5	-	5 T	-	-	U
Carbon Tetrachloride		. 5	U		U	50	-	5	-	5 0		5 10	U
Vinyl Acetate			U J	10	U J	100 50	-	10 5	-	10 U 5 U	-		U.
Bromodichloromethane 1,2-Dichloropropane			U		U			5	•	5 0	-	-	Ū
Trans-1, 3-Dichloropropene			Ŭ		Ū	50		5	U	5 (-	-	U
Trichloroethene		. 12		480		500		3	-	5 (-	U
Dibromochloromethane		-	U		U	50 50	-	5 5		5 t 5 t	-	•	U U
1,1,2-Trichloroethane			U U		U U	50	-	-	U	5 1	-	-	Ŭ
Benzene cis-1,3-Dichloropropene		-	Ŭ	-	บ	50		_	Ū	5 (U	5	U
2-Chloroethylvinylether.		. 10	U	10	U	100		_		10 1	-	10	-
Bromoform			U	-	U	50	-		U	5 U 10 U	-	5 10	U
4-Methyl-2-pentanone 2-Hexanone				10 10	-	100 100			_	10 0	-	10	-

					============	=======
RFW Batch Number: 8712-102	Client:	BLACK AND	DECKER			Page: 2
Cust ID:	 WL1	WLE PIPE	WLE PIPE	WLW PIPE	LFB	LTB
RFW#:	009	014	014 DIL	015	016	017
	f	[]========	fl=====f	l======fl===	=====fl==	=====f1
Tetrachloroethene	. 5 Ū	J 9	50 U	15	5 U	5 U
1,1,2,2-Tetrachloroethane	. 50	J 5	U 50 U	5 U	5 U	5 U
Toluene		J 5	U 50 U	5 U	5 U	5 U
Chlorobenzene	. 5 U	J 5	U 50 U	5 U	5 U	5 U
Ethylbenzene	. 50	J 5	U 50 U	5 U	5 U	5 U
Styrene		J 5	U 50 U	5 U	5 U	5 U
matal Villanag	5 1	1 5	11 50 11	5 11	5 11	5 11

5 U

50 U

5 U

5 U

5 U

5 U

* SEE DILUTION

••

Total Xylenes.....

NRP=Not Reported U=Analyzed, not detected. B=Present ir ank. J=Present at less than detection limi NR=Not requested.

PETROLEUM HYDROCARBON ANALYSIS RESULTS: SOIL SAMPLES

4178B

ORGANICS ACCURACY REPORT 02/04/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01

WORK URDER: 2901-02-01			SPIKED	INITIAL		
SAMPLE	SITE ID	ANALYTE	SAMPLE	RESULT	SPIKED AMOUNT	%RECOV
======	==============================	=======================================	======	======	=====	=======
-013	SB A3 14-16	PETROLEUM HYDROCARBONS	230	2	180	120
0.5		PETROLEUM HYDROCARBONS	200	2	190	110
BLANK 1	88IR012-MB1	PETROLEUM HYDROCARBONS	40	0.2 u	40	100
22		PETROLEUM HYDROCARBONS	38	0.2 u	40	95.8

ORGANICS DUPLICATE SPIKE REPORT 02/04/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01

WORK ORDI	SR: 2501-02-01		SPIKE#	1 SPIKE#2	2
SAMPLE	SITE ID	ANALYTE	\$RECOV		%DIFF
-013 BLANK 1	SB A3 14-16 88IR012-MB1	PETROLEUM HYDROCARBONS PETROLEUM HYDROCARBONS	===== 120 100	===== 110 95.8	13 4.2

ORGANICS METHOD BLANK DATA SUMMARY PAGE 02/04/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01

WORK ORDER. 2001-02-01					
SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	LIMIT
BLANK 10	======================================	PETROLEUM HYDROCARBONS	======= 1 u	===== MG/KG	=======================================
BLANK 1	88IR012-MB1	PETROLEUM HYDROCARBONS	0.2 u	MG/L	0.2

ORGANICS DATA SUMMARY REPORT 02/04/88

WESTON BATCH #: 8712-096

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01

WORK ORDE	R: 2501-02-01			REPORTINC	
SAMPLE ====== -010	SITE ID ====================================	ANALYTE ====================================	RESULT ====== 20	UNITS ===== MG/KG	LIMIT
-011	SB A1 6-8	PETROLEUM HYDROCARBONS	150000	MG/KG	1
-012	SB A1 2-4	PETROLEUM HYDROCARBONS	3	MG/KG	1
-013	SB A3 14-16	PETROLEUM HYDROCARBONS	2	MG/KG	1
-014	SB A4 4-6	PETROLEUM HYDROCARBONS	4600	MG/KG	1
-015	SB A4 12-14	PETROLEUM HYDROCARBONS	3	MG/KG	1
-016	FB	PETROLEUM HYDROCARBONS	0.2 u	MG/L	0

WESTEN Client: RFW Batch: 8712-007 Parameter: Petroleum Hydrocarbons SAMPLE -006 -007 -008 -008 MS -008 MSD BLANK

Black & Decker

CLIENT ID

TPF1-1

TPF3-1

TPF3-1

TPF3-1

TP HCIR BLANK

TPF1-1 DUP

RESULT

9.0 mg/kg

12.0 mg/kg

14.0 mg/kg

% RECOVERY

112%

167%

<1

DILUTION

1:10

1:10

CYANIDE ANALYSIS RESULTS: SOIL SAMPLES

4178B

INORGANICS DATA SUMMARY REPORT 01/15/88

CLIENT: BLACK & DECKER

SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	REPORTING LIMIT
====== -016	===================== FB	CYANIDE, TOTAL	10.0 u	UG/L	10.0
-018	SB A7 2-4	CYANIDE, TOTAL	1.2 u	MG/KG	1.2
-020	SB E4 10-11	CYANIDE, TOTAL	1.2 u	MG/KG	1.2
-021	SB E1 4-6	CYANIDE, TOTAL	1.2 u	MG/KG	1.2
-022	SB E1 14-16	CYANIDE, TOTAL	1.2 u	MG/KG	1.2

INORGANICS DATA SUMMARY REPORT 01/15/88

CLIENT: BLACK & DECKER

WESTON BATCH #: 8712-090

SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	REPORTI
====== -023	SB E2 4-6	CYANIDE, TOTAL	1.1 . u	MG/KG	1
-024	SB E3 6-7	CYANIDE, TOTAL	1.2 u	MG/KG	1.2
-026	SB E5 8-10	CYANIDE, TOTAL	1.2 u	MG/KG	1
-027	SB E6 14-16	CYANIDE, TOTAL	1.2 u	MG/KG	1.

INORGANICS METHOD BLANK DATA SUMMARY PAGE 01/15/88

CLIENT: BLACK & DECKER

SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	REPORTING LIMIT
====== Blank	======================================	CYANIDE, TOTAL	10.0 u	ug/L	10.0
BLANK	88CN01D-MB	CYANIDE, TOTAL	10.0 u	UG/L	10.0
BLANK	88CN01A-MB	CYANIDE, TOTAL	10.0 u	UG/L	10.0
BLANK	88CN01B-MB	CYANIDE, TOTAL	10.0 u	UG/L	10.0

INORGANICS ACCURACY REPORT 01/15/88

WESTON BATCH #: 8712-0

CLIENT: BLACK & DECKER

SAMPLE	SITE ID	ANALYTE	SPIKED SAMPLE	INITIAL RESULT	SPIKED Amount	≴RE
		CYANIDE, TOTAL	====== 0.14	====== 1.2 u	11.9	1

INORGANICS PRECISION REPORT 01/15/88

CLIENT: BLACK & DECKER

			INITIAL	
SAMPLE	SITE ID	ANALYTE	RESULT	REPLICATE 🖇 DIFF
======	===================		=======	
-022REP	SB E1 14-16	CYANIDE, TOTAL	1.2 u	1.2 u NC

INORGANICS LABORATORY CONTROL STANDARDS REPORT 01/15/88

SAMPLE	SITE ID	ANALYTE ====================================	SPIKED SAMPLE ===== 25.9	SPIKED AMOUNT ===== 25.0	UNITS ====== UG/L	\$REC ==== 104
BLANK	88CN01E-MB	CYANIDE, TOTAL LCS	55.7	50.0	UG/L	111
BLANK 1	88CN01E-MB1		106	100	UG/L	106
BLANK2	88CN01E-MB2	CYANIDE, TOTAL LCS	24.2	25.0	UG/L	96
BLANK	88CN01D-MB	CYANIDE, TOTAL LCS	24.2 49.7	50.0	UG/L	99
BLANK 1	88CN01D-MB1	CYANIDE, TOTAL LCS	•	•	UG/L	96.
BLANK2	88CN01D-MB2	CYANIDE, TOTAL LCS	96.1	100	UG/L	91
BLANK	88CN01A-MB	CYANIDE, TOTAL LCS	22.8	25.0 50.0	UG/L	97.
BLANK 1	88CN01A-MB1	CYANIDE, TOTAL LCS	48.7	100	UG/L	74
BLANK2	88CN01A-MB2	CYANIDE, TOTAL LCS	74.7	25.0	UG/L	·
BLANK	88CN01B-MB	CYANIDE, TOTAL LCS	22.8	25.0	007 1	

EP-TOXICITY METALS ANALYSIS RESULTS: SOIL AND SEDIMENT SAMPLES

4178B

1700

· · ·

INORGANICS METHOD BLANK DATA SUMMARY PAGE 02/25/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30

SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	REPORTING LIMIT
======	=======================================				
BLANK 1	88I014-MB1	SILVER, TOTAL	2.0 u	MG/KG	2.0
		BARIUM, TOTAL	40.0 u	MG/KG	40.0
		CADMIUM, TOTAL	1.0 u	MG/KG	1.0
		CHROMIUM, TOTAL	2.0 u	MG/KG	2.0

88I119-MB1	SILVER, EP LEACHATE	500	u	UG/L	500
-	ARSENIC, EP LEACHATE	500	u	UG/L	500
	BARIUM, EP LEACHATE	1000	u	UG/L	1000
	CADMIUM, EP LEACHATE	100	u	UG/L	100
	CHROMIUM, EP LEACHATE	500	u	UG/L	500
	LEAD, EP LEACHATE	500	u	UG/L	500
	SELENIUM, EP LEACHATE	100	u	UG/L	100
88I119-MB2	SILVER, EP LEACHATE	500	u	UG/L	500
	ARSENIC, EP LEACHATE	500	u	UG/L	500
	BARIUM, EP LEACHATE	1000	u	UG/L	1000
	CADMIUM, EP LEACHATE	100	u	UG/L	100
	CHROMIUM, EP LEACHATE	500	u	UG/L	500
	- -	ARSENIC, EP LEACHATE BARIUM, EP LEACHATE CADMIUM, EP LEACHATE CHROMIUM, EP LEACHATE LEAD, EP LEACHATE SELENIUM, EP LEACHATE 881119-MB2 SILVER, EP LEACHATE ARSENIC, EP LEACHATE BARIUM, EP LEACHATE CADMIUM, EP LEACHATE	ARSENIC, EP LEACHATE500BARIUM, EP LEACHATE1000CADMIUM, EP LEACHATE100CHROMIUM, EP LEACHATE500LEAD, EP LEACHATE500SELENIUM, EP LEACHATE10088I119-MB2SILVER, EP LEACHATE500BARIUM, EP LEACHATE500BARIUM, EP LEACHATE500BARIUM, EP LEACHATE1000CADMIUM, EP LEACHATE1000CADMIUM, EP LEACHATE100	ARSENIC, EP LEACHATE500 uBARIUM, EP LEACHATE1000 uCADMIUM, EP LEACHATE100 uCHROMIUM, EP LEACHATE500 uLEAD, EP LEACHATE500 uSELENIUM, EP LEACHATE100 u88I119-MB2SILVER, EP LEACHATE500 uBARIUM, EP LEACHATE500 uBARIUM, EP LEACHATE500 uBARIUM, EP LEACHATE500 uBARIUM, EP LEACHATE100 uCADMIUM, EP LEACHATE1000 u	ARSENIC, EP LEACHATE500U UG/LBARIUM, EP LEACHATE1000U UG/LCADMIUM, EP LEACHATE100U UG/LCHROMIUM, EP LEACHATE500U UG/LLEAD, EP LEACHATE500U UG/LSELENIUM, EP LEACHATE100U UG/L88I119-MB2SILVER, EP LEACHATE500U UG/LARSENIC, EP LEACHATE500U UG/LBARIUM, EP LEACHATE500U UG/LCADMIUM, EP LEACHATE1000U UG/LBARIUM, EP LEACHATE1000U UG/LCADMIUM, EP LEACHATE1000U UG/L

INORGANICS METHOD BLANK DATA SUMMARY PAGE 02/25/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30 WESTON BATCH #: 8712-007

SAMPLE	SITE ID	ANALYTE	RESULT		UNITS	REPORTINC LIMIT
BLANK2	88I119-MB2	LEAD, EP LEACHATE Selenium, EP leachate	====== 500 100	== u u	UG/L UG/L UG/L	500 500
BLANK 1	88C21A-MB1	MERCURY, TOTAL	0.2	u	UG/L	0.

INORGANICS METHOD BLANK DATA SUMMARY PAGE 02/25/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30

WORK ORDE	R: 2501-02-01-30					REPORTING
SAMPLE	SITE ID	ANALYTE	RESUL	Г	UNITS	LIMIT
========			=====	===	======	========
BLANK 1	88I119-MB1	SILVER, EP LEACHATE	500	u	UG/L	500
DERMAN		ARSENIC, EP LEACHATE	500	u	UG/L	500
		BARIUM, EP LEACHATE	1000	u	UG/L	1000
		CADMIUM, EP LEACHATE	100	u	UG/L	100
		CHROMIUM, EP LEACHATE	500	u	UG/L	500
		LEAD, EP LEACHATE	500	u	UG/L	500
		SELENIUM, EP LEACHATE	100	u	UG/L	100
BLANK 2	88I119-MB2	SILVER, EP LEACHATE	500	u	UG/L	500
274533412 C		ARSENIC, EP LEACHATE	500	u	UG/L	500
		BARIUM, EP LEACHATE	1000	u	UG/L	1000

INORGANICS METHOD BLANK DATA SUMMARY PAGE 02/25/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30 WESTON BATCH #: 87

WORK ORDI	ER: 2501=02=01=50				REPORTIN
SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	LIMIT
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	======================================	MERCURY, TOTAL	0.2 u	UG/L	0.
BLANK 2	88C21A-MB2	MERCURY, TOTAL	0.2 u	UG/L	0.?

INORGANICS METHOD BLANK DATA SUMMARY PAGE 02/25/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30

WORK ORDI	ER: 2501-02-01-50					REPORTING
SAMPLE	SITE ID	ANALYTE	RESUL	T	UNITS	LIMIT
			=====	===	=====	===============
====== BLANK2	88I119-MB2	CADMIUM, EP LEACHATE	100	u	UG/L	100
DLANK Z	001119=122	CHROMIUM, EP LEACHATE	500	u	UG/L	500
		LEAD, EP LEACHATE	500	u	UG/L	500
	· ·	SELENIUM, EP LEACHATE	100	u	UG/L	100

INORGANICS METHOD BLANK DATA SUMMARY PAGE 02/25/88

WESTON BATCH #: 8712-007

WORK ORDE	R: 2501-02-01-30				REPORTIN(
SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	LIMIT
====== BLANK2	======================================	MERCURY, TOTAL	0.2 u	UG/L	0.7

CLIENT: BLACK & DECKER

INORGANICS ACCURACY REPORT 02/25/88

CLIENT:	BLACK	&	DECKER
WORK ORI	DER: 2	50°	1-02-01-30

WORK ORD	ER: 2501-02-01-30		SPIKED	INITIAL	SPIKED	
SAMPLE	SITE ID	ANALYTE	SAMPLE	RESULT	AMOUNT	\$RECOV
=======		===============================	======	=======	=====	======:
-021	EPTI OF TPB 5-1	SILVER, EP LEACHATE	37.6	500 u	50.0	75.2
021		ARSENIC, EP LEACHATE	1760	500 ι	2000	88.0
		BARIUM, EP LEACHATE	1910	1000 ເ	2000	95-4
		CADMIUM, EP LEACHATE	51.8	100 i	i 50.0	104
		CHROMIUM, EP LEACHATE	192	500 i	200	95.8
		MERCURY, EP LEACHATE	4.3	0.2 1	ı 5.0	86.9
		LEAD, EP LEACHATE	463	500 u	ı 500	92.5
		SELENIUM, EP LEACHATE	1840	100 1	1 2000 L	92.2
-024	EPTI OF TPB 2-1	MERCURY, EP LEACHATE	4.5	0.2	۶ . 0	90.2

INORGANICS ACCURACY REPORT 02/25/88

WESTON BATCH #: 8712-00

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30

WORK ORDI	SR: 2901-02 0: 90		SPIKED	INITIAL		SPIKED	
SAMPLE	SITE ID	ANALYTE	SAMPLE	RESULT		AMOUNT	%REC
		=======================================	======	======		==;====	====
=======	EPTI OF TPD 3-1	SILVER, EP LEACHATE	42.7	500	u	50.0	85."
-011	Erri or mb j :	ARSENIC, EP LEACHATE	1810	500	u	2000	90
		BARIUM, EP LEACHATE	1870	1000	u	2000	93
		CADMIUM, EP LEACHATE	50.1	100	u	50.0	100
		CHROMIUM, EP LEACHATE	193	500	u	200	96.
		MERCURY, EP LEACHATE	4.4	0.2	u	5.0	88
		LEAD, EP LEACHATE	466	500	u	500	93
		SELENIUM, EP LEACHATE	1860	264		2000	80.

INORGANICS PRECISION REPORT 02/25/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30

SAMPLE	SITE ID	ANALYTE	INITIAL RESULT	REPLICATE	% DIFF
=======			=======	=========	======
-011REP	EPTI OF TPD 3-1	SILVER, EP LEACHATE	500 u	500 u	NC
-0111121		ARSENIC, EP LEACHATE	500 ù	500 u	NC
		BARIUM, EP LEACHATE	1000 u	1000 u	NC
	•	CADMIUM, EP LEACHATE	100 u	100 u	NC
		CHROMIUM, EP LEACHATE	500 u	500 u	NC
		MERCURY, EP LEACHATE	0.2 u	0.2 u	NC
		LEAD, EP LEACHATE	500 u	500 u	NC
		SELENIUM, EP LEACHATE	264	155	52.2

INORGANICS PRECISION REPORT 02/25/88

WESTON BATCH #: 87

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30 INITIAL REPLICATE \$ DIFF RESULT ANALYTE SITE ID SAMPLE -----======= ================================ ====== NC 500 u 500 u SILVER, EP LEACHATE EPTI OF TPB 5-1 -021REP 500 NC u 500 ARSENIC, EP LEACHATE u NC 1000 u BARIUM, EP LEACHATE 1000 u NC 100 u CADMIUM, EP LEACHATE 100 u NC 500 500 u u CHROMIUM, EP LEACHATE NC 0.2 u 0.2 u MERCURY, EP LEACHATE NC 500 u 500 u LEAD, EP LEACHATE 100 u NC 100 u SELENIUM, EP LEACHATE NC 0.2 u 0.2 u

MERCURY, EP LEACHATE

EPTI OF TPB 2-1 -024REP

INORGANICS LABORATORY CONTROL STANDARDS REPORT 02/25/88

.

	SAMPLE ===== LCS1	SITE ID ====================================	ANALYTE SILVER, LCS BARIUM, LCS CADMIUM, LCS CHROMIUM, LCS	SPIKED SAMPLE ===== 34.9 1950 46.6 182	AMOUNT	MG/KG	\$RECOV ===== 87.3 97.6 93.2 91.0
]	LCS2	88I014-LC2	SILVER, LCS BARIUM, LCS CADMIUM, LCS CHROMIUM, LCS	36.1 2040 49.7 195	40.0 2000 50.0 200	MG/KG	90.3 102 99.5 97.3
	LCS1	88A013-LC1	ARSENIC, LCS LEAD, LCS SELENIUM, LCS	5.7 5.8 6.0		MG/KG MG/KG MG/KG	94.7 96.3 101
	LCS2	88A013-LC2	ARSENIC, LCS LEAD, LCS SELENIUM, LCS	5.7 5.6 5.7	6.0 6.0 6.0		95.3 93.3 94.3
	LCS1	88C05B-LC1	MERCURY, LCS	2.0	2.0	UG/L	101
	LCS2	88C05B-LC2	MERCURY, LCS	2.0	2.0	UG/L	97.8
	LCS1	88I012-LC1	SILVER, LCS BÀRIUM, LCS CADMIUM, LCS CHROMIUM, LCS	166 9830 246 1030	200 10000 250 1000	UG/L UG/L UG/L UG/L	83.1 98.3 98.2 103
	LCS2	88I012-LC2	SILVER, LCS BARIUM, LCS CADMIUM, LCS CHROMIUM, LCS	167 9890 245 1030	200 10000 250 1000	UG/L UG/L UG/L UG/L	83.7 98.9 98.2 103
	LCS1	88A011-LC1	ARSENIC, LCS LEAD, LCS SELENIUM, LCS	24.5 29.9 27.0	-	UG/L UG/L UG/L	81.7 99.7 90.0
	LCS2	88A011-LC2	ARSENIC, LCS LEAD, LCS SELENIUM, LCS	27.3 27.9 26.6	30.0 30.0 30.0		91.0 93.0 88.7

INORGANICS LABORATORY CONTROL STANDARDS REPORT 02/25/88

			SPIKED	SPIKED	UNITS	% RECO
SAMPLE	SITE ID	ANALYTE	SAMPLE	AMOUNT	UNIIS	
======	=======================================		======	===== 2.0	UG/L	99
LCS1	88C07C-LC1	MERCURY, LCS	2.0	2.0	00/1	22
LCS2	88C07C-LC2	MERCURY, LCS	1.9	2.0	UG/L	94
LCS1	88I119-LC1	SILVER, LCS	185	200	UG/L	92
1091	001119-201	ARSENIC, LCS	9560	10000	UG/L	95.
		BARIUM, LCS	9200	10000	UG/L	92
		CADMIUM, LCS	229	250	UG/L	91
		CHROMIUM, LCS	941	1000	UG/L	94-1
		LEAD, LCS	2350	2500	UG/L	93
		SELENIUM, LCS	9490	10000	UG/L	94
1	POT440 100	SILVER, LCS	166	200	UG/L	83.
LCS2	88I119-LC2	ARSENIC, LCS	9460	10000	UG/L	94
		BARIUM, LCS	9220	10000	UG/L	92
		CADMIUM, LCS	223	250	UG/L	89.7
		CHROMIUM, LCS	934	1000	UG/L	93
		LEAD, LCS	2320	2500	UG/L	93
		SELENIUM, LCS	9420	10000	UG/L	94.2
LCS1	88C21A-LC1	MERCURY, LCS	2.2	2.0	UG/L	
LCS2	88C21A-LC2	MERCURY, LCS	2.2	2.0	UG/L	108
LCS3	88C21A-LC3	MERCURY, LCS	2.1	2.0	UG/L	105

INORGANICS DUPLICATE SPIKE REPORT 02/25/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30

ľ

WORK ORDI	SR: 2501-02-01-50		SPIKE#	SPIKE#2	2
SAMPLE	SITE ID	ANALYTE	\$RECOV	%RECOV	\$DIFF
3222222		===============================	======	=====	=====
LCS2	881014-LC2	SILVER, LCS		90.3	3-4
LODL		BARIUM, LCS	97.6	102	4.6
		CADMIUM, LCS	93.2	99.5	6.5
		CHROMIUM, LCS	91.0		
LCS2	88A013-LC2	ARSENIC, LCS	94.7		0.69
2002		LEAD, LCS	96.3		
		SELENIUM, LCS	101	94.3	6.5
LCS2	88C05B-LC2	MERCURY, LCS	101	97.8	2.9
LCS2	881012-LC2	SILVER, LCS	83.1		
DODE		BARIUM, LCS	98.3		
		CADMIUM, LCS	98.2	98.2	
		CHROMIUM, LCS	103	103	0.17
LCS2	88A011-LC2	ARSENIC, LCS	81.7		10.8
2002		LEAD, LCS	99.7		6.9
		SELENIUM, LCS	90.0		1.5
LCS2	88C07C-LC2	MERCURY, LCS	99.7		
LCS2	88I119-LC2	SILVER, LCS	92.3		10.7
	-	ARSENIC, LCS	95.6		1.1
		BARIUM, LCS	92.0	92.2	0.21
		CADMIUM, LCS	91.5		
		CHROMIUM, LCS	94.1	93.4	0.74
		LEAD, LCS	93.9		1.0
-		SELENIUM, LCS	94.9	94.2	0.77
LCS2	88C21A-LC2	MERCURY, LCS	108	108	0.0

INORGANICS DUPLICATE SPIKE REPORT 02/25/88

WESTON BATCH #: 8712-00

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30

WORK ORDE	SR: 2501-02-01-30		SPIKE	1 SPIKE#	2
SAMPLE	SITE ID	ANALYTE		% RECOV	
=======			=====	=====	======
LCS2	881014-LC2	SILVER, LCS	87.3	90.3	3.4
1052	•••••	BARIUM, LCS	97.6	102	4.6
		CADMIUM, LCS	93.2	99.5	
		CHROMIUM, LCS	91.0	97.3	
LCS2	88A013-LC2	ARSENIC, LCS	94.7	95.3	
	-	LEAD, LCS	96.3	93.3	
		SELENIUM, LCS	101		
LCS2	88C05B-LC2	MERCURY, LCS	101		
LCS2	88I012-LC2	SILVER, LCS		83.7	
		BARIUM, LCS		98.9	
		CADMIUM, LCS	-	98.2	
		CHROMIUM, LCS	103	103	
LCS2	88A011-LC2	ARSENIC, LCS	81.7	-	
		LEAD, LCS		93.0	
		SELENIUM, LCS	90.0		
LCS2	88I119-LC2	SILVER, LCS	92.3		
		ARSENIC, LCS	95.6		
		BARIUM, LCS	92.0		
		CADMIUM, LCS	91.5		
		CHROMIUM, LCS	94.1		
		LEAD, LCS		93.0	
		SELENIUM, LCS	94.9	94.2	0.77
LCS2	88C21A-LC2	MERCURY, LCS	108	108	0.0

.

. .

INORGANICS DATA SUMMARY REPORT 02/25/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30

	SITE ID	ANALYTE	RESULT		UNITS	REPORTING LIMIT
======	=======================================	=========================	=====	= =	=====	=======
-011	EPTI OF TPD 3-1	SILVER, EP LEACHATE	500	u	UG/L	500
011		ARSENIC, EP LEACHATE	500	u	UG/L	500
		BARIUM, EP LEACHATE	1000	u	UG/L	1000
		CADMIUM, EP LEACHATE	100		UG/L	
		CHROMIUM, EP LEACHATE	500	u	UG/L	500
		MERCURY, EP LEACHATE	0.2	u	UG/L	0.2
		LEAD, EP LEACHATE	500	u	UG/L	500
		SELENIUM, EP LEACHATE	264		UG/L	100
-012	EPTI OF TPD 3-1 DUP	SILVER, EP LEACHATE	500	u	UG/L	500
-012		ARSENIC, EP LEACHATE	500	u	UG/L	500
		BARIUM, EP LEACHATE	1000	u	UG/L	1000
		CADMIUM, EP LEACHATE	100	u	UG/L	100
		CHROMIUM, EP LEACHATE	500	u	UG/L	500
		MERCURY, EP LEACHATE	0.2	u	UG/L	0.2
		LEAD, EP LEACHATE	500	u	UG/L	500
		SELENIUM, EP LEACHATE	100	u	UG/L	100
-013	EPTI OF TPD4-1 MSMSD	SILVER, EP LEACHATE	500	u	UG/L	500
		ARSENIC, EP LEACHATE	500	u	UG/L	500
		BARIUM, EP LEACHATE	1000	u	UG/L	1000
		CADMIUM, EP LEACHATE	100	u	UG/L	100
		CHROMIUM, EP LEACHATE	500	u	UG/L	500
		MERCURY, EP LEACHATE	0.2	u	UG/L	0.2
		LEAD, EP LEACHATE	500	u	UG/L	500
		SELENIUM, EP LEACHATE	100	u	UG/L	100

INORGANICS DATA SUMMARY REPORT 02/25/88

WESTON	BATCH	#:

CITENT. B	LACK & DECKER		WEST	ON	BATCH #:	87 12-997
WORK ORDE	R: 2501-02-01-30					REPORTI
CANDIR	SITE ID	ANALYTE	RESULT		UNITS	LIMIT
SAMPLE			======		=====	========
====== -014	EPTI OF TPC1-1	SILVER, EP LEACHATE	500		UG/L	500
-014		ARSENIC, EP LEACHATE	500		UG/L	500
		BARIUM, EP LEACHATE	1000		UG/L	1000
		CADMIUM, EP LEACHATE	100		UG/L	100
		CHROMIUM, EP LEACHATE	500		UG/L	500
		MERCURY, EP LEACHATE	0.2		UG/L	0.0
		LEAD, EP LEACHATE	500	u	UG/L	500
. •		SELENIUM, EP LEACHATE	121		UG/L	100
-015	EPTI OF AREA C-SED	SILVER, EP LEACHATE	500		UG/L	500
-015		ARSENIC, EP LEACHATE	500		UG/L	500
		BARIUM, EP LEACHATE	1000	_	UG/L	1000
		CADMIUM, EP LEACHATE	100		UG/L	100
		CHROMIUM, EP LEACHATE	500		UG/L	500
		MERCURY, EP LEACHATE	0.2		UG/L	0
		LEAD, EP LEACHATE	500		UG/L	500
		SELENIUM, EP LEACHATE	100	u	UG/L	100
	EPTI OF TPC 2-1	SILVER, EP LEACHATE	500	u	UG/L	500
-016	EPII OF IFC 2-1	ARSENIC, EP LEACHATE	500	u	UG/L	6 00
		BARIUM, EP LEACHATE	1000	u	UG/L	0
		CADMIUM, EP LEACHATE	100	u	UG/L	100
		CHROMIUM, EP LEACHATE	500	u	UG/L	500
		MERCURY, EP LEACHATE	0.2	u	UG/L	0
		LEAD, EP LEACHATE	500	u	UG/L	500
		SELENIUM, EP LEACHATE	100	u	UG/L	100
-017	EPTI OF TPC3-1 MSMSD	SILVER, EP LEACHATE	500	u	UG/L	500
-011		ARSENIC, EP LEACHATE	500	u	UG/L	500
		BARIUM, EP LEACHATE	1000	u	UG/L	1000
		CADMIUM, EP LEACHATE	100	u	UG/L	100
		CHROMIUM, EP LEACHATE	500	u	UG/L	500
		MERCURY, EP LEACHATE	0.2	u	UG/L	0.7
		LEAD, EP LEACHATE	500	u	UG/L	500
		SELENIUM, EP LEACHATE	100	u	UG/L	100

INORGANICS DATA SUMMARY REPORT 02/25/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30

WORK ORDI	ER: 2501-02-01-30					REPORTING
SAMPLE	SITE ID	ANALYTE	RESULT		UNITS	LIMIT
=======		==========================	======	= =		========
-018	EPTI OF TPC 4-1 DUP	SILVER, EP LEACHATE	500	u		500
010		ARSENIC, EP LEACHATE	500	u	UG/L	500
		BARIUM, EP LEACHATE	1000	u	UG/L	1000
		CADMIUM, EP LEACHATE	100	u	UG/L	100
		CHROMIUM, EP LEACHATE	500	u	UG/L	500
		MERCURY, EP LEACHATE	0.2	u	UG/L	0.2
		LEAD, EP LEACHATE	500	u	UG/L	500
		SELENIUM, EP LEACHATE	100	u	UG/L	100
-019	EPTI OF TPB 4-1	SILVER, EP LEACHATE	500	u	UG/L	500
		ARSENIC, EP LEACHATE	500	u		500
		BARIUM, EP LEACHATE	1000	u		1000
		CADMIUM, EP LEACHATE	100	u		100
		CHROMIUM, EP LEACHATE	500	u		500
		MERCURY, EP LEACHATE	0.2		UG/L	0.2
		LEAD, EP LEACHATE	500	u	UG/L	500
		SELENIUM, EP LEACHATE	116		UG/L	100
-020	EPTI OF TPB3-1 DUP	SILVER, EP LEACHATE	500	u	UG/L	500
		ARSENIC, EP LEACHATE	500	u		500
		BARIUM, EP LEACHATE	1000	u	UG/L	1000
		CADMIUM, EP LEACHATE	100	u	UG/L	100
		CHROMIUM, EP LEACHATE	500	u		500
		MERCURY, EP LEACHATE	0.2	u	UG/L	0.2
		LEAD, EP LEACHATE	500	u	UG/L	500
		SELENIUM, EP LEACHATE	100	u	UG/L	100
-021	EPTI OF TPB 5-1	SILVER, EP LEACHATE	500	u	UG/L	500
•=•		ARSENIC, EP LEACHATE	500	u	UG/L	500
		BARIUM, EP LEACHATE	1000	u	UG/L	1000
		CADMIUM, EP LEACHATE	100	u	UG/L	100
		CHROMIUM, EP LEACHATE	500		UG/L	500
		MERCURY, EP LEACHATE	0.2	u	UG/L	0.2
		LEAD, EP LEACHATE	500	u	UG/L	500
		SELENIUM, EP LEACHATE	100	u	UG/L	100

INORGANICS DATA SUMMARY REPORT 02/25/88

WESTON BATCH #: 87

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30

WORK ORDE	R: 2501-02-01-30					REPORTI
SAMPLE	SITE ID	ANALYTE	RESULT		UNITS	LIMIT
		=======================================	=====	= =	======	=======
-022	EPTI OF TPD 1-1	SILVER, EP LEACHATE	500	u		500
-022		ARSENIC, EP LEACHATE	500	u	UG/L	500
		BARIUM, EP LEACHATE	1000	u	UG/L	1000
		CADMIUM, EP LEACHATE	100	<u>ˈ</u> u		100
		CHROMIUM, EP LEACHATE	500	u		500
		MERCURY, EP LEACHATE	0.2	u		0.2
		LEAD, EP LEACHATE	500	u	UG/L	500
		SELENIUM, EP LEACHATE	100	u	UG/L	100
-023	EPTI OF TPD 2-1	SILVER, EP LEACHATE	500	u	UG/L	500
-025		ARSENIC, EP LEACHATE	500	u	UG/L	500
		BARIUM, EP LEACHATE	1000	u	UG/L	1000
		CADMIUM, EP LEACHATE	100	u	UG/L	100
		CHROMIUM, EP LEACHATE	500	u	UG/L	500
		MERCURY, EP LEACHATE	0.2	u	UG/L	0
		LEAD, EP LEACHATE	500	u	UG/L	500
		SELENIUM, EP LEACHATE	100	u	UG/L	100
-024	EPTI OF TPB 2-1	SILVER, EP LEACHATE	500	u	UG/L	500
-024		ARSENIC, EP LEACHATE	500	u	UG/L	500
		BARIUM, EP LEACHATE	1000	u	UG/L	0.0
		CADMIUM, EP LEACHATE	100	.u	UG/L	0
		CHROMIUM, EP LEACHATE	500	u,	UG/L	500
		MERCURY, EP LEACHATE	0.2			0
	•	LEAD, EP LEACHATE	500	u		500
		SELENIUM, EP LEACHATE	100	u	UG/L	100

INORGANICS METHOD BLANK DATA SUMMARY PAGE 02/23/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30

WESTON BATCH #: 8712-102

SAMPLE	SITE ID	ANALYTE ====================================	RESUL'		UNITS	REPORTING LIMIT
BLANK 1	88I119-MB1	SILVER, EP LEACHATE	500	u	UG/L	500
Dennit		ARSENIC, EP LEACHATE	500	u	UG/L	500
		BARIUM, EP LEACHATE	1000	u	UG/L	1000
		CADMIUM, EP LEACHATE	100	u	UG/L	100
		CHROMIUM, EP LEACHATE	500	u	UG/L	500
		LEAD, EP LEACHATE	500	u	UG/L	500
		SELENIUM, EP LEACHATE	100	u	UG/L	100
BLANK 2	88I119-MB2	SILVER, EP LEACHATE	500	u	UG/L	500
		ARSENIC, EP LEACHATE	500	u	UG/L	500
		BARIUM, EP LEACHATE	1000	u	UG/L	1000
		CADMIUM, EP LEACHATE	100	u	UG/L	100
		CHROMIUM, EP LEACHATE	500	u	UG/L	500
		LEAD, EP LEACHATE	500	u	UG/L	500
		SELENIUM, EP LEACHATE	100	u	UG/L	100

INORGANICS METHOD BLANK DATA SUMMARY PAGE 02/23/88

WESTON BATCH #: 8712-102

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30

REPORTING RESULT UNITS LIMIT

SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	LIMIT
		MERCURY, TOTAL	0.2 u	 UG/L	0.2

INORGANICS ACCURACY REPORT 02/23/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30

•

WESTON BATCH #: 8712-102

.

.

WORK ORD	ER: 2501-02-01-50		SPIKED	INITIAL	SPIKED	
SAMPLE	SITE ID	ANALYTE	SAMPLE	RESULT	AMOUNT	SRECOV
========		=======================================	======	======	=====	======
-019	EPTI OF EL 1 DUP	SILVER, EP LEACHATE	32.2	. 500 u	50.0	64.4
-019	2	ARSENIC, EP LEACHATE	1850	500 u	2000	92.5
		BARIUM, EP LEACHATE	3960	2000	2000	98.2
		CADMIUM, EP LEACHATE	55.4	100 u	50.0	111
		CHROMIUM, EP LEACHATE	199	500 u	200	99.7
		MERCURY, EP LEACHATE	4.2	0.2 u	5.0	84.1
		LEAD, EP LEACHATE	513	500 u	500	103
		SELENIUM, EP LEACHATE	1780	100 u	2000	88.9
-021	EPTI OF EL 1 SED DUP		3.8	0.2 u	5.0	75.5

INORGANICS PRECISION REPORT 02/23/88

WESTON BATCH #: 8712-102

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30

SAMPLE	SITE ID	ANALYTE	INITIAL RESULT	REPLICATE	\$ DIFF
=====		=================================	=======	========	======
-019REP	EPTI OF EL 1 DUP	SILVER, EP LEACHATE	500 u	500 u	NC
-019ABI		ARSENIC, EP LEACHATE	500 u	500 u	NC
		BARIUM, EP LEACHATE	2000	2070	3.3
		CADMIUM, EP LEACHATE	100 u	100 u	NC
		CHROMIUM, EP LEACHATE	500 u	500 u	NC
		MERCURY, EP LEACHATE	0.2 u	0.2 u	NC
		LEAD, EP LEACHATE	500 u	500 u	NC
		SELENIUM, EP LEACHATE	100 u	100 u	NC
-021REP	EPTI OF EL 1 SED DUP	MERCURY, EP LEACHATE	0.2 u	0.2 u	NC

INORGANICS LABORATORY CONTROL STANDARDS REPORT 02/23/88

		STWE ID	ANALYTE	SPIKED SAMPLE	SPIKED AMOUNT	UNITS	≸RECOV
	SAMPLE	SITE ID			======	=====	======
	====== LCS1	88C08A-LC1	MERCURY, LCS	2.0	2.0	UG/L	101
	LCS2	88C08A-LC2	MERCURY, LCS	2.0	2.0	UG/L	101
_	LCS1	88I119-LC1	SILVER, LCS	185	200	UG/L	92.3
	2001		ARSENIC, LCS	9560	10000	UG/L	95.6
			BARIUM, LCS	9200	10000	UG/L	92.0
			CADMIUM, LCS	229	250	UG/L	91.5
			CHROMIUM, LCS	941	1000	UG/L	94.1
			LEAD, LCS	2350	2500	UG/L	93.9
			SELENIUM, LCS	9490	10000	UG/L	94.9
	LCS2	88I119-LC2	SILVER, LCS	166	200	UG/L	83.0
-			ARSENIC, LCS	9460	10000	UG/L	94.6
			BARIUM, LCS	9220	10000	UG/L	92.2
			CADMIUM, LCS	223	250	UG/L	89.3
.			CHROMIUM, LCS	934	1000	UG/L	93.4
			LEAD, LCS	2320	2500	UG/L	93.0
			SELENIUM, LCS	9420	10000	UG/L	94.2
	LCS1	88C22A-LC1	MERCURY, LCS	2.0	2.0	UG/L	100
	LCS2	88C22A-LC2	MERCURY, LCS	2.0	2.0	UG/L	100

INORGANICS DATA SUMMARY REPORT 02/23/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30 WESTON BATCH #: 8712-102

WORK ORDE	IR: 2501-02-01-50				REPORTINC
SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	LIMIT
======			=======	======	
-018	EPTI OF EL1	SILVER, EP LEACHATE	500 u	UG/L	500
		ARSENIC, EP LEACHATE	500 u	UG/L	500 💼
		BARIUM, EP LEACHATE	1720	UG/L	1000
		CADMIUM, EP LEACHATE	100 u	UG/L	100
		CHROMIUM, EP LEACHATE	500 u	UG/L	500 🕳
		MERCURY, EP LEACHATE	0.2 u	UG/L	0.
		LEAD, EP LEACHATE	500 u	UG/L	500 📟
		SELENIUM, EP LEACHATE	100 u	UG/L	100
-019	EPTI OF EL 1 DUP	SILVER, EP LEACHATE	500 u	UG/L	500
-		ARSENIC, EP LEACHATE	500 u	UG/L	500
		BARIUM, EP LEACHATE	2000	UG/L	1000
		CADMIUM, EP LEACHATE	100 u	UG/L	100
		CHROMIUM, EP LEACHATE	500 u	UG/L	500
		MERCURY, EP LEACHATE	0.2 u	UG/L	0
		LEAD, EP LEACHATE	500 u	UG/L	500
		SELENIUM, EP LEACHATE	100 u	UG/L	100 🛲
-020	EL 1 SED	SILVER, EP LEACHATE	500 u	UG/L	
		ARSENIC, EP LEACHATE	500 u	UG/L	
		BARIUM, EP LEACHATE	1490	UG/L	1000
		CADMIUM, EP LEACHATE	100 u	UG/L	100 👝
		CHROMIUM, EP LEACHATE	500 u	UG/L	500
		MERCURY, EP LEACHATE	0.2 u	UG/L	0.2
		LEAD, EP LEACHATE	500 u	UG/L	500
		SELENIUM, EP LEACHATE	100 u	UG/L	100
-021	EPTI OF EL 1 SED DUP	SILVER, EP LEACHATE	500 u	UG/L	500
		ARSENIC, EP LEACHATE	500 u	UG/L	500 💼
		BARIUM, EP LEACHATE	1760	UG/L	1000
		CADMIUM, EP LEACHATE	100 u	UG/L	100
		CHROMIUM, EP LEACHATE	500 u	UG/L	500 👝
		MERCURY, EP LEACHATE	0.2 u	UG/L	0.
		LEAD, EP LEACHATE	500 u	UG/L	500 🛲
		SELENIUM, EP LEACHATE	100 u	UG/L	100

INORGANICS DATA SUMMARY REPORT 02/23/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30

WESTON BATCH #: 8712-102

_	WORK ORDI	ER: 2501-02-01-30				REPORTING
	SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	LIMIT
	======					
	-022	EPTI OF EL 2 SED	SILVER, EP LEACHATE	•	UG/L	500
	ULL		ARSENIC, EP LEACHATE		UG/L	500
			BARIUM, EP LEACHATE		UG/L	1000
			CADMIUM, EP LEACHATE		UG/L	100
-			CHROMIUM, EP LEACHATE		UG/L	500
			MERCURY, EP LEACHATE	0.2 u		0.2
			LEAD, EP LEACHATE		UG/L	500
-			SELENIUM, EP LEACHATE	100 u	UG/L	100
	-023	EPTI EL 3 SED	SILVER, EP LEACHATE	-	UG/L	500
			ARSENIC, EP LEACHATE	••••	UG/L	500
	·		BARIUM, EP LEACHATE	1000 u	UG/L	1000
			CADMIUM, EP LEACHATE	100 u	UG/L	100
			CHROMIUM, EP LEACHATE		UG/L	500
_			MERCURY, EP LEACHATE	0.2 u		0.2
			LEAD, EP LEACHATE	• • • •	UG/L	500
			SELENIUM, EP LEACHATE	100 u	UG/L	100
	-024	EL 4 SED	SILVER, EP LEACHATE		UG/L	500
			ARSENIC, EP LEACHATE		UG/L	500
			BARIUM, EP LEACHATE	1000 ປ	UG/L	1000
-			CADMIUM, EP LEACHATE	100 ບ	UG/L	100
			CHROMIUM, EP LEACHATE		UG/L	500
			MERCURY, EP LEACHATE	0.2 u		0.2
			LEAD, EP LEACHATE		UG/L	500
			SELENIUM, EP LEACHATE	100 u	UG/L	100
	-025	EPTI WL 1 SED	SILVER, EP LEACHATE		UG/L	500
			ARSENIC, EP LEACHATE	500 u	UG/L	500
			BARIUM, EP LEACHATE	2380	UG/L	1000
			CADMIUM, EP LEACHATE		UG/L	100
			CHROMIUM, EP LEACHATE	-	UG/L	500
			MERCURY, EP LEACHATE	0 . 2 ι	UG/L	0.2
			LEAD, EP LEACHATE	500 v	UG/L	500
			SELENIUM, EP LEACHATE	100 u	u UG/L	100.

INORGANICS DATA SUMMARY REPORT 02/23/88

WESTON BATCH #: 8712-102

1

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-30

WORK ORDE	R: 2501-02-01-30					REPORTINC
SAMPLE	SITE ID	ANALYTE	RESULT		UNITS	LIMIT
======		=======================================	======	= =	=====	
-026	EPTI WL 2 SED	SILVER, EP LEACHATE	500	u	UG/L	500
-020		ARSENIC, EP LEACHATE	500	u	UG/L	500
		BARIUM, EP LEACHATE	1180		UG/L	1000
		CADMIUM, EP LEACHATE	100	u	UG/L	100
		CHROMIUM, EP LEACHATE	500	u	UG/L	500 👝
		MERCURY, EP LEACHATE	0.2	u	UG/L	0
		LEAD, EP LEACHATE	500	u	UG/L	500 📟
		SELENIUM, EP LEACHATE	100	u	UG/L	100
		·				
-027	EPTI OF WL 3 SED	SILVER, EP LEACHATE	500	u	UG/L	500
		ARSENIC, EP LEACHATE	500	u	UG/L	500
		BARIUM, EP LEACHATE	1560		UG/L	1000 💼
		CADMIUM, EP LEACHATE	100	u	UG/L	100
		CHROMIUM, EP LEACHATE	500	u	UG/L	500 🗖
		MERCURY, EP LEACHATE	0.2	u	UG/L	<u>ن</u> 0
		LEAD, EP LEACHATE	500	u	UG/L	500
		SELENIUM, EP LEACHATE	100	u	UG/L	100 🛲
		·				
-028	EPTI OF WL 4 SED	SILVER, EP LEACHATE	500	u	UG/L	
•=•		ARSENIC, EP LEACHATE	500	u	UG/L	0
		BARIUM, EP LEACHATE	9190		UG/L	1000
		CADMIUM, EP LEACHATE	100	u	UG/L	100
		CHROMIUM, EP LEACHATE	500	u	UG/L	500
		MERCURY, EP LEACHATE	0.2	u	UG/L	0.2
		LEAD, EP LEACHATE	500	u	UG/L	500
		SELENIUM, EP LEACHATE	100	u	UG/L	100

METALS ANALYSIS RESULTS: SURFACE-WATER AND SEDIMENT SAMPLES

4178B

.

001 Dece Jan 29, 1988

> Lab IV No. 8712-102-009

COVER PAGE INORGANIC ANALYSES DATA PACKAGE

Lab Rame	Roy	F. Weston,	Inc.
SON No.			

Sam	ple Numbers
Lab ID No.	EPA No.
8712-102-001	WLI .

and the second sec			the second s
ELI due MS/MSJ	8712-102-002	WLI sed	8712-102-010
ELI Sed	\$712-102-003	WL2 sed	8712-102-011
ELI Sed due ms/msu	8712-102-004	WL3 sed	8712-102-012
<u>EL2</u>	8712-102-005	WL4 sed	8712-102-013
EL2 sed	8712-102-006	WLE Pipe	8712-2014
EL3 sel	8712-102-007	WLW Pipe	8712-102-015
EL4 sed	8712-102-008	LFB	8712-102-016

Comments:

EPA No.

ELI

Sampler Resided 12-22-871

If yes, corrections applied before X or after generation of raw data. Footnotes: NR - Not required by contract at this time Form I: Value - If the result is a value greater than or equal to the instrument detection limit but less than the contract-required detection limit, report the value in brackets (i.e., [10]). Indicate the analytical method used with P (for 1CP), A (for Flame AA) or F (for Furnace AA). 1. - Indicates element was analyzed for but not detected. Report with the instrument detection limit value (e.g., 100). E - Indicates a value estimated or not reported due to the presence of interference. Explanatory note included on cover page.

- S. Indicates value determined by Hethod of Standard Addition.
- N Indicates spike sample recovery is not within control limits.
 * Indicates duplicate analysis is not within control limits.
- + Indicates the correlation cuefficient for method of standard addition is less than 0.995
- M Indicates duplicate injection results exceeded control limits.

Indicate method used: Y for ICP; A for Flame AA and F for Furnace.

			002
		Form	<u>I</u>
Sample Manag P.O. Box 818	tract Laboratory Pre ement Office - Alexandria, VA FTS: 8-557-2490	ogram 22313	EPA Sample No. EL1 EAST LAGOON
	INORGANIC A	NALYSIS	DATA SHEET
SOW No.	F. Weston Inc.		Case No Lab Receipt Date <u>12/22/87</u> QC Report No
Concentratio	n: Low		Medium
Matrix:	WATER		
Units: UG			
	n		13. Magnesium
	y73.1		14. Manganese
	[8.9]		
			16. Nickel <u>1470 P</u>
	um[3.6]		17. Potassium
	41.2		18. Selenium0.8 u F W
			19. Silver 3.4 u P
	n 1600		20. Sodium
			21. Thallium <u>1.8 u F</u> NW
10. Copper_		P	22. Vanadium
			23. Zino 5500 P
			Percent Solids (\$)
Pootnotes: 1	For reporting result as defined on Cover explaining results a must be explicit and	ts to El Page. are enco i contat	PA, standard result qualifiers are used Additional flags or footnotes buraged. Definition of such flags Lned on Cover Page, however.
Comments:	Sample des	<u> </u>	tron: green, opsgue
		<u></u>	
			Lab Manager 10 E. O. Lu

•

^

	Form 1	<u> </u>	
U.S. EPA Contract La Sample Management Of P.O. Box 818 - Alexa 703/557-2490 FTS: 8	fice andria, VA 22313	EPA Sample No EL1 DUP MS/MS Date <u>01/29/88</u>	D 1
	INORGANIC ANALYSIS	DATA SHEET	
Lab Name Roy F. West	con Inc.	Case No	
SOW No Lab Sample ID. No	8712 102-002	Lab Receipt Date <u>1</u> QC Report No	<u>2/22/87</u>
Lab Sample ID. No	ements Identified an	ad Measured	
Concentration:	Low	Medium	
Matrix: WATER			
Units: UG/L			
1. Aluminum		13. Magnesium	<u> </u>
2. Antimony	24.4 u P	14. Manganese	<u> </u>
3. Arsenic	[1.7] F	15. Mercury 2	.1 CV N
		16. Nickel164	<u> </u>
	[1.3] P	17. Potassium	
	1.8 u P	18. Selenium).8 u F
7. Calcium		19. Silver	3.4 u P
8. Chromium	16.2 P	20. Sodium	
9. Cobalt		21. Thallium1	.8 U FNW
10. Copper	<u>113 P</u>	22. Vanadium	<u> </u>
11. Iron		23. Zinc261	I <u>P</u>
12. Lead	63.6 FN	Percent Solids (\$)	
Cyanide			
as defi explain	ned on Cover Page. ing results are enco explicit and conta	PA, standard result qualifie Additional flags or footnot ouraged. Definition of such ined on Cover Page, however, tron: gran, open Lab Manager	tes n flags
		V	

		Form	1
S. EPA Contract ample Management 0. Box 818 - Ale 03/557-2490 FTS:	Office xandria, VA		EPA Sample No. EL1 SED BAST LAGOON Date <u>01/29/88</u>
	INORGANIC A	NALYSI	S DATA SHEET
ab Name <u>Roy F. We</u> SOW No ab Sample ID. No _E	·		
Concentration:	Low		Medium
iatrix: <u>SOIL</u>	····		
Units: MG/KG			
1. Aluminum			13. Magnesium
2. Antimony			14. Manganese
3. Arsenic	[4.6]	F	15. Mercury <u>1.8 CV</u>
4. Barium	1450	P	16. Nickel
5. Beryllium			17. Potassium
6. Cadmium	19.7	<u>P</u>	18. Selenium1.5_u_P
7. Calcium		<u> </u>	19. Silver5.9 a P N
8. Chromium	512	P	20. Sodium
9. Cobalt	<u></u>		21. Thallium
10. Copper			22. Vanadium
11. Iron	<u></u>		23. Zinc
	3770	F	Percent Solids (\$) 9.9
12. Lead			

Footnotes: For reporting results to EPA, standard result qualifiers are used as defined on Cover Page. Additional flags or footnotes explaining results are encouraged. Definition of such flags must be explicit and contained on Cover Page, however.

Comments: 5 ICP 1.16 L 1.055 AA le Same brown, escripton: d Lab Manager ゐ

U.S. EPA Contract Laboratory Progr Sample Management Office	EL2 SED DUP MS/MSD
P.O. Box 818 - Alexandria, VA 22 703/557-2490 FTS: 8-557-2490	313 I
	Date <u>01/29/88</u>
	YSIS DATA SHEET
Lab Name <u>Roy F. Weston Inc.</u> SOW No	Case No Lab Receipt Date_12/22/87
Lab Sample ID. No. 8712-102-004	QC Report No
Elements Identifi	ed and Measured
Concentration: Low	Medium
Matrix: SOIL	
Units: MG/KG	
1. Aluminum	13. Magnesium
2. Antimony	
3. Arsenic [3.7]	F 15. Mercury 0.92 C
4. Barium 1470	P 16. Nickel
5. Beryllium	17. Potassium
6. Cadmium13.3	<u>P</u> 18. Selenium 10.1
7. Calcium	19. Silver 4.4 u
8. Chromium 420	<u>P</u> 20. Sodium
9. Cobalt	
10. Copper	
11. Iron	23. Zinc
	F Percent Solids (\$) 13.9
Cyanide	

005

otnotes: For reporting results to EPA, standard result qualifiers are used as defined on Cover Page. Additional flags or footnotes explaining results are encouraged. Definition of such flags must be explicit and contained on Cover Page, however.

Comments: ⊁: (CP 1.115 10 AA gian. -ple descriptom: brown, s Lab Manager 4 2. U

				006
			Form	I
S. EPA Cor ample Manag .0. Box 818 03/557-2490	ement Offi - Alexand	ce ria, VA	-	EPA Sample No. EL2 Date <u>01/29/88</u>
	IN	ORGANIC A	NALYSIS	DATA SHEET
ab Name <u>Roy</u> OW No. <u></u> ab Sample I	D. No. 871	2-102-005	ified a	Case No. Lab Receipt Date <u>12/22/87</u> QC Report No nd <u>Measured</u>
oncentratic	n:	Low	<u>.</u>	Medium
atrix:	WATER			
Units: UG	L			
1. Aluminu	m			13. Magnesium
2. Antimon	y	24.4 1	<u>u P</u>	14. Manganese
3. Arsenic		[1.8]	F	15. Mercury1.8 CV N
4. Barium_	_		. <u> </u>	16. Nickel <u>697 P</u>
5. Berylli	um	[1.1]	<u>P</u>	17. Potassium
5. Cadmium		<u>1.8</u> ι	<u>1 P</u>	18. Selenium [0.9] F
7. Calcium				19. Silver 3.4 u P
8. Chromiu	<u>m</u>	31.5	<u>P</u>	20. Sodium
. Cobalt_		<u>-</u>		21. Thallium 1.8 u $F N W$
10. Copper_		117	<u>P</u>	22. Vanadium
11. Iron				23. Zinc 260 P
12. Lead	<u> </u>	126	<u> </u>	Percent Solids (\$)
Cyanide	·			
	as defined explaining must be exp	on Cover results a plicit and	Page. are enco i conta:	PA, standard result qualifiers are used Additional flags or footnotes ouraged. Definition of such flags ined on Cover Page, however.
	· · ·			
	<u> </u>			
				Lab Manager 10 L. Office

			Form	<u>I</u>
Samp P.O.	EPA Contract le Management Box 818 - Ale: 557-2490 FTS:	Office xandria, VA	-	EPA Sample No. EL2 SED BAST LAGOON
		INORGANIC AN	ALYSIS	DATA SHEET
SOW	Name <u>Roy F. We</u> No Sample ID. No E		<u>fied a</u>	Case No Lab Receipt Date_12/22/87 QC Report No nd Measured
Conc	entration:	Low		Medium
	ix: <u>SOIL</u> its: MG/KG Aluminum Antimony			13. Magnesium 14. Manganese
3.	Arsenic			15. Mercury2.7 u CV
4.	Barium	2950	P	16. Nickel
5.	Beryllium			17. Potassium
6.	Cadmium			18. Selenium <u>6.2 u F</u>
7.	Calcium			19. Silver 25.3 u P A
8.	Chromium	1180	<u>P</u>	20. Sodium
9.	Cobalt			21. Thallium
	Copper			22. Vanadium
11.	Iron			23. Zino
12.	Lead	4540	F	Percent Solids (\$) 2.4

1

Footnotes: For reporting results to EPA, standard result qualifiers are used as defined on Cover Page. Additional flags or footnotes explaining results are encouraged. Definition of such flags must be explicit and contained on Cover Page, however.

Comments: mal 1 cp +: 1.103 w gra HA 1.059 gram mple Lescriphon: brown. ε. Lab Manager

Form I

U.S. EPA Contract Laboratory Program Sample Management Office P.O. Box 818 - Alexandria, VA 22313 703/557-2490 FTS: 8-557-2490

EPA	Sample	No.
EL3	SED	
1		

300

Date 01/29/88

Lab Name <u>Roy F. W</u> SOW No Lab Sample ID. No	leston Inc.		Lab Receipt Date <u>12/22/87</u> QC Report No
Concentration:	Low		Medium
Matrix: <u>SOIL</u>			
Units: MG/KG			
1. Aluminum			13. Magnesium
2. Antimony	<u> </u>		14. Manganese
3. Arsenic	[3.3]	F	15. Mercury 0.93 u CV
4. Barium	[494]	P	16. Nickel
5. Beryllium			17. Potassium
6. Cadmium	[4.6]	<u>P</u>	18. Selenium <u>1.9 u F</u>
7. Calcium	· · · · · · · · · · · · · · · · · · ·		19. Silver <u>8.7 u P</u> N
8. Chromium	472		20. Sodium
9. Cobalt			
10. Copper			
11. Iron			23. Zinc
12. Lead	1830	F	Percent Solids (\$) 7.0
Cyanide			

Footnotes: For reporting results to EPA, standard result qualifiers are used as defined on Cover Page. Additional flags or footnotes explaining results are encouraged. Definition of such flags must be explicit and contained on Cover Page, however.

Comments: San 1,123 ICP An 1.234 -pl discription; brown Lab Manager

J.S. EPA Contract Laboratory Program Sample Management Office P.O. Box 818 - Alexandria, VA 22313 703/557-2490 FTS: 8-557-2490	EPA Sample No. EL4 SED EAST LAGOON
<u>INORGANIC ANALYSIS</u> Lab Name <u>Roy F. Weston Inc.</u> SOW No Lab Sample ID. No. <u>8712-102-008</u> <u>Elements Identified a</u>	Case No Lab Receipt Date <u>12/22/87</u> QC Report No
Concentration: Low	Medium
Matrix:	
Units: MG/KG	
1. Aluminum	13. Magnesium
2. Antimony	14. Manganese
3. Arsenic[3.2] F	15. Mercury 0.92 u CV
4. Barium <u>725 P</u>	
5. Beryllium	17. Potassium
6. Cadmium[9.7] P	
7. Calcium	19. Silver 8.9 u P
	20. Sodium
8. Chromium . 465 P	
	21. Thallium
8. Chromium . 465 P	
8. Chromium <u>465 P</u> 9. Cobalt	21. Thallium 22. Vanadium 23. Zinc
8. Chromium 465 P 9. Cobalt 10. Copper 10. Copper	22. Vanadium 23. Zinc

Ë

Comments:	Sample	weight:	ich	1.083	grammy
•••••			m	1.153	grommer
	Samale	Leveription:	b	com,	fine
			Tab b		10, 9. N/
			Lad r	lanager	e ejate
				(
					3

	Form	I
Sample Management	exandria, VA 22313	·
		Date <u>01/29/88</u>
Lab Name <u>Roy F. W</u>	INORGANIC ANALYSI: eston Inc.	<u>S DATA SHEET</u> Case No
SOW No.		Lab Receipt Date 12/22/87
Lab Sample ID. No	• <u> 8712-102-009</u> Elements Identified a	QC Report No
Concentration:	Low	Medium
Matrix:WATER		
Units: UG/L		
1. Aluminum		13. Magnesium
2. Antimony	24.4 u P	14. Manganese
3. Arsenic	[1.4] F	15. Mercury0.59 CV
		16. Nickel 40.6 P
	-	17. Potassium
6. Cadmium	<u>1.8 u P</u>	18. Selenium0.8 u F
7. Calcium		19. Silver 3.4 u P
8. Chromium	<u>17.1 P</u>	20. Sodium
9. Cobalt		21. Thallium 1.8 u F
10. Copper		22. Vanadium
11. Iron		23. Zinc 342 P
		Percent Solids (\$)
Cyanide	<u> </u>	
as der explain must be	ined on Cover Page. Ding results are enco explicit and contai	PA, standard result qualifiers are us Additional flags or footnotes buraged. Definition of such flags lned on Cover Page, however.
comments:	-gele Lescripho	n: colorless, clean
		Lab Manager 6 2. Uphen

•

0	1	1
---	---	---

EPA Sample No. WL1 SED Date 01/29/88 EET Case No. Lab Receipt Date 12/22/87 QC Report No
Case No Lab Receipt Date <u>12/22/87</u> QC Report No
fed1um
agnesium
anganese
ercury0.23_u_CV
ickel
otassium
elenium0.49 u F
ilver2.0 u PN
odium
hallium
anadium
inc
nt Solids (\$)

1.233 ground icp k: Comments: Sam AA Sample Jessig mon: brown, Ko E. O Lab Manager___ D

Form I

U.S. EPA Contract Laboratory Program Sample Management Office P.O. Box 818 - Alexandria, VA 22313 703/557-2490 FTS: 8-557-2490

EPA	Sample	No.	
WL2	SED		
1			

012_

1

Date 01/29/88

		INORGANIC A	NALYS:	S DATA SHBET
Lab	Name Roy F.	Weston Inc.		Case Jo
SOW	NO.	A 8712 102 011		Lab Receipt Date <u>12/22/87</u> QC Report No
Lao	Sampie ID. N	Elements Ident	1fied	and Measured
Conc	entration:	Low		Medium
Matr	ix: <u>SOIL</u>			
Un	its: MG/KG			
1.	Aluminum		`	13. Magnesium
2.	Antimony			14. Manganese
3.	Arsenic	[0.5]	F	15. Mercury 0.33 u CV
4.	Barium	646	<u>P</u>	16. Nickel
5.	Beryllium			17. Potassium
6.	Cadmium	1.6 1	<u>u P</u>	18. Selenium0.71 u_F
7.	Calcium			19. Silver
8.	Chromium	76.6	P	20. Sodium
9.	Cobalt			21. Thallium
10.	Copper			22. Vanadium
11.	Iron			23. Zino
12.	Lead	275	F	Percent Solids (\$) 19,9
Cya	nide			

Footnotes: For reporting results to EPA, standard result qualifiers are used as defined on Cover Page. Additional flags or footnotes explaining results are encouraged. Definition of such flags must be explicit and contained on Cover Page, however.

Comments: San L. بر ICP 1.129 متعر AA 1,124 Samp Jeseriphon: brown .01 Lab Manager

Samp P.O.	le Manag Box 818	ement Off	dria, VA	•			WL3 SE		•	
							Date <u>0</u>	1/29/88	-	
I o h	Name Por	<u>I</u>	NORGANIC A	NALYSIS	DATA S					
SOW	No.		on Inc.			Iah	No	Date 12		/ 08
Lab S	Sample I	υ. Νο. <u>σγ</u>	<u>12-102-012</u>			QC R	eport N	Date_12	:/ 22	/ 0/
		_Elem	ents Ident:	ified a	nd Meas	ured				
Conce	entration	1:	Low			Medium_				
Matri	ir: S									
"Uni	Lts: MG/	'KG								
1.	Aluminum				13. M	agnesiu	1			
3.	Arsenic_		[2.3]	 F	15. M	erqury		0.	•••	
			372		16. N	lokel		0.	<u>, , , ,</u>	1 0
					17 P		<u> </u>			
			0.48 u							
								0.:		
			17.7					0.		
					20. S	odium		<u> </u>		
	Iron				23. Z:					
12.	ide		86.0	<u>_</u> F	Percer	nt Solid	s (\$)	60.2		

Ĩ

Î

Lab Manager CoEOShe

Form I

U.S. EPA Contract Laboratory Program Sample Management Office P.O. Box 818 - Alexandria, VA 22313 703/557-2490 FTS: 8-557-2490

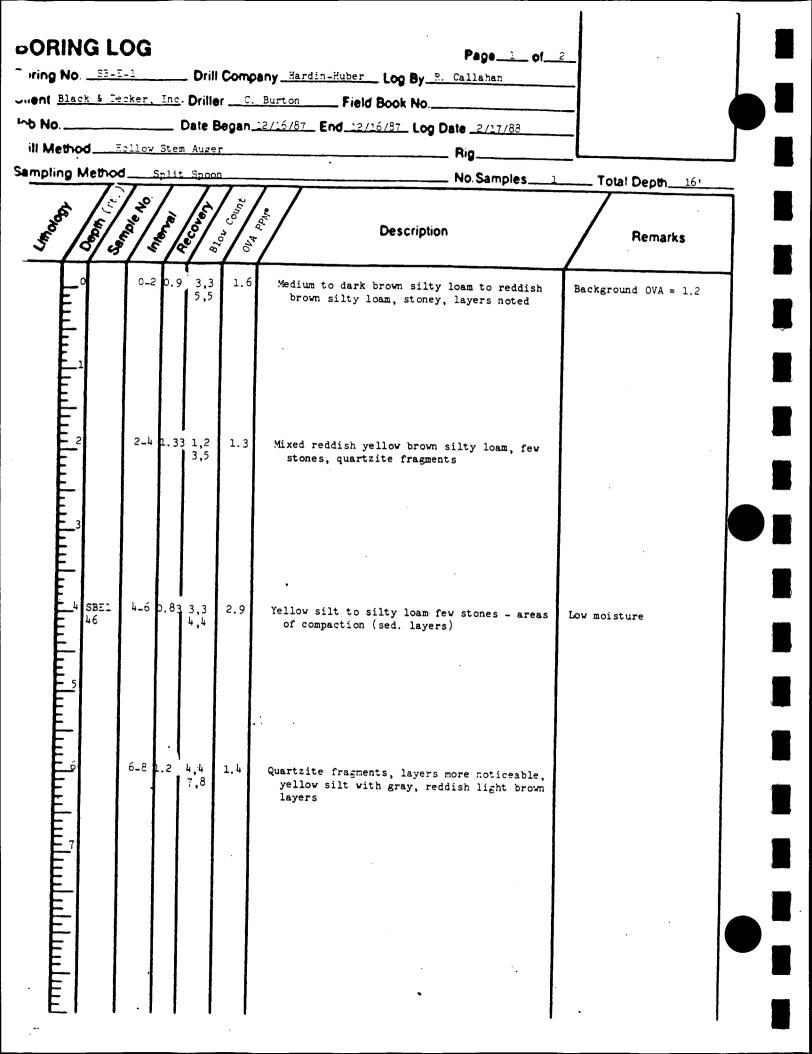
EPA	Sample	No.
WL4	SED	
1		

<u>n 1</u>

Date 01/29/88

		INORGANIC AN	<u>ALYS</u>	IS DATA SHEET	
Lab	Name <u>Roy F.</u>	leston Inc.		Case No Lab Receipt Date_12/22/87	
SOW	No			Lab Receipt Date <u>12/22/87</u> QC Report No	
Lab	Sample ID. No	<u>8712-102-013</u>	.	QC Report No	
	. -	Elements Identii	ried	and Measured	
Conc	entration:	Low		Medium	
Matr	ix: <u>SOIL</u>				
Un	its: MG/KG				
1.	Aluminum			13. Magnesium	
2.	Antimony			14. Manganese	
3.	Arsenic	[3.2]	F	15. Mercury0.22 u CV	
4.	Barium	2010	<u>P</u>	16. Nickel	
5.	Beryllium			17. Potassium	
6.	Cadmium	[2.6]	P	18. Selenium 0.41 u F	
7.	Calcium	<u>, ,</u>		19. Silver <u>1.9 u P</u> N	
8.	Chromium	75.7	P	20. Sodium	
9.	Cobalt			21. Thallium	
10.	Copper			22. Vanadium	
11.	Iron			23. Zino	
12.	Lead	308	F	Percent Solids (\$)29.8	
Cyai	nide				

Footnotes: For reporting results to EPA, standard result qualifiers are used as defined on Cover Page. Additional flags or footnotes explaining results are encouraged. Definition of such flags must be explicit and contained on Cover Page, however.


ICP 1.202 Comments: Sample weight: <u>ona</u> AA 1.322 9 Sample Lesciption brown, Lab Manager

U.S. EPA Contract Laboratory Program Sample Management Office P.O. Box 818 - Alexandria, VA 22313 703/557-2490 FTS: 8-557-2490	EPA Sample No. WLE PIPE
	Date <u>01/29/88</u>
<u>INORGANIC ANALYSIS I</u> Lab Name <u>Roy F. Weston Inc.</u> SOW No Lab Sample ID. No. <u>8712-102-014</u> <u>Elements Identified and</u>	Case No Lab Receipt Date_12/22/87 QC Report No
Concentration: Low	Medium
Matrix: <u>WATER</u> Units: UG/L	
1. Aluminum	13. Magnesium
2. Antimony 24.4 u P 3. Arsenic [0.5] F	14. Manganese 15. Mercury
3. Arsenic	16. Nickel 7.1 u P
4. Barium 5. Beryllium[0.5] P	17. Potassium
6. Cadmium1.8 u P	18. Selenium 0.8 u F
7. Calcium	19. Silver 3.4 u P
8. Chromium 2.5 u P	20. Sodium
9. Cobalt	21. Thallium1.8 u F
10. Copper45.1 P	22. Vanadium
11. Iron	23. Zinc219 P
12. Lead [4.0] FN	Percent Solids (\$)
Cyanide	

ノ

	ontract Labo		gram	-	EPA	Sample No.	₁
	agement Offi 18 - Alexand		22313		WLW	PIPE	
	90 FTS: 8-5						I
					Date	01/29/88	
Tab Nama D		ORGANIC AN	ALYSIS	DATA			
SOW No.	oy F. Weston	• •			Case No Lab Recei	pt Date 12/22	2/87
Lab Sample	ID. No. <u>871</u>	<u>2–102–015</u>			QC Report	No	
		nts Identii		<u>a me</u>			
Concentrat:	ion:	Low			Medium		
Matrix:	WATER	<u> </u>					
Units: U	JG/L						
	11m			10	Magnagium		
•	ony				Magnesium Manganese		
	Lc				Mercury		u cv N
-	n				Nickel		
					Potassium		<u> </u>
-					Selenium		 له F ا
	1				Silver		
	un				Sodium		<u> </u>
9. Cobalt					Thallium		<u>u F</u> N
10. Copper	•	30.0	P		Vanadium		
11. Iron				23.	Zinc	75.8	P
12. Lead		[3.2]	<u>F</u> NW	Perc	ent Solids (\$)		
Cyanide							

.S. EPA Contract La	oratory Program	EPA Samp	
ample Management Of	fice	WLB PIPE	; <u> </u>
.0. Box 818 - Alexa 03/557-2490 FTS: 8	n dria, VA 22313	l	!
U3/ 37/-2490 F13: 0	- , , , - = + , , ,	Date <u>01/</u>	29/88
-	INORGANIC ANALYSI	S DATA SHBET	
ab Name Roy F. West		Case No.	10/00/97
OW No ab Sample ID. No8	712-102-014	Lab Receipt I QC Report No.	
ab Sample ID. NO. <u>o</u> <u>Ele</u>	ments Identified		· <u></u>
concentration:	Low	Medium	
latrix: <u>WATER</u>			
Units: UG/L			
1. Aluminum		13. Magnesium	
2. Antimony		14. Manganese	
3. Arsenic	[0.5] F	15. Mercury	0.13 u CV
4. Barium			
5. Beryllium			
6. Cadmium			0.8 u F
7. Calcium		19. Silver	<u>3.4 u P</u>
8. Chromium			
9. Cobalt		21. Thallium	<u>1.8 u F</u>
10. Copper			
11. Iron		23. Zino	<u>219 P</u>
		/ Percent Solids (\$)	
Cyanide			
Footnotes: For repo	orting results to bed on Cover Page	EPA, standard result qu . Additional flags or f	alliers are u: 'ootnotes
evolain	ing results are e	ncouraged. Definition o	of such flags
		tained on Cover Page, ho	
Comments:	le description	n: clean, colo	less
			/
			2

Form I	
U.S. EPA Contract Laboratory Program Sample Management Office P.O. Box 818 - Alexandria, VA 22313 703/557-2490 FTS: 8-557-2490	EPA Sample No.
INORGANIC ANALYSIS Lab Name Roy F. Weston Inc. SOW No Lab Sample ID. No. <u>8712-102-016</u> Elements Identified an	Case No Lab Receipt Date <u>12/22/87</u> QC Report No
Concentration: Low	Medium
Matrix: <u>WATER</u> Units: UG/L	
1. Aluminum	13. Magnesium
2. Antimony 24.4 u P	14. Manganese
3. Arsenic0.5 u F	15. Mercury 0.13 u CV N
4. Barium	16. Nickel7.1 u P
5. Beryllium [0.5] P	17. Potassium
6. Cadmium1.8 u P	18. Selenium0.8 u F
7. Calcium	19. Silver
8. Chromium 2.5 u P	20. Sodium
9. Cobalt	21. Thallium <u>1.8 u F</u> N
10. Copper29.6 P	22. Vanadium
11. Iron	23. Zinc83.3 P
12. Lead[3.5] FN	Percent Solids (\$)
Cyanide	
as defined on Cover Page. explaining results are enco	A, standard result qualifiers are used Additional flags or footnotes ouraged. Definition of such flags .ned on Cover Page, however.

Comments: Aample Lerenip tion: chean, color less Lab Manager 102.

NITRATES ANALYSIS RESULTS: SURFACE-WATER AND SEDIMENT SAMPLES

4178B

INORGANICS DATA SUMMARY REPORT 01/22/88

CLIENT: BLACK & DECKER

WESTON BATCH #: 8712-102

.

SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	REPORTING LIMIT
====== -001	EL1 EAST LAGOON	NITRATE, AS N	2.5	MG/L	0.1
-002	EL1 DUP MS/MSD	NITRATE, AS N	2.5	MG/L	0.1
-003	EL1 SED EAST LAGOON	NITRATE, AS N	1.0 u	MG/KG	1.0
-004	EL2 SED DUP MS/MSD	NITRATE, AS N	0.72 u	MG/KG	0.72

INORGANICS DATA SUMMARY REPORT 01/22/88

CLIENT: BLACK & DECKER

WESTON BATCH #: 8712-102

SAMPLE	SITE ID '	ANALYTE	RESULT	UNITS	REPORTIN LIMIT
-005	============================= EL2	NITRATE, AS N	1.6	MG/L	0.
-006	EL2 SED EAST LAGOON	NITRATE, AS N	1.0 u	MG/KG	1.(
-007	EL3 SED	NITRATE, AS N	1.4 u	MG/KG	1
-008	EL4 SED EAST LAGOON	NITRATE, AS N	1.4 u	MG/KG	1

INORGANICS DATA SUMMARY REPORT 01/22/88

CLIENT: BLACK & DECKER

•

WESTON BATCH #: 8712-102

SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	REPORTING LIMIT
====== -009	WL1 WEST LAGOON	NITRATE, AS N	0.65	MG/L	0.1
-010	WL1 SED	NITRATE, AS N	0.41	MG/KG	0.36
-011	WL2 SED	NITRATE, AS N	0.5 u	MG/KG	0.5
-012	WL3 SED	NITRATE, AS N	0.19	MG/KG	0.17

INORGANICS DATA SUMMARY REPORT 01/22/88

CLIENT: BLACK & DECKER

WESTON BATCH #: 8712-102

REPORTI

SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	LIMIT
	WL4 SED	NITRATE, AS N	0.34 u	MG/KG	0
-014	WLE PIPE	NITRATE, AS N	1.4	MG/L	0.
-015	WLW PIPE	NITRATE, AS N	1.3	MG/L	0
-016	LFB	NITRATE, AS N	0.1 u	MG/L	0

INORGANICS METHOD BLANK DATA SUMMARY PAGE 01/22/88

CLIENT: BLACK & DECKER

WESTON BATCH #: 8712-102

SAMPLE ====== BLANK 1	SITE ID ====================================	ANALYTE ====================================	RESULT 	UNITS MG/L	REPORTING LIMIT ===================================
BLANK 2 BLANK 3	87 N065-MB2 87 N065-MB3	NITRATE, AS N NITRATE, AS N	0.1 u 0.1 u	MG/L MG/L	0.1 0.1
BLANK4	87 NO6 5-MB4	NITRATE, AS N	0.1 u		0.1
BLANK5 BLANK6	87 NO6 5-MB5 87 NO6 5-MB6	NITRATE, AS N NITRATE, AS N	-	MG/L MG/L	0.1 0.1
BLANK7	87 NO6 5-MB7	NITRATE, AS N	0.1 u	MG/L	0.1
BLANK8	87 NO65-MB8	NITRATE, AS N		MG/L	0.1
BLANK9	87 NO6 5-MB9	NITRATE, AS N	0.1 u	MG/L	0.1

INORGANICS ACCURACY REPORT 01/22/88

CLIENT: BLACK & DECKER

WESTON BATCH #: 8712-10.

SAMPLE	SITE ID	ANALYTE	SPIKED SAMPLE	INITIAL RESULT	SPIKED AMOUNT \$REC^"
======		====================================	=======	======	
-002	EL1 DUP MS/MSD	NITRATE, AS N	3.0	2.5	0.5 10
		NITRATE, AS N MSD	3.0	2.5	0.5 109
-003	EL1 SED EAST LAGOON	NITRATE, AS N	11.2	1.0 u	10 .1 11<u>1</u>
-005		NITRATE, AS N MSD	11.4	1.0 u	10.1 11
-004	EL2 SED DUP MS/MSD	NITRATE, AS N	7.3	0.72u	7.2 10 2
		NITRATE, AS N MSD	7.4	0.72u	7.2 103
BLANK2	87 NO6 5-MB2	NITRATE, AS N	1.1	0.1 u	1.0 11
BLANK 3	87 N065-MB3	NITRATE, AS N	1.1	0.1 u	1.0 11
BLANK5	87 N065-MB5	NITRATE, AS N	2.0	0.1 u	2.0 101
BLANK6	87 NO65-MB6	NITRATE, AS N	2.1	0.1 u	2.0 102
BLANK 8	87 NO65-MB8	NITRATE, AS N	0.49	0.1 u	0.5 S
BLANK9	87 NO65-MB9	NITRATE, AS N	0.49	0.1 u	0.5 97.8

INORGANICS DUPLICATE SPIKE REPORT 01/22/88

CLIENT: BLACK & DECKER

WESTON BATCH #: 8712-102

			SPIKE#1 SPIKE#2		
SAMPLE	SITE ID	ANALYTE	%RECOV	SRECOV	\$DIFF
====== -002 -003 -004	EL1 DUP MS/MSD EL1 SED EAST LAGOON EL2 SED DUP MS/MSD	NITRATE, AS N NITRATE, AS N NITRATE, AS N	===== 109 111 102	109 113 103	NC 1.5 1.6

INORGANICS PRECISION REPORT 01/22/88

CLIENT: BLACK & DECKER

WESTON BATCH #: 8712-102

INITIAL

SAMPLE	SITE ID	ANALYTE	RESULT	REPLICATE \$	DIFF
=======		===============================	========	=========================	=====
-002REP -003REP -004REP	EL1 DUP MS/MSD EL1 SED EAST LAGOON EL2 SED DUP MS/MSD	NITRATE, AS N NITRATE, AS N NITRATE, AS N	2.5 1.0 u 0.72u	2.5 1.0 u 0.72u	0.0 NC NC

APPENDIX B

SOIL-GAS PROCEDURE

4178B

1

APPENDIX B

SOIL GAS PROCEDURE

SAMPLING

Soil-gas samples were collected in Zones A and E at locations identified in Figures 3-2 through 3-4 and 3-15. Samples were obtained from Teflon-tube-lined, 1/4-inch diameter, cylindrical copper probes, which were placed into hand-driven 3-foot pilot holes. At the top of the probe the Teflon tubing was sealed to the copper probes with Teflon tape; a rubber stopper was used around the top of the probe as a seal between the probe and the sides of the pilot hole. Gas was aspirated through probes with a battery-operated pump at 100 ml/minute for 5 minutes at each sampled location. Samples were collected through an in-line 250-ml glass sampling bulb. Each bulb was purged between sampling locations with ambient air at a rate of 5 liters per minute for 15 minutes. Post-purge bulb blanks were collected periodically to evaluate the purging process. Duplicate samples were taken as noted in Table 3-2.

ANALYSIS

The soil-gas samples were analyzed in the field using a mobile gas chromatograph (GC) unit with an appropriate detector specific to the target compounds. Because tetrachloroethylene and trichloroethylene were identified at the highest levels in groundwater samples from the site, these two compounds were the target compounds, and an electron capture detector and appropriate standards were utilized.

The detection limits depended on the interferences from other compounds present in the soil gas. Quantification of the target compounds was accomplished by the external standard method, with calibration check standards run at least four times daily. All samples were run in duplicate, with different sample volumes. Air, nitrogen, and hexane blanks were run to check for and to minimize the effects of carryover or cross-contamination between separate runs.

The GC was transported to the site and set up inside the wastewater treatment building. Each sample probe was used only once and decontaminated at the end of the program with an Alconox and water scrub, a tap water, rinse, and followed by a deionized water rinse.

4178B

B-1

APPENDIX C

PHASE I SOIL BORING LOGS AND TEST EXCAVATION LOGS

SOIL BORING LITHOLOGY LOGS

.

4178B

l

Black &					Burton Field Book No
Aethod	<u>12/17/87</u> End <u>12/17/87</u> Log Date <u>2/17/88</u> Rig				
ling Metho					No. Samples Total Depth
the way	on olo	and	1000 Leg	OV. Count	Description
۹ سىر	0_2	D.66	4,2 2,3	NS	Light brown sandy loam at surface followed by gravel and rock (fill dirt)
					· ·
	2_4		4,2 2,2	2.6	Medium brown silty loam, some stones and rock fragments (fill dirt)
	4_6	D.73	2,2 2,2	3.4	Medium brown silty loam, grades to more yellow brown (fill dirt), some small quartzite fragments
Ē					
5 SBA1 68	6_8	Þ.75	2,2 2,3	100	Yellow brown silt, grades to red brown (slight) few small quartzite fragments (fill firt)

•

					ny <u>Hardin-Huber</u> Log By <u>F. Callahan</u>	
					Burton Field Book No 12/17/87 End 12/17/87 Log Date _2/17/88	
od					f f	
Method	<u> </u>				No Samples	Total Depth
Į į	720/	7	[z]	7.3 J		7
and a start	Die No	,	Ston Star	Org D.	ع Description	Remarks
198					{	
ھ	8-10	0.7	5 2,2 2,3	13	Fill dirt, yellow/brown silt with small fragments and stones	
-						
- 0	10-12	30.0	3 2.3	60	Fill dirt, yellow/brown silt with small	
			2,3		fragments and stones	
-						
11						
-						
2	12-14	0.1	62,5 11,7	14	0.29' fill dirt, yellow/brown silt with small fragments and stones, 0.2' sand (possibly	
_1			,		used to fill buried tanks), remainder is natural undisturbed yellow/yellow brown silt	
					mottled with brown, grey and red	i
3						
-					•	
	14-16	•	4 6 3 1	19.5	0.29' fill dirt, yellow/brown silt with small	
			19,21	17.7	fragments and stones, 0.2' sand (possibly used to fill buried tanks), remainder is	
-					natural undisturbed yellow/yellow brown silt mottled with brown, grey and red	
15						
61					Total depth = 16'	
13 						
]				* Calibrated to methane	

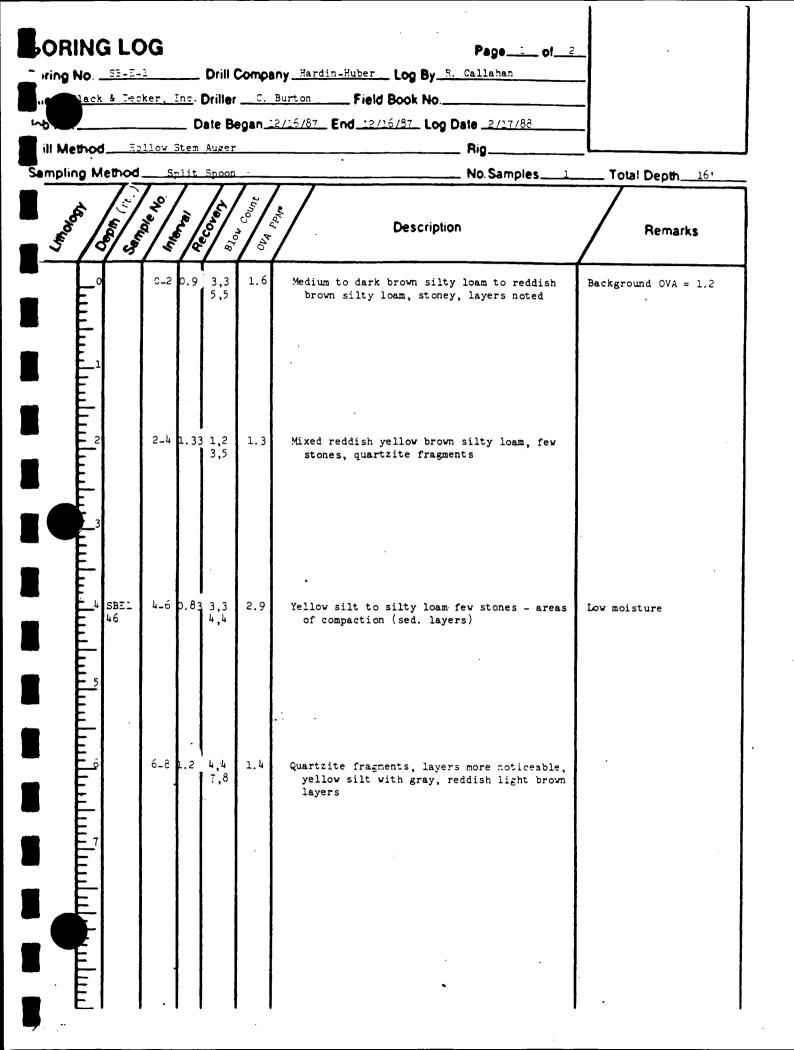
	Date Began_	2/17/87_End_22/17/87_Log Date_2/17/88	_
Wethod	Hollow Stem Auger	Rig	
	Split Spoon	No. Samples	Total Depth
to and the second	Processing to the	Description	Remarks
0	0-2 1.0 3,4 1.2 3,2	Medium to dark brown silty loam, grades to light brown clayey silt, 0.08' sandstone type material, possibly part of concrete apron grades to yellow/yellow brown silt, mottled with gray, brown and red	
°ا	2-4 1.2 9 5,7 5.6 10,15	Yellow/yellow brown silt with brown red, gray, mottling	
ما يى الى ما يى ما ي	4-6 1.58 9,11 3.8 114,12	Same as 2-4'	
	6-2 1.13 8,23 2.5 14,15	Same as 2-1'	
ا بایر ایریا ایریا ایریا			

•

.

BORING LO	G		Pa	ge2_ot_2_	
loring No. <u>SE-A-</u> 2	Drill	Company Hardin-	Huber_ Log By R. Call:	ahan	1
lient Black & Dec	<u>ker. In</u> c Drille	f Burton	_ Field Book No		
ob No	Date l	Began <u>12/17/87</u> Ei	nd 12/17/87 Log Date _2	2/17/88	
rill Method	llow Stem Aug	er	Rig_	L_	I
ampling Method_		n	No.S	Samples1	otal Depth
Como Como	Internet of the second	Old Count	Description		Remarks
	8-10 1.25 7,8	0 1.6 Auger ref solidat	<pre>usal at 8', same as 2-4' ed, quartzite fragements h = 10' d to methane</pre>	, more con- noted	
EI I				1	

Method	Hollow Stem Aug	•	End_12/17/87_ Log Date _2/1	. // 00	- <u>-</u>
	5Split_Spo		No. Sai	mples To	otal Depth1
the second	Annale No.	Ord Fine	Description		Remarks
°ابيدا با	0-2 0.75 1,3 4,8	7.8 Medium t grades	o dark brown, silty loam (to to yellow silt with quartzi black seams noted ≆ at 2'		
ليت أ السالي	2_4 - 2,2 2,2	NS			·
ىلساسىلس	4-61.083,3 4,5	yellow	rom light brown silt to yell ish brown layers noted in lo d with red grey and brown.	ow/ wer 0.33'	
utuutuu uu	6-3 1.5 2,5 12,24	6.0 Yellow/y	ellow brown - mottled silt 1.	ayers	
لساسا					

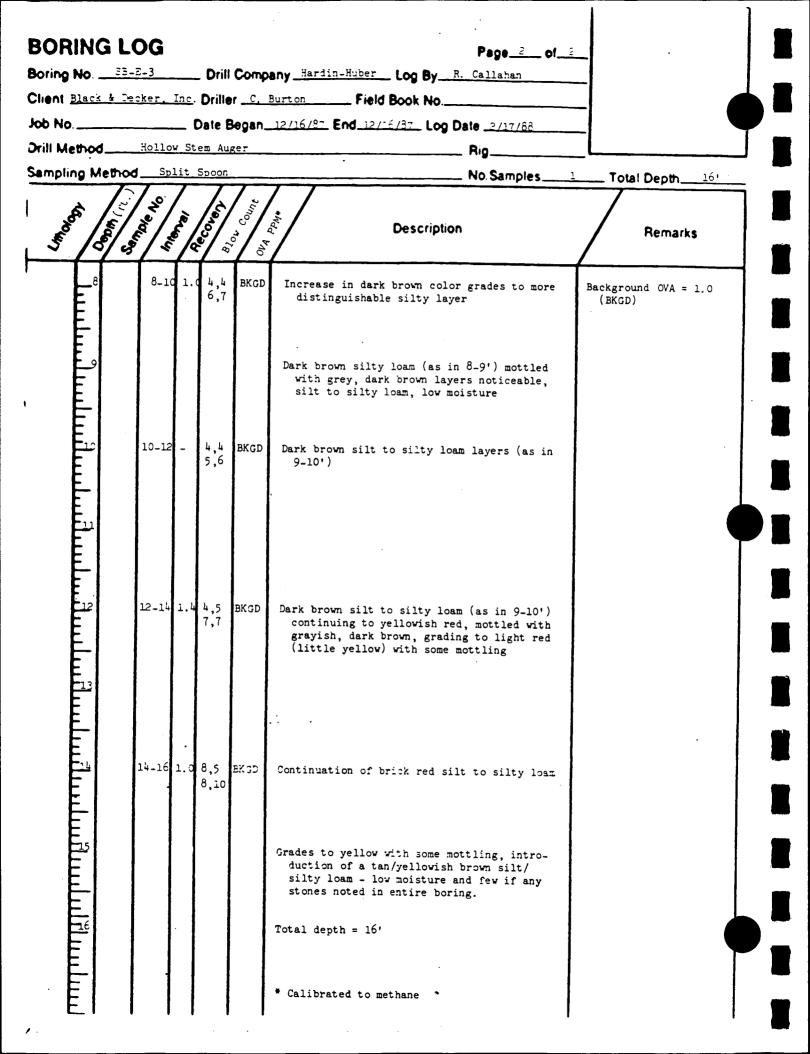

		· · · · · ·	
BORING LO	G	Page	o1_2
Boring No	3 Drill Comp	any <u>Hardin-Huber</u> Log By R. Callahan	
		Burton Field Book No	
	•	12/17/87_ End_12/17/87_ Log Date_2/17/88	——I
Drill Method Hol		Rig	
Sampling Method_		No. Samples_	<u>1</u> Total Depth <u>16'</u>
Service Service	Province No.	Description	Remarks
6 6 6	8-101.5 10,12 5.4 12,17	Continuation of 6-8', layers much more significant (platy layers)	
استا ب			
	10-121.5 15,12 5.4 22,23	Same as 8-10'	
E	.2-141.17 8,14 7.0 25,26	Same material as 8-10' except 1" quartzite at end of sample	
	- 	Same as 8-10'	
اسلال		Total depth = 16'	
		* Calibration to methane *	

Black_4				Burton Field Book No 12/17/87 End 12/17/87 Log Date 2/17/88	_]
Il Method			•	Rig	
mpling Metho		7	17.	No. Samples	Total Depth_16'
Commillion of the second	Conde No	Recover	Blow Count	Description	Remarks
0 E		D.91 7 3	,3 100 ,2	Yellow brown silty clay, well mixed, small stones and fragments (fill dirt)	
Ē					
E_1 E					
	2_4	1.42 2 3	,3 172 ,4	Yellowish brown at hole grades to medium to dark well mixed at 2.7' (fill dirt)	
	4-6	0.632 2	1 420 6	Medium to dark brown, well mixed at 5' red clay (black marbeling stiff)	
Ē					
	6-8		3 174		
Ē	0-0	1.25 3, ć,	,3 1 4 ,4	0.71' continuation of stiff red clay and yellow clay, brown, silty nature not as stiff, somewhat ribboned.	
E					
	·				

					Burton Field Book No	-
					<u>12/17/87</u> End_12/17/87_Log Date_2/17/53 Rig	_
ng Metho					· ·	1 Total Depth_16'
te and	Vernove No	in the second	Blockery	OVA Count	Description	Remarks
	8_10			140	f	1
F 9					•	
	10-12		5 5	NS	Piece of quartzite wedged in tip of split	
	10-12		6,7		spoon, no sample	
ا	12-14	n.o :	10,5	500+	Red/brown silt, some clay, grades to light brown clayey silty, through a quartzite. Layer 0.2', and back to light brown clayey silt	
	14-16	1.67	5,5 6,5	30	Continuation of light brown clayey silt, some small stones, at 10" material becomes mottled with yellowish grey red and dark brown very silty - little clay	
مد					Total Depth = 16'	

Black & Decker, The DrillerField Book No Date Began 12/17/87 End 12/17/87 Log Date 2/17/88							
ethod		-	Cog Odio Rig_	-1			
pling Method	Split			SamplesTo	otal Depth_1		
the state of the s	Manna)	Blow Count	Description		Remarks		
	0-2 0.75 2 3	3 1.0 Medium	brown to red brown silty lo rous rocks	am with	- <u></u>		
مالسالسا سىلىسا	2-4 1.5 5, 5,	6 1.2 Yellow 6 inte	✓ brown clayey silt (fill di: ermixed throughout	rt) some red			
sa sa sa sa sa sa sa sa sa sa sa sa sa s	4-6 L.75 3, 5,	5 1.6 Same a	15 2-4'				
iluuluuluulu	6-8 1.67 3,1 7,	8 Fragme	8" with an increase in stone nts, grades to yellow brown , very uniform	es and quartz stiff silty			
ulululul							

				pany <u>Hardin-Huber</u> Log By R. Callaban	
				12/17/87 End 12/17/87 Log Date 2/17/88	-
				Rig	
	ods	plit Spo	oon	No. Samples	Total Depth
* /	Semple No		22	1. /	
te la	and a second	to cone	2101 Count	Description	Remarks
44	3/5				
	8-10	1.54 5, 10,	10 1.2 7	Same as 6-8', continuation of quartzite fragments throughout (appears to be fill dirt), very uniform	
EI					
E					
El					
	10-12	1.92 5,9	5 1.4	Yellow brown silt, graded to red brown silt, large fragments of quartzite, some dark brown seams at 12'	
È.					
					. T
E-I					
	12-14	1.92 5 5	1.5	Continuation of 10 121 internal and a	
		1.92 5,5		Continuation of 10-12' interval until vast 4" layering appears In this zone, red/brown silt with grayish yellow, dark brown layer	
	14-16 1	25 5,7 12,1	1.4	Red/brown silt, layered with gray, dark brown graies to pale red (pink) with some mottling, 0.2' seam of yellow brown, large rock fragments, last 0.2' mostly rock fragments, little soil	
- 15 -					
-					
16				Total depth = 16'	
					P
	1 1			* Calibratei to methane	



				Field Book No <u> End_12/16/87_</u> Log D			
				•]
ng Method	77			······	No.Samples	Total Depth_	16'
the way of	Internet No	Recovery	Ord Poly	Description	1	Remark	(S
° Iuuul	1 1	.91 4,5 5,6	domin	juartzite fragments, y nates, layers of reddi n, easily friable	vellow silt pre- .sh gray and light		
ในนโนเรียนในหรือนเป็นหรือนเป	10-121.	.25 6,7 9,10	2.0 Red gra black noted	ades out, yellow silt < seams, periodic quar 1	with gray and tzite fragments		
يا مالجىيا							
د. ۲	12-142.	0310,10 8,7	2.0 Quartzi grev	te fragments, yellow s and black increase in	silt, layers of black seams		
لسناسيا سنايسا سناسيا والاستا	14-161.	7,12	2.0 Same as	12-14'			
			Total de	epth = 16'			
	ł			rated to methane			

				<u>Burton</u> Field Book No 12/16/87 End 12/16/37 Log Date 2/17/85	-
rill Method		-		Rig	
Sampling Metho		T T	7.	No. Samples	Total Depth16'
the second of the second secon	And No	Recovery	OLA Count	Description	Remarks
	0-2	1.16 2,: 3,i	3 BKGD	Medium brown silty loam, followed by mixed, somewhat mottled yellow brown, red, dark brown, gray silt to silty loam	Background OVA = 1.0ppm (BKGD)
ىسلىسا ئىسلىسى	2_4	1.33 9,43 18,29	BKGD	Yellow brown silty loam, increasing clay con- tent followed by stone and approximately 0-25' of asphalt	
	4_6	0.₹ 8,4 6,6	BKGD	Medium brown silty loam followed by stones and brown/black powdery material (approxi- mately 0-3' of coarse stones at 6')	
*é มาร์โมนใบนใบนใบนโบนโบนโบ	6-8	1.58 3;3 3,5	BKGD	Upper 12' of medium brown silty loam O 66' of yellow silty clay Lower 0.5' of yellow to yellow brown silt - few stones	

				any Hardin-Huber Log By R. Callahan Burton Field Book No.	-
				12/16/87 End 12/16/87 Log Date 2/17/88	
•				Rig	_ []
	odSpl			No. Samples	Total Depth_ 16'
teo o	Service No.	Recovery	OLA COUNT	Description	Remarks
	8-101.	.58 4,4 5,7		Upper 0.25' of yellow brown silt mottled with red gray and small amounts of brown silt/ silty loam Lower 0.25' increased gray component	Background OVA = 1.Oppm
	10-121,	41 [:] 4,8 6,9	BKGD	Yellow silt/silty loam mottled with reddish gray and periodic dark brown	Low noisture
سلسئسيلس	12-141.;	25, 7,7 8,7	BKGD	Continuation of yellow silt (as in 10-12') mottled with red clay, dark brown	
 มา≟ใหมงไหนะใหม่ในนในไปใหม	14-161.3 -	25 4 4 6,7	BKGD .	Continuation of 10-12' Small quartz fragments at 14-63' progressively increasing towards lower end	Low moisture throughout soil boring
նակոնուր				Total depth = 16' * Calibrated to methane	

JORING L		_		Pageof	-1
•			-	any Hardin-Huber Log By R. Callahan	-1
Black 4				Burton Field Book No.	-
rill Method			-	<u>12/16/87</u> End_12/16/37_ Log Date <u>2/17/88</u> Rig	-1
Sampling Method				No. Samples	
			7		
A Contraction of the second	on or	Recovery	OLA Count	Description	. Remarks
	0-2		BKGD	Medium brown silty loam - low clay, moist	Background OVA = 1.0 (BKGD)
السالي	2_4	1.43,4 5,5	BKGD	Medium brown silty loam, grades to a mottled yellow with gray silt to silty loam - low moisture.	
				Mottled yellow with gray silt to silty loam	
الساليس	4-5	1.4 4,4 6,7	BKGD	Mottled yellow with grayish silt to silty loam with streaks of dark brown	
				Grayish silty loam (as in 4-5'), grading from yellow to red silt to silty loam, low moisture	
	6_8	1.16 4,1 6,6	5 BKGD	Red silt to silty loam (as in 5-ó')	
				Grades to yellowish red mottled with grey and dark brown silt to silty loam - low moisture	

nt Black & D	<u>ecker, In</u> c	Drille	<u> </u>	Burton Field Book No	!
	(Dale B	egan_	12/14/87 End 12/14/87 Log Date 2/17/88	-
•				Rig	
npling Method			and the second division of the second divisio	No. Samples 1	Total Depth16'
Connorter 1	Anania No	Property of the second	OVA Count	Description	Remarks
	0-2 1.1	T		Reddish brown silt loam (topsoil)	Background OVA = lppm (BKGD)
				Yellowish brown silt loam	
مىلىما ئىرىلىر مىلىما ئىرىلىر	2-4 1.1	2,3 3,3	BKGD	Yellowish brown silt loam	•
				Grades to reddish brown silt loam - silt con- tent increasing - no stones	
أسا	4-6 1.2	2,4 5,4	BKGD	Reddish brown silt loam	
				Red, tan, grey mottled silty loam, minor clay, does not ribbon	
	6-8 1.3	2,6 7,10		Mottled silt to silty loam, reidish brown, greyish yellow	
huluulu				Mottled silt to silty loam, reidish brown, greyish yellow, fewer stones	
E					

No3	<u>B-E</u>	_1_		_ Drill	Comp	Page 2 of 3 any Hardin-Huber Log By R. Sallahan	_
						Burt on Field Book No	-
						12/14/87 End 12/14/87 Log Date 2/17/88	_
•						Rig	
ling Mel	_	_	_			No. Samples	Total Depth6'
BEE S	2	No.		Solution of the second	OL4 Count	Description	Remarks
-8		8-10	T		BKGD		Background OVA = lppm
استالسنا						Introduction of yellow in mottled appearance	
	3E4)11	10-12	1.3	5,6 10,12	BKGD	Same as 9-10'	
						Same as 9-10'	
		12-14	1.5	6,12 13,15	BKGD	Same as 9-10'	
						Black mottling begins, layers more apparent, still silty soil, very low clay or sand, fewer stones, amount of red or yellow varies	
		14-15	1.5	8,12 14,17	BKGD	Reddish brown mottled silty loam - grades to yellowish brown, mottled silty loam	
						Total depth = 16'	
E		1				* Calibrated to methane	

•				any <u>Hardiz-Huber</u> Log By <u>R. Callahan</u> Burton Field Book No	-1
				12/16/87 End 12/16/87 Log Date _2/17/88	-
ill Method					
mpling Metho	Split	Spoon		No.Samples	Total Depth10!
Land Contraction	An and the former of the second secon	²²	OLA COUNT		Remarks
- Lund	0-2 0.7	1,1 3,3	1.4	Reddish, dark brown silty loam, some clay (top soil followed by five soil quartzite fragments), yellowish brown, silty soil, some stones, grades to reddish brown sitly soil	Bakeground OVA = 0.3ppr (BKGD)
hultuilt	2-4 1.16	3,3 44,*	BKGD	Red, brown silt to silty loam, quartzite fragments, some layering v. ble, zones of	•
				red and yellow	
า้านน้ำ	4-6 1.25	2,3 3,4	1.2	Continuation of red/brown silt (as in 2-4' interval)	
استاستاستاستا	6-8 1.33	13,17 *,*	1.6	Red/brown silt grades to yellow brown, in- crease in clay content, dark brown, clayey silt at 8', minor quartzite, fragments noted (small in size, small pockets of red, black and grey)	

I Black & Tecker	<u>Inc</u> Driller <u>C</u>	Burton Field Book No	
io	Date Began	12/16/87 End 12/16/87 Log Date 2/17/88	T
		Rig	
ling Methods		No. Samples_	1 Total Depth 10'
Compare No.	BIOL COUNT	Description	Remarks
	0.5 6,60 2.5	White powder on spoon, presumed concrete/ possibly quartzite, yellow brown silty cl until refusal, few stones or fragments	ay
		Total depth = 10'	

mpling Method Split_Spoon No. Samples Total Depth16)	Dat	le Began_1	Burton Field Book No 2/16/87 End 12/16/87 Log Date _2/17/88	-
And Construction And Construction And Construction Remarks And Construction 0.2 1.2 1.1 0.3 Medium, dark brown silty loam (top soil to 0.5'), yellow brown silty clay few stones or fragments Background OVA = 0.0 Image: Construction of the stone	•			Rig 	Total Deoth 10
 0 -2 1.2 1.1 0.3 Medium, dark brown silty loam (top soil to 0.5'), yellow brown silty clay few stones or fragments 2 -4 0.91 3.3 2.4 Upper 0.25' as above, yellow clayey silt to yellow brown, mottled with white/grey 4 -6 1.0 2.3 1.3 Yellow clayey silt with noticeable layers of brown and red, few stones or fragments 			11.	Description	
4-6 1.0 2,3 1.3 4,4 I.O Yellow clayey silt with noticeable layers of brown and red, few stones or fragments	Յասհամա	0_2 1.2	1,1 0.3	0.5'), yellow brown silty clay few stones	Background OVA = 0.8
		2_4 0.9 <u>;</u>	3,3 2.4 4,5	Upper 0.25' as above, yellow clayey silt to yellow brown, mottled with white/grey	
6-8 0.91 2,3 1.4 Yellow brown silty clay to medium brown 3,5 silty clay, quartzite fragments intermixed	ساسىئساس	4-6 1.0 2 4	,3 1.0 ,4		
	ป็นแป้แห่งใน	6_8 D.91 2 3	,3 ,5	Yellow brown silty clay to medium brown silty clay, quartzite fragments intermixed	

Black & De	<u>cker.</u>	Inc.	Drille	or	Burton Field Book No. 12/16/87 End 12/16/87 Log Date 2/17/88	
Aethod ling Method					Rig	
	<u></u>			7		Total Depth6
	1		1	2.0		
لسالسا	10-12	1.5	6,9 12,3	2.2	Red/brown clayey silt, few fragments, reasonably even color, some yellow and brown intermixed	
n. duurluurduurl	12-14	1.5	4,5 7,7	2	Yellow to yellowish brown silty clay grades to red, brown clayey silt (with mottling of grey brown, black and yellow) - some quartz fragments	
SBD6 1 1416	4-16		4,4 4,5	3.3	Red brown silty clay, consistent to 16'	
			L.		Total depth = 16'	
EII					* Calibrated to methane	

4178B

TEST PIT ID: TPD-1

DATE: 10-DEC-87 BACKGROUND HNU: 0.1 PPM

CONTRACTOR: HARDIN-HUBER FIELD REP.: R. CALLAHAN

DEPTH (FT.)

DESCRIPTION

- 0 1 LIGHT YELLOW BROWN SILT LOAM
- 1 2 YELLOW BROWN SILT LOAM GRADES TO REDDISH BROWN SILT LOAM, FRAGMENTS OF QUARTZITE NOTED
- 2 3 RED BROWN SILT LOAM, INCREASING SILT CONTENT

3 ~ 8.5 METAL SCRAP, WIRE MESH TO 8.5 FEET, PARTIAL COLLAPSE OF TEST PIT DUE TO DISTURBANCE OF FILL MATERIAL, SAMPLED AT 8.5 FEET

> TOTAL DEPTH: 8.5 FEET PHOTOGRAPH TAKEN AT 5.0 FEET NO GROUNDWATER ENCOUNTERED

TEST PIT ID: TPD-2

DATE: 10-DEC-87 BACKGROUND HNU: 0.6 PPM

CONTRACTOR: HARDIN-HUBER FIELD REP.: R. CALLAHAN

DEPTH (FT.)

DESCRIPTION

0 - 6 REDDISH BROWN SILT, CONSISTENT, SLICKENED SIDES

.

6 - 8 FILL AT 6.0 FEET, INTERMIXED WITH REDDISH BROWN SILT, CARDBOARD, WIRE, AND METAL STRAPS, WOOD AND MUNICIPAL REFUSE CONTINUED TO 8.0 FEET

> TOTAL DEPTH: 8.0 FEET NO PHOTOGRAPHS TAKEN NO GROUNDWATER ENCOUNTERED NOTICEABLE ODOR, METHANE SUSPECTED

TEST PIT ID: TPD-3

DATE: 11-DEC-87 BACKGROUND HNU: 0.6 PPM

CONTRACTOR: HARDIN-HUBER FIELD REP.: R. CALLAHAN

DEPTH (FT.)

- (

DESCRIPTION

- 0 1.5 MEDIUM BROWN SILT LOAM, STONEY
- 1.5 9 FILL MATERIAL ENCOUNTERED, B & D CIRCULAR SAWS AND CORDS, PLASTIC CASINGS, MOTORS, ELECTRIC HAND TRIMMERS, WEEDEATER, SHOPVAC HOSES, INTERMIXED WITH MEDIUM BROWN SILT LOAM, SAMPLE COLLECTED AT 9.0 FEET AT THE BOTTOM OF FILL MATERIAL

TOTAL DEPTH: 9.0 FEET NO PHOTOGRAPH TAKEN NO GROUNDWATER ENCOUNTERED

TEST PIT ID: TPD-4

DATE: 11-DEC-87 BACKGROUND HNU: 0.6 PPM

CONTRACTOR: HARDIN-HUBER FIELD REP.: R. CALLAHAN

DEPTH (FT.)

DESCRIPTION

- 0 1 MEDIUM BROWN SILTY LOAM, STONEY
- 1 9 FILL ENCOUNTERED, BLACK TOP, DEBRIS, PAPER, PLASTIC, STEEL REINFORCING BARS, DEMOLITION DEBRIS, METAL STRAPPING INTERMIXED WITH MEDIUM BROWN SILT LOAM

TOTAL DEPTH: 9.0 FEET NO PHOTOGRAPHS TAKEN NO GROUNDWATER ENCOUNTERED

TEST PIT ID: TPB-1

DATE: 09-DEC-87 BACKGROUND HNU: 0.6 PPM

CONTRACTOR: HARDIN-HUBER FIELD REP.: R. CALLAHAN

DEPTH (FT.)

DESCRIPTION

.

- 0 1 REDDISH BROWN SILTY CLAY, STIFF
- 1 2.5 REDDISH BROWN SILTY CLAY, GRADES TO YELLOWISH BROWN SILT LOAM, WATER SEEPING IN AT 2.5 FEET, HNU AT BACKGROUND

TOTAL DEPTH: 2.5 FEET PHOTOGRAPH OF LOCATION TAKEN WATER ENCOUNTERED AT 2.5 FEET

TEST PIT ID: TPB-1B

DATE: 09-DEC-87 BACKGROUND HNU: 1.0 PPM

CONTRACTOR: HARDIN-HUBER FIELD REP.: R. CALLAHAN

DEPTH (FT.)

DESCRIPTION

- 0 2 YELLOW BROWN SILTY CLAY
- 2 4 BLACK SOIL, BOG LIKE ODOR, NO HNU READINGS, WATER ENCOUNTERED AT 3.0 FEET
- 4 4.5 BLUE GREY CLAY WITH BLACK BAND, BLACK BAND NOT AS OBVIOUS AT 4.5 FEET

TOTAL DEPTH: 4.5 FEET NO PHOTOGRAPHS TAKEN WATER ENCOUNTERED AT 3.0 FEET

TEST PIT ID: TPB-2

DATE: 09-DEC-87 BACKGROUND HNU: 0.6 PPM

CONTRACTOR: HARDIN-HUBER FIELD REP.: R. CALLAHAN

DEPTH (FT.)

DESCRIPTION

0 - 1.5 DARK BROWN SILT LOAM (TOPSOIL)

- 1.5 3 DARK BROWN SILT LOAM GRADES TO YELLOW BROWN SILT LOAM WITH SLICKENED SIDES
 - 3 6 YELLOW BROWN SILT LOAM WITH INCREASING CLAY CONTENT, LITTLE STONE OR GRAVEL, RELATIVELY DRY
 - 6 7 YELLOW BROWN SILT, BEGIN PICKING UP SOME GRAVEL/STONE, SHALEY IN APPEARANCE, BLACK, MOTTLED WITH BROWN, COLOR DARKENING, GRADING TO RED/BROWN SILT AT 7.0 FEET
 - 8 10.5 RED/BROWN SILT, SOIL PICKING UP MOISTURE, RISE IN HNU READINGS (4 - 5 PPM), SAMPLED AT 8.0 FEET, SAMPLE ID: TPB2-1, WATER ENCOUNTERED AT 10.5 FEET

TOTAL DEPTH: 10.5 FEET NO PHOTOGRAPH TAKEN GROUNDWATER ENCOUNTERED AT 10.5 FEET, RECHARGED TO 6.0 FEET OVER 12 HOUR INTERVAL

TEST PIT ID: TPB-3

DATE: 10-DEC-87 BACKGROUND HNU: 0.6 PPM

CONTRACTOR: HARDIN-HUBER FIELD REP.: R. CALLAHAN

DEPTH (FT.)

DESCRIPTION

0 - 0.5	DARK BROWN SILT LOAM (TOPSOIL)
0.5 - 1.5	YELLOW BROWN SILT LOAM, HIGHER SILT CONTENT
1.5 - 3	YELLOW/BROWN SILTY CLAY, SMALL AMOUNTS OF STONE (SILTY LOAM)
3 - 5	ZONE OF DARK GREY SOIL, INCREASE IN RED COLOR OF THE YELLOW/BROWN SILT LOAM
5 - 6	BURNT WOOD, BRICK REMNANTS, PIECES OF METAL
6 - 8	WOOD SCRAPS, ASH/SOOT, INTERMIXED WITH YELLOW/BROWN SILTY CLAY, CONSISTENT TO 8.0 FEET AROUND FILL/DEBRIS, WATER RUSHED INTO TEST PIT AT 8.0 FEET, SAMPLED AT 7.0 FEET

TOTAL DEPTH: 8.0 FEET TWO PHOTOGRAPHS TAKEN AT 8.0 FEET GROUNDWATER ENCOUNTERED AT 8.0 FEET

TEST PIT ID: TPB-4

DATE: 10-DEC-87 BACKGROUND HNU: 1.2 PPM

CONTRACTOR: HARDIN-HUBER FIELD REP.: R. CALLAHAN

DEPTH (FT.)	DESCRIPTION
0 - 1	BROWN SILT WITH SOME LARGE QUARTZ COBBLES; HNU = 4 IN TEST PIT
1 - 2.5	YELLOW BROWN SILTY CLAY; HNU = 3-5 PPM
2.5 - 6.0	YELLOW BROWN SILTY CLAY WITH QUARTZ FRAGMENTS GRADING TO A RED/BROWN SILT LOAM WITH 2"-6" FRAGMENTS IN TEST PIT
6.0 - 7.0	YELLOW SILT AT 7.0 FEET, MOTTLED WITH BLACK AND GREY SIDES ON TEST PIT, INCREASED MOISTURE
7.0 - 11.0	MOTTLED SILT-RED, BLACK, GREY AND YELLOW

TOTAL DEPTH: 11.0 FEET NO PHOTOGRAPH TAKEN

TEST PIT ID: TPB-5

DATE: 10-DEC-87 BACKGROUND HNU: 0.6 PPM

CONTRACTOR: HARDIN-HUBER FIELD REP.: R. CALLAHAN

DEPTH (FT.)

••

DESCRIPTION

 0 - 1 YELLOW SILTY LOAM
 1 - 5 FILL MATERIAL (BLACK), BURNT WOOD, 1 INCH WIDE METAL STRAPPING BANDS, WATER FLOWING INTO TPB-5 AT 5.0 FEET, YELLOW CLAY SEEN BELOW FILL MATERIAL, SAMPLED AT CLAY/FILL INTERFACE

> TOTAL DEPTH: 5.0 FEET GROUNDWATER ENCOUNTERED AT 5.0 FEET

TEST PIT ID: TPB-6

DATE: 10-DEC-87 BACKGROUND HNU: 0.6 PPM

CONTRACTOR: HARDIN-HUBER FIELD REP.: R. CALLAHAN

DEPTH (FT.)

DESCRIPTION

0 - 0.5 DARK BROWN SILT LOAM (ORGANIC TOP SOIL)

- 0.5 2 YELLOW BROWN SILTY CLAY, STIFF, SOME MOISTURE, SOME ROCK FRAGMENTS (SPARSE)
 - 2 4 YELLOW BROWN SILTY CLAY GRADES TO RED/BROWN CLAYEY SILT, DOES NOT RIBBON VERY WELL, INCREASE IN STONES
 - 4 6.5 RED/BROWN CLAYEY SILT GRADES TO LIGHT RED SILT (BRICK RED) SILT, SIDES OF TEST PIT SLICKENED, INCREASE IN MOISTURE CONTENT
- 6.5 7.5 BRICK RED SILT ENDS, YELLOW MOTTLED SILTY CLAY
- 7.5 9 BRICK RED SILT COLORATION ALTERNATES BETWEEN YELLOW, GRAY AND RED
 - 9 11 RED AND YELLOW MOTTLED SILT

TOTAL DEPTH: 11.0 FEET PHOTOGRAPHS TAKEN AT 9.0 FEET MOIST BOTTOM AT 11.0 FEET, GROUNDWATER RECHARGED TO 10.5 FEET OVER A 4.5 HOUR INTERVAL

TEST PIT ID: TPB-7

DATE: 10-DEC-87 BACKGROUND HNU: 0.6 PPM

CONTRACTOR: HARDIN-HUBER FIELD REP.: R. CALLAHAN

DEPTH (FT.)

DESCRIPTION

- 0 1.5 LIGHT BROWN SILTY LOAM
- 1.5 2.5 INCREASING AMOUNT OF RED COLOR AND CLAY CONTENT (RED BROWN SILTY CLAY), RIBBONS SLIGHTLY, FEW STONES
- 2.5 3 RED BROWN SILTY CLAY, INCREASING DEGREE OF STONES AND FRAGMENTS
 - 3 4 YELLOW BROWN SILTY CLAY (NO SIGN OF FILL), WITH ROCK FRAGMENTS, APPROXIMATELY 0.3 FEET IN DIAMETER, VISIE QUARTZ, INCREASING MOISTURE CONTENT
 - 4 5 BROWN, SILTY CLAY, BLUISH GRAY ROCK FRAGMENTS EVIDENT
 - 5 6 BROWN SILTY LOAM, CLAY CONTENT GRADING OUT, ROCK FRAGMENTS NOTICEABLE
 - 6 11 VERY LIGHT YELLOW BROWN SILT LOAM WITH A GRAY COMPONENT (MOTTLED IN APPEARANCE), COARSE ROCK FRAGMENTS ENDING, SOME BLACK STREAKS NOTICEABLE

TOTAL DEPTH: 11.0 FEET PHOTOGRAPHS TAKEN AT 3.5 FEET MOIST AT 11.0 FEET, GROUNDWATER RECHARGED TO 9.2 FEET OVER A 5.5 HOUR INTERVAL

TEST PIT ID: TPC-3

DATE: 09-DEC-87 BACKGROUND HNU: 0.6 PPM CONTRACTOR: HARDIN-HUBER FIELD REP.: R. CALLAHAN

DEPTH (FT.)

4

DESCRIPTION

- MEDIUM BROWN SILT LOAM (ORGANIC TYPE SOIL), WHITE CAKE LIKE MATERIAL AT SURFACE
 1 - 2 YELLOW BROWN CLAY LOAM BEGINS, SAMPLE COLLECTED AT TOP OF FIRST GOOD CLAY
- 2 3 YELLOW BROWN CLAY, RED SILTY CLAY BEGINS AT 3.0 FEET

TOTAL DEPTH: 3.0 FEET NO PHOTOGRAPHS TAKEN NO GROUNDWATER ENCOUNTERED

TEST PIT ID: TPC-4

DATE: 09-DEC-87 BACKGROUND HNU: 0.6 PPM

CONTRACTOR: HARDIN-HUBER FIELD REP.: R. CALLAHAN

DEPTH (FT.)

DESCRIPTION

0	-	1	DARK BROWN LOAM
1	-	2	YELLOW BROWN CLAYEY SILT, SLICKENED SIDES
2	-	3	YELLOW BROWN CLAYEY SILT, RELATIVELY DRY
3	-	4	YELLOW BROWN CLAYEY SILT GRADES TO RED/BROWN SILT LOAM,
4	-	5	YELLOW BROWN SILT LOAM GRADES TO RED/BROWN SILTY LOW WITH NOTICABLE SILT CONTENT
5	-	11	LIGHT PALE REDDISH BROWN SANDY SILTY LOAM (BRICK COLORATION), SOIL HAS A SANDSTONE APPEARANCE, MOTTLED WITH WHITE STREAKS, SLICKENED SIDES, NO SIGNS OF SURFACE DISPOSAL OR FILL, SLIGHTLY ELEVATED HNU READINGS, UPTO 1.5 PPM, SAMPLED AT 11.0 FEET

TOTAL DEPTH: 11 FEET PHOTOGRAPH TAKEN AT 11.0 FEET NO GROUNDWATER ENCOUNTERED

TEST PIT ID: TPC-1

DATE: 09-DEC-87 BACKGROUND HNU: 0.6 PPM

CONTRACTOR: HARDIN-HUBER FIELD REP.: R. CALLAHAN

DEPTH (FT.)

DESCRIPTION

- 0 1 ORGANIC TOPSOIL
- 1 3 YELLOW BROWN SILTY CLAY GRADING TO RED BROWN SILTY CLAY, COARSE CONCRETE AND ASPHALT DEBRIS
- 3 4 RED BROWN SILTY CLAY ALONG BANK, DARK BROWN SILTY CLAY IN CHANNEL, DEMOLITION DEBRIS NOTICEABLE, METAL SCRAPS VISIBLE IN STREAM CHANNEL AT 3.0 FEET, APPEARS TO BE REMNANTS OF A CORRUGATED METAL PIPE
- 4 5 RED BROWN SILTY CLAY TO YELLOW BROWN CLAY LOAM ALONG BANK, FILL MATERIAL ENDED AT 4.25 FEET

TOTAL DEPTH: 5.0 FEET PHOTOGRAPH TAKEN AT 3.0 FEET NO GROUNDWATER ENCOUNTERED

TEST PIT ID: TPC-2

DATE: 09-DEC-87 BACKGROUND HNU: 0.6 PPM

CONTRACTOR: HARDIN-HUBER FIELD REP.: R. CALLAHAN

DEPTH (FT.)

DESCRIPTION

- 0 1 RED BROWN CLAYEY LOAM, NOT MUCH ORGANIC MATTER, STONEY
 1 2 RED BROWN CLAY LOAM GRADES TO LIGHT BROWN SANDY LOAM, SOIL STONEY IN CENTER OF CHANNEL, FABRIC REMNANTS NOTED
 2 - 5 LIGHT BROWN SANDY LOAM, GRADES TO DARK BROWN SILT LOAM, SOIL DAMP, NO SIGNS OF SEEPAGE, ASPHALT COATED METAL PIPE NOTED
- 5 7 DARK BROWN SILTY LOAM, SOME DAMP CLAY INTERMIXED FIL AND DEBRIS, I.E. A LARGE TREE STUMP AND BLACK SHEET PLASTIC NOTED AT 5.0 FEET, SAMPLE ID: TPC2-1
- 7 12 DARK BROWN SILTY LOAM, RELATIVELY COARSE STONES, FILL VISIBLE TO 11.0 FEET

TOTAL DEPTH: 12 FEET THREE PHOTOS TAKEN SHOWING METAL PIPE IN TEST PIT NO GROUNDWATER ENCOUNTERED

TEST PIT ID: TPF-1

DATE: 11-DEC-87 BACKGROUND HNU: 1.0 PPM

CONTRACTOR: HARDIN-HUBER FIELD REP.: R. CALLAHAN

DEPTH (FT.)

•

DESCRIPTION

- 0 0.5 MEDIUM BROWN SILT LOAM
- 0.5 1 MEDIUM BROWN SILT LOAM GRADES TO MEDIUM BROWN SILT, DENSE SHALE AND QUARTZ FRAGMENTS VISIBLE
 - 1 3 APPEARANCE OF BLACK STREAKING WITHIN QUARTZ AND SHALE FRAGMENTS IN MEDIUM BROWN SILT, MOTTLED YELLOW, BROWN, RED, BLACK, AND WHITE IN VARIABLE AMOUNTS

3 - 8 PREDOMINANCE OF DENSE SHALE AND QUARTZITE FRAGMENTS, INTERMIXED WITH MEDIUM BROWN SILT, SAMPLE TAKEN AT 8.0 FEET

> TOTAL DEPTH: 8.0 FEET NO PHOTOGRAPHS TAKEN NO GROUNDWATER ENCOUNTERED

TEST PIT ID: TPF-3

DATE: 11-DEC-87 BACKGROUND HNU: 0.8 PPM

CONTRACTOR: HARDIN-HUBER FIELD REP.: R. CALLAHAN

DEPTH (FT.)

DESCRIPTION

- 0 1 MEDIUM BROWN SILT LOAM
- 1 4 MEDIUM BROWN SILT LOAM GRADES TO LIGHT BROWN SILT INTERMIXED WITH QUARTZ FRAGMENTS, MOTTLED IN APPEARANCE WITH BLACK, YELLOW, RED, GRAY, AND BROWN SILT, SLICKENED SIDES, HARD LAYER OF QUARTZITE ENCOUNTERED AT 4.0 FEET, REFUSAL TO ANY FURTHUR EXCAVATION, SAMPLE COLLECTED AT 4.0 FEET

TOTAL DEPTH: 4.0 FEET NO PHOTOGRAPHS TAKEN NO GROUNDWATER ENCOUNTERED

APPENDIX D

.

.

GEOPHYSICAL SURVEY

.

ļ

APPENDIX D

GEOPHYSICAL SURVEY

INTRODUCTION

A geophysical investigation was conducted at the Black & Decker Hampstead, Maryland facility between 9 and 17 November 1987. This investigation was one component of the Phase I Environmental Investigation implemented by Roy F. Weston, Inc. (WESTON). The purpose of this appendix is to document the data acquisition and data reduction procedures of the WESTON geophysical investigation.

The geophysical investigation at the Black & Decker facility covered two sites: Zone D and Zone F (Figure 3-1). Both areas are located in the northwest corner of the facility.

SURVEY OBJECTIVES

The primary objective of the geophysical investigation was to locate the trenches of buried debris in Zone D and the burn area in Zone F. Delineation of anomalous magnetic and electromagnetic readings was used to determine test pit locations.

The magnetometer was used to identify areas containing relatively large concentrations of buried ferrous metal. Possible sources of the ferrous metals are the trenches in Zone D and the product burn area in Zone F.

The EM-31D terrain conductivity meter was used to identify areas having anomalous electrical conductivities. Metal debris associated with the burial and burning activities may be possible sources of anomalous conductivities.

GEOPHYSICAL SURVEYING TECHNIQUES

Survey Grid

The survey grid was established by WESTON personnel to encompass both Zone D and Zone F. A Nikon level was used to establish the orientation of two reference lines. From these reference lines, a base grid of 40 feet by 40 feet was placed over the 5-acre study area. The north-south axis of the grid was oriented north 10° west.

General Data Acquisition Procedures

Included in this subsection are brief explanations of the geophysical techniques used to survey Zones SD and F. General field procedures and quality assurance and quality control (QA/QC) protocols are also documented in this subsection.

4178B

Magnetics

Equipment

Magnetic measurements were obtained using an EDA Instruments Inc. Model ONMI IV "tie-line" magnetometer. The unit includes a double sensor, collapsible aluminum staff, signal cable, chest harness, and a rechargeable lead-acid battery cartridge. A detailed description of the magnetometer's operation principles can be found in the EDA Instruments Inc. operations manual.

Theory

The magnetic method detects variations in magnetic susceptibility within the subsurface environment. Magnetic susceptibility is a physical property of matter that describes the ease of its magnetization. For example, while most sedimentary rocks have magnetic susceptibilities ranging between 10^{-6} and 10^{-5} cgs, iron alloys have susceptibilities ranging from 1 to 10^{6} cgs (Breiner, 1973). When the earth's magnetic field encounters a material having a high magnetic susceptibility, induced magnetization occurs. The material is magnetized and the resulting induced magnetic field is the product of its volume magnetic susceptibility (cgs) and the earth's field intensity (gauss). A magnetometer measures the vector sum of the earth's magnetic field and the induced magnetic field. Consequently, local variations in the earth's magnetic field can be measured at locations of buried ferrous materials.

There are certain limitations of the magnetic method. Koerner et al. (1983) experimentally determined that a single 55- gallon drum buried approximately 10 to 11 feet below ground surface will not likely be detected. In addition, they have shown that a single drum buried at a depth of 3 feet will sometime escape detection at a lateral offset distance of 6 feet. Additional limitations include corrosion of metals and magnetic "noise" from scattered surface debris.

Field Preparation

Prior to the survey, the magnetometer was prepared for data acquisition. The magnetometer's internal clock was synchronized to local time, and the magnetometer was tuned to the regional magnetic field to achieve the optimum signal strength.

The magnetic surveys were conducted along preestablished grids. The sensors were set at a fixed height of 2.5 and 3.0 meters above the ground surface. Data were recorded for the total magnetic field and magnetic gradient by entering the grid coordinate location and the associated magnetic field measurements in the magnetometer's digital memory. During the survey, locations of cultural features (e.g., metallic fences, powerlines, railroad tracks, scrap metal, etc.) and inaccessible areas were recorded in the field notebook.

Quality Assurance and Quality Control

Several procedures were followed to ensure data integrity. For example, base station readings were obtained hourly throughout each of the surveys to monitor daily (diurnal) variation of the earth's magnetic field. The base station for this investigation was located approximately 200 feet west of the survey area. This area was chosen because it was thought to be free of known buried waste material and cultural interferences.

During the survey, the magnetic values obtained at the first and last stations along each traverse were manually recorded in the field notebook. Following each day's survey, the data were uploaded from the magnetometer's digital memory to a NEC portable computer. These values were then compared to the information recorded in the field notebook to ensure that the magnetometer was storing data correctly.

The field notebook was also used to document cultural features that may have influenced any magnetic measurements. Cultural features noted during the geophysical survey included overhead powerlines, fences, buildings, and scrap metal.

Electromagnetic Terrain Conductivity

Equipment

The Geonics Limited EM31-D terrain conductivity meter (EM31) was used to obtain conductivity measurements of the shallow subsurface. The EM31 system consists of a self-contained dipole transmitter (primary field source) and receiver (sensor), phase-sensing circuits, an amplifier, and an OMNIDATA Polycorder Electronic Notebook (Polycorder). The EM31 is powered by eight alkaline "C" cells and operates at a frequency of 9.8 kHz. The Polycorder is used to record and store the EM31 analog signal of the quadrature and in-phase component measurements for rapid and accurate data transfer to a computer or printer.

Theory

The electromagnetic method detects lateral and vertical variations of electrical conductivity in the subsurface. These variations may result from buried metal objects or from groundwater contaminant plumes with total dissolved solid concentrations above background levels.

Electrical conductivity is a physical property of matter describing its ability to conduct electrical current. Alternating current in the transmitter coil of the EM31 produces an alternating magnetic field, which induces circular eddy current loops in the subsurface. The instrument is designed so that the magnitude of any one of these current loops is directly

proportional to the conductivity in the vicinity of that loop (Geonics, Ltd., 1984). An alternating secondary magnetic field is generated by the induced current with an intensity proportional to the current flowing within a loop.

The receiver coil and phase-sensing circuits measure the quadrature and in-phase components of the secondary magnetic field. The quadrature component is 90° out of phase with the in-phase component (which is in-phase with the primary alternating field). The quadrature component is used as a measure of the conductivity of the earth for relatively low conductivity materials (e.g., rocks and soils). As the conductivity increases, however, the quadrature component reaches a maximum and decreases, while the in-phase component continues to increase. This behavior of the in-phase component illustrates why it is used to detect buried metallic objects. It has a much higher sensitivity to good conductors then the quadrature component.

Quality Assurance and Quality Control

Operation of the terrain conductivity meter was in accordance with the operating manual supplied by Geonics, Ltd., 1984. A calibration check was conducted prior to the survey at a base station suspected to be free of buried metal objects and cultural interferences. The QA/QC check ensures proper meter calibration, instrument sensitivity, and instrument phasing. In addition, battery checks were performed for both the EM31 and Polycorder. All of the calibration readings were recorded on the OMNI Polycorder. At least one additional base station calibration check was recorded during the EM31 survey to ensure that the instrument was maintaining calibration.

In order to ensure that the data were being recorded accurately, measurements taken at the beginning and end of each traverse were recorded in the field notebook. The field notebook was also used to document cultural features that may have influenced any conductivity measurements.

Following the survey, the data were uploaded from the Polycorder's memory to a field computer using the DAT31 version 1.08 software package (Geonics, Limited), and were permanently stored on a 3 1/2-inch floppy disk. The uploaded data were then compared to the data recorded in the field notebook for guality assurance purposes.

DATA REDUCTION PROCEDURES

This subsection describes the analytical procedures utilized to process the geophysical data acquired at Black & Decker.

Magnetics

After the magnetics data were uploaded to the NEC portable computer, the data were formatted and edited using the Lotus software package. Prior to any interpretation, corrections for diurnal variations were applied to the data. The edited data file was then loaded into a Surfer contouring program (Golden Software). This program was used to produce vertical magnetic gradient (Figure D-1) and total field anomaly maps (Figure D-2).

A cultural features map was constructed based on the information recorded in the field notebook. Anomalous readings that coincided with the location of these cultural features were assumed to have been caused by surface metal rather than buried ferrous material. Consequently, these anomalies were considered to be unreliable indicators of buried metal debris. However, this assumption does not necessarily preclude the possibility that buried ferrous materials may exist in the subsurface at these locations. Profiles of each traverse were also generated from the final reduced data set in order to review individual two dimensional slices (a cross-section of the magnetic intensity plotted against distance along profile) through the survey grid.

Anomalies are defined as deviations from local magnetic background readings. All sites have certain levels of magnetic noise associated with localized variations in magnetic suseptibility due to changes in subsurface lithology or cultural interferences. These variations control the total range of background readings. Any subsurface material that generates an induced field having an intensity within the range of background readings will not be detected. Therefore, at a given site, only those measurements that deviate from the background readings are identifiable as anomalies.

All of the displays (total field, vertical gradient, and cultural features maps, and the magnetic profiles) were incorporated into an integrated interpretation, which resulted in the identification of two types of magnetic anomalies. One type of anomaly resulted from surface cultural features. The second type of anomaly was interpreted to result from buried ferrous materials.

More emphasis was placed on the vertical gradient data and maps during the interpretation because gradient measurements decrease more rapidly than do total intensity measurements with distance from a buried magnetic source. Therefore, the areal extent of the magnetic anomaly is reduced with gradient measurements. This results in more accurate test pit placements.

4178B

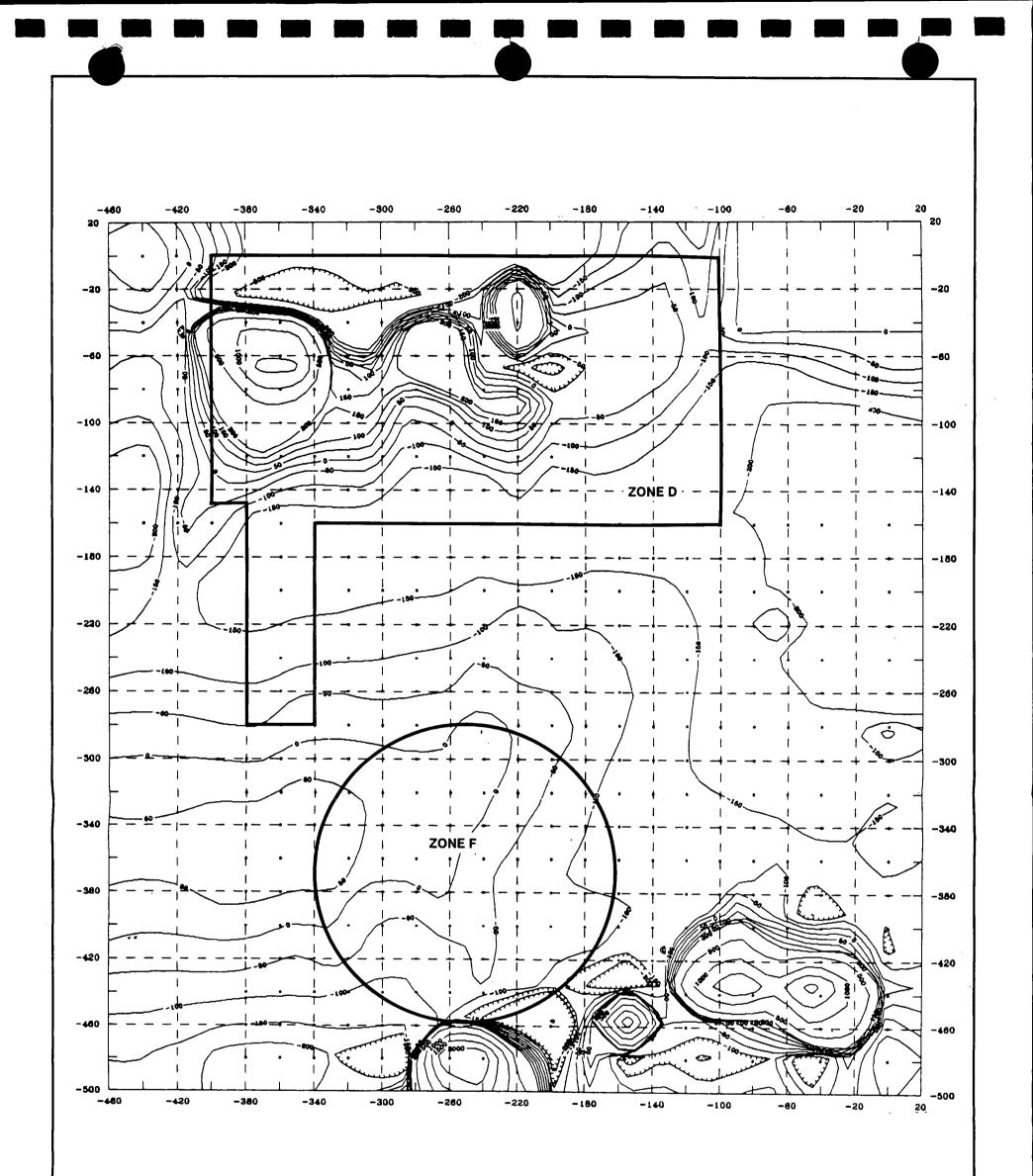


Electromagnetic Terrain Conductivity Meter

The electromagnetic data files resident in the Polycorder were transferred to an NEC laptop computer using the DAT31 software package. ASCII files were generated from the EM31 data set and loaded into a Surfer contouring program (Golden Software). The contouring program produced quadrature (Figure D-3) and in-phase conductivity maps (Figure 3-14).

The cultural features map generated for the magnetic interpretation was incorporated in the conductivity interpretation. Anomalous conductivity readings that coincided with the location of these cultural features were assumed to be unreliable indicators of conductive materials. However, this assumption does not necessarily rule out the possibility that buried conductive materials may exist in the subsurface at these locations. Profiles of each traverse were also generated from the final reduced data set in order to review individual two dimensional slices (a cross-section of the electrical conductivity plotted against distance along profile) through the survey grid. Anomalies not associated with cultural features were interpreted to result from buried conductive materials. The inphase conductivity measurements were primarily used to identify electromagnetic anomalies because they are more susceptible to buried metal than the quadrature measurements.

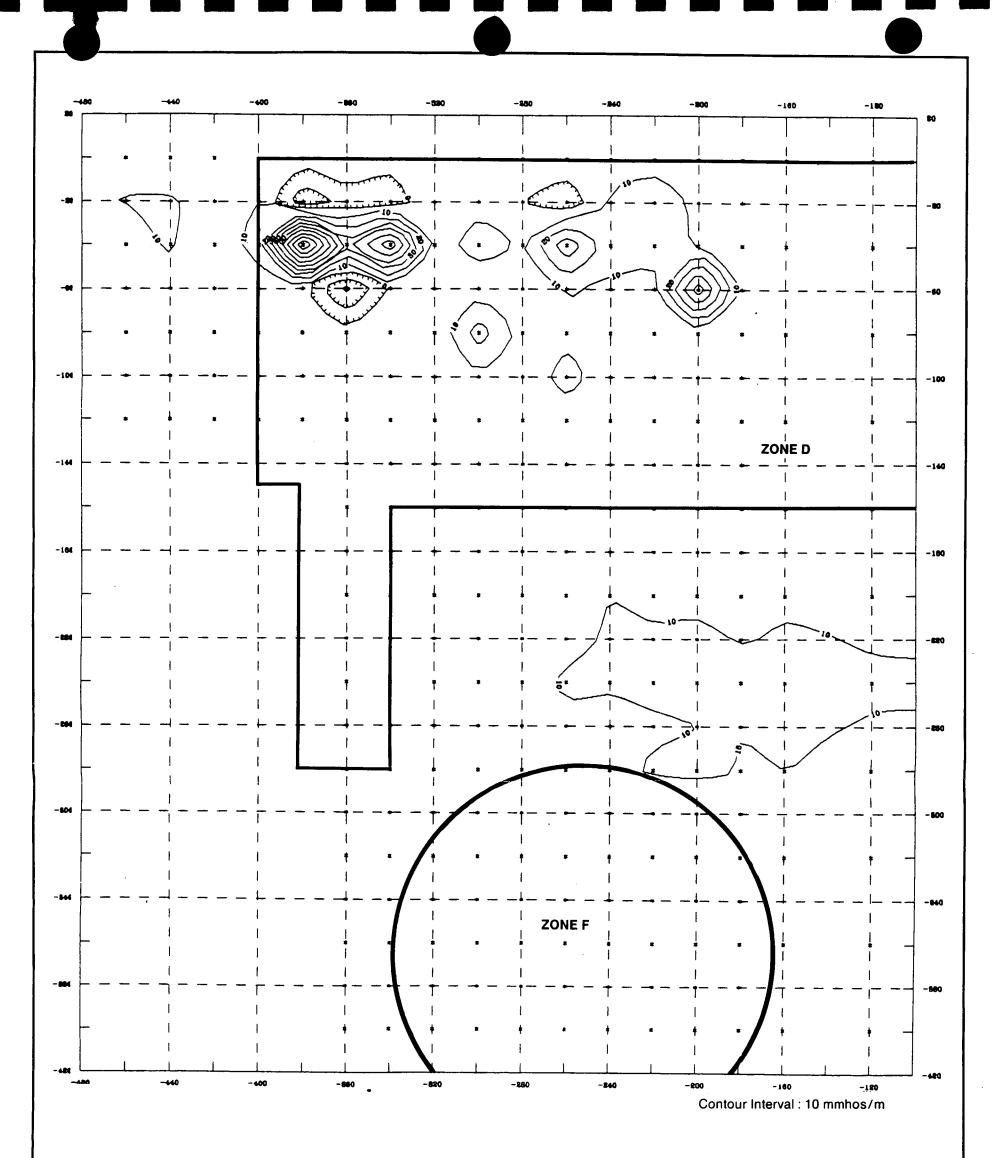
D-6


LEGEND

*

100

Magnetic Control Points Magnetic Contour Closed Magnetic Low Contour **Contour Interval** From -200 to +200 : 50 Gammas/Meter From -500 and Less : 500 Gammas/Meter From +500 and More : 500 Gammas/Meter



LEGEND

- * Magnetic Control Points
- Magnetic Contour
 - **Contour Interval**
 - From -200 to +200 : 50 Gammas/Meter From -500 and Less : 500 Gammas/Meter From +500 and More : 500 Gammas/Meter

LEGEND

Electromagnetic Control Points

- Electromagnetic Contour
- Closed Electromagnetic Low Contour

Contour Interval

From -200 to +200 : 50 Gammas/Meter

From -500 and Less : 500 Gammas/Meter

From +500 and More : 500 Gammas/Meter

APPENDIX E

PHASE IIA ANALYTICAL DATA

GLOSSARY OF VOA DATA

STAN

DATA QUALIFIERS

- U = Compound was analyzed for but not detected. The associated numerical value is the estimated sample quantitation limit which is included and corrected for dilution and percent moisture.
- J = Indicates an estimated value. This flag is used either when estimating a concentrationfor tentatively identified compounds where a 1:1 response is assumed or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero; for example, if the limit of detection is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- B = This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination. This flag is also used for a TIC as well as for a positively identified TCL compound.
- E = Indicates that the compound was detected beyond the calibration range and was subsequently analyzed at a dilution.
- I = Interference.
- X = Additional qualifiers used as required are explained in the case narrative.

ABBREVIATIONS

- BS = Indicates blank spike in which reagent grade water is spiked with the CLP matrix spiking solutions and carried through all the steps in the method. Spike recoveries are reported.
- BSD = Indicates blank spike duplicate.
- MS = Indicates matrix spike.
- MSD = Indicates matrix spike duplicate.
- DL = Indicates that surrogate recoveries were not obtained because the extract had to be diluted for analysis.
- NA = Not applicable.
- DF = Dilution factor.

NR = Not required.

VOC ANALYSIS RESULTS: SOIL SAMPLES

4178B

WEST ANALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS									
RFW Batch Number: 8806	-803	Client:	BLACK AND				ge: 1		
Sample Information	RFW#: Matrix: D.F.: Units:	SOIL BLAN 88VY0053 Soil 1 ug/kg	K SBIIA-1-0 006 Soil 1.1 ug/kg	6 SBIIA-2-0 012 Soil 1.2 ug/kg	3 SBIIA-2-03 012 MS Soil 1.2				
	Toluene-d8: luorobenzene: oroethane-d4:	100 96 94	\$ 104 \$ 100	% 94	% 102 % % 102 %	ः १ ः १	१ १ १ ====f]		
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane Trans-1,2-Dichloroethe Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane. Carbon Tetrachloride. Vinyl Acetate Bromodichloromethane. 1,2-Dichloropropane Trans-1,3-Dichloroprop Trichloroethene Dibromochloromethane. 1,1,2-Trichloroethane. 1,1,2-Trichloroethane. Cis-1,3-Dichloropropen 2-Chloroethylvinylethe Bromoform 4-Methyl-2-pentanone.		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U 11 U 11 U 11 U 11 U 11 U 11 U 6 U 6 U 6 U 6 U 6 U 11 U 6 U 11 U 6 U 6 U 6 U 6 U 6 U 6 U 6 U 6 U 6 U 6 U 6 U 6 U 6 U 6 U 6 U 6 U 6 U 6 U 11 U 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U 12 U B 40 F B 65 F U 6 U				

RFW Batch Number: 8806-803	Client:	BLACK AND DECKE	CR		Page: 1
• · - ·	88VY0053	SBIIA-1-06 SBII 006]======fl====	012 013	2 MS	=fl======fl
Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Total Xylenes	5 U 5 U 5 U 5 U 5 U 5 U 5 U	6 U 6 U 6 U 6 U 6 U 6 U	6 U 6 U 6 U 6 U 6 U 6 U 6 U	6 U 6 U 102 % 118 % 6 U 6 U 6 U	

Other:

U=Analyzed, not detected. B=Present in ank. NRP=Not Reported J=Present at less than detection limit NR=Not requested.

WEST ANALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS									
	mber: 8806-803	Client:	BLACK AND	DECKER			Page: 1		
Sample Information	RFW#: Matrix: D.F.: Units:	SOIL BLANH 88VY0053 Soil 1 ug/kg	<pre> SBIIA-1-0 006 Soil 1.1 ug/kg </pre>		03 SBIIA-2-0 012 MS Soil 1.2 ug/kg				
Surrogate	Toluene-d8:	100 9					\$ \$		
Recovery	Bromofluorobenzene:	96 9					* *		
(%)	1,2-Dichloroethane-d4:	94 9				•	•		
Bromomethane Vinyl Chlori Chloroethane Methylene Ch Acetone Carbon Disul 1,1-Dichloro 1,1-Dichloro Trans-1,2-Di Chloroform. 1,2-Dichloro 2-Butanone. 1,1,1-Trichl Carbon Tetra Vinyl Acetat Bromodichlor 1,2-Dichloro Trans-1,3-Di Trichloroeth	de de aloride fide oethene oethane oroethane oroethane chloride comethane opropane chloropropene opropane	10 10 10 34 34 5 5 5 5 5 10 10 10 5 10 5 10 5 10 5 10 5 10 5 5 5 5 5 5	J 11 J 11 J 11 J 11 J 6	U 12 U 12 B 34 B 67 U 6	U 12 U 12 B 40 B 65 U 6 U 35 U 6 U 6 U 6 U 6 U 6 U 6 U 12 U 6 U 12 U 6 U 12 U 6 U 12 U 6 U 12 U 6 U 12 U 6 U 3 U 90	U U U B B U V & U U U U U U U U U U U U U U U U U	·		
	romethane		-	U 6	U 6	U			
-,-,			· · · · ·	11 6	17 01	8			

6 U

6 U 11 U

6 U

11 U

11 U

5 U

5 U

5 U

10 U

10 U

10 U

Benzene....

cis-1,3-Dichloropropene.....

2-Chloroethylvinylether.....

2-Hexanone.....

91 %

12 U

12 U

12 U

6 U

6 U

6 U

6 U

6 U

12 U

12 U

12 U

RFW Batch Number: 8807-987	Client:	B	LACK &	DEC	KER	(REVISED)			Page:	2
Cust ID: RFW#:	PW06 003		PW07 004	======================================	PW07 004 DL	 =f]=	₩-4 005		₩-4 005 DL		RFW01B 006	=f1
Tetrachloroethene			5900		3100		4100		1500	**		J
1,1,2,2-Tetrachloroethane	. 5	U	5	U	500	U	5	U	500	U	5	U
Toluene		U	5	U	500	U	5	U	500	U	5	U
Chlorobenzene	. 5	U	5	U	500	U	5	U	500	U	5	U
Ethylbenzene	. 5	U	5	U	500	U	5	U	500	U	5	U
Styrene	_	U	5	U	500	U	5	U	500	U	5	U
Total Xylenes		U	5	U	500	U	5	U	500	U	5	U

Other:

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported =Present at less than detection limit. WESTON ALYTICS

GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

E=====================================	Client:	BLACK & DE				Page: 2
	SBIIA707D 041 Soil 1.2 ug/kg	88VY0056- MB1 Soil 1 ug/kg	88VY0057- MB1 Soil 1 ug/kg	88VY0059- MBI Soil 125 ug/kg	SB-IIA-705 038 MS Soil 1.2 ug/kg	SB-IIA-705 038 MSD Soil 1.2 ug/kg
Surrogate Toluene-d8: Recovery Bromofluorobenzene: (%) 1,2-Dichloroethane-d4:	116 % 114 % 103 %	107 % 93 %	109 % 93 %	105 % 105 %	104	115 % 115 % 101 % 1=======fl
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethene Trans-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane	12 U 12 U 12 U 12 U 45 B 120 B 120 B 120 B 6 U 6 U 6 U 12 U 6 U 12 U 6 U 12 U 6 U 12 U 6 U <	10 U 10 U 10 U 45 36 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	10 U 10 U 10 U 26 35 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5	1300 U 1300 U 1300 U 2300 2100 630 U 630 U 630 U 630 U 630 U 1300 U 630 U 1300 U 630 U	12 U 12 U 12 U 33 B 50 B 6 U 35 % 6 U 6 U 6 U 6 U 6 U 12 U 6 U 12 U 6 U 6 U	12 U 12 U 12 U 51 B 48 B 6 U 42 % 6 U 42 % 6 U 6 U 6 U 12 U 6 U 12 U 6 U 12 U 6 U
1,2-Dichloropropane Trans-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethylvinylether Bromoform 4-Methyl-2-pentanone 2-Hexanone	. 6 U . 6 U . 2 J . 6 U . 6 U . 6 U . 12 U . 12 U	5 U 5 U 5 U 5 U 5 U 5 U 10 U 10 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U 10 U 5 U 10 U	630 U 630 U 630 U 630 U 630 U 630 U 1300 U 1300 U	6 U 77 % 6 U 6 U 75 % 6 U 12 U 6 U 12 U	6 U 85 % 6 U 6 U 82 % 6 U 12 U 6 U 12 U

					= == =========================	
RFW Batch Number: 8806-864	Client:	BLACK & DE	CKER			Page: 2
Cust ID: RFW#:	SBIIA707D 041	88VY0056- MB1	88VY0057- MB1	88VY0059- MBI 1======f	SB-IIA-705 038 MS 1======f1	038 MSD
Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene	. 6 U . 6 U . 200 . 6 U . 2 J	5 U 5 U 5 U 5 U 5 U 5 U	5 U 5 U 5 U 7 5 U 7 5 U 7 5 U	630 U 630 U 630 U 630 U 630 U	6 U 6 U 93 % 103 % 6 U	6 U 6 U 109 % 119 % 6 U 6 U
Styrene Total Xylenes					• •	6 U

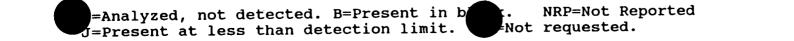
Other:

•

=Analyzed, not detected. B=Present in b d=Present at less than detection limit.

NRP=Not Reported

WESTON MALYTICS


÷.

GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE		Client:	BL	ACK & DI	ECKER				Page: 3
C Sample		SB-IIA-3F 001 Water 1 ug/L			88VW0076 MBJ Water J ug/I	5 - L C			
Surrogate Tolu Recovery Bromofluorob (%) 1,2-Dichloroeth	nane-d4:	100 99 97	% %	96 100 98	s 95 s 101		۶ ۶ ۶ 1======f1=	\$ \$ ======f	१ १ १ 1======f1
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane Trans-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Trans-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 2-Dichloropropene Cis-1,3-Dichloropropene 2-Chloroethylvinylether Bromoform 4-Methyl-2-pentanone		$ \begin{array}{c} 10\\ 10\\ 10\\ 4\\ 9\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\$	U U U U U U U U U U U U U U U U U U U	$ \begin{array}{c} 10 \\ 10 \\ 10 \\ 10 \\ 5 \\ 5 \\ 5 \\ 10 \\ 5 \\ 5 \\ 10 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	J 10 J 10) U) U) U) U 1			_ ••

RFW Batch Number: 8806-864	Client:	BLACK & DEC	CKER	Page: 3
Cust ID: RFW#:	001	SB-IIA-TB 002	MB1	l======fl=====fl=====fl
Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Total Xylenes	. 5 U . 5 U . 5 U . 5 U . 5 U . 5 U . 5 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U	5 U 5 U 5 U	

Other:

WESTON MALYTICS

GC/MS DATA SUMMARY

VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

RFW Batch Number: 8806-864	Client:	BLACK & DE	CKER			Page: 1
		SB-IIA-403	SB-IIA-501	SB-IIA-606		
Sample RFW#:	011	014	020	032	038	040
Information Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
D.F.:	1.3	1562	142	160	1.2	1.2
Units:	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Surrogate Toluene-d8:	115 %	73 %	82 %	 85 %		
Recovery Bromofluorobenzene:	115 %	101 %				
(%) 1,2-Dichloroethane-d4:	97 %		71 %	70 % 1€	92 %	101 %
Chloromethane				1600 U		12 U
Bromomethane		16000 U	1400 U	1600 U	12 U	12 U
Vinyl Chloride		16000 U	1400 U	1600 U	12 U	12 U
Chloroethane		16000 U	1400 U	1600 U	12 U	12 U
Methylene Chloride		55000 B	2700 B			
Acetone		33000 B	3800 B			
Carbon Disulfide		7800 U	710 U			
1,1-Dichloroethene	. 7 U		710 U			
1,1-Dichloroethane	. 7 U	7800 U	710 U			• •
Trans-1,2-Dichloroethene	. 7 U		710 U	800 U		
Chloroform	້. 7 ປ		710 U	800 U		
1,2-Dichloroethane	. 7 U	7800 U				
2-Butanone	. 13 U					
1,1,1-Trichloroethane						
Carbon Tetrachloride	. 7 U					
Vinyl Acetate	. 13 U		1400 U			
Bromodichloromethane						
1,2-Dichloropropane	. 7 U					
Trans-1,3-Dichloropropene			710 U			• •
Trichloroethene	. 7 U			_		
Dibromochloromethane						
1,1,2-Trichloroethane	. 7 U					
Benzene	. 7 U		710 U			
cis-1,3-Dichloropropene	. 7 U					
2-Chloroethylvinylether		16000 U	1400 U			
Bromoform		7800 U	710 U	800 U		
4-Methyl-2-pentanone	. 13 U	16000 U	1400 U	1600 U	12 U	12 U
	• 10 0			1600 U	12 U	12 U

RFW Batch Number: 8806-864	Client:	BLACK & DECKER		Page: 1
Cust ID: RFW#:	011	SB-IIA-403 SB-IIA-501 014 020]=======f]=======f	032 038	040
Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Total Xylenes	. 7 U . 7 U . 9 . 7 U . 7 U . 7 U . 7 U	7800 U 710 U 7800 U 710 U 30000 160 7800 U 710 U 12000 710 U 7800 U 710 U 12000 710 U 7800 U 710 U	800 U 6 800 U 6 2900 6 800 U 6	U 6 U U 6 U U 4 J U 6 U U 6 U U 12 U U 6 U

Other:

J=Analyzed, not detected. B=Present in h J=Present at less than detection limit.

k. NRP=Not Reported =Not requested. WESTON

GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

E=====================================	Client:	BLACK & I				Page: 1
Cust ID: Sample RFW#: Information Matrix: D.F.: Units:	RFW-901 001 Soil 1.3	RFW-905 005 Soil 1.4 ug/kg	RFW-801 011 Soil 1.2 ug/kg	88VY0052- MB1 Soil 1 ug/kg		
Surrogate Toluene-d8: Recovery Bromofluorobenzene: (%) 1,2-Dichloroethane-d4:	114 112	% 112% 118	% 116 % 120	% 108 % % 104 %	ક ક	 * * * *
Chloromethane. Bromomethane. Vinyl Chloride. Chloroethane. Methylene Chloride. Acetone. Carbon Disulfide. 1,1-Dichloroethene. 1,1-Dichloroethene. Trans-1,2-Dichloroethene. Chloroform. 1,2-Dichloroethane. 2-Butanone. 1,1,1-Trichloroethane. 2-Butanone. 1,1,1-Trichloroethane. 1,2-Dichloroethane. 1,2-Dichloroethane. 1,1,2-Dichloroethane. 1,1,2-Dichloroethane. 1,2-Dichloroethane. 1,2-Dichloromethane. 1,2-Dichloromethane. 1,2-Dichloropropane.	. 13 . 13 . 13 . 13 . 13 . 34 . 51 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 13 . 7 . 13 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7	U 14 U 14 U 14 U 14 B 42 B 56 U 7	U 12 U 12 U 12 U 12 B 35 B 78 U 6	U 10 U B 18 B U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U		1
Trans-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethylvinylether Bromoform 4-Methyl-2-pentanone 2-Hexanone	. 7 . 7 . 7 . 7 . 7 . 7 . 13 . 7 . 13	U 7 U 7 U 7 U 7 U 7 U 7 U 7 U 14 U 7 U 14	U 6 U 6 U 6 U 6 U 6 U 6 U 12 U 6 U 12	U 5 U U 10 U	T T T T T T	·

RFW Batch Number: 8806-764	Client:	BLACK & DEC	KER		Page: 1
Cust ID: RFW#:	RFW-901 001 =======f	005	RFW-801 011	88VY0052- MB1 fl=====fl===	======f1======f1
Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene	7 U 7 U 2 J 7 U 7 U 7 U	7 U 7 U 2 J 7 U 7 U 7 U	6 1 6 1 6 1 6 1 6 1 6 1	U 5 U U 5 U U 5 U U 5 U U 5 U	
Styrene Total Xylenes			6	• • •	

Other:

J=Analyzed, not detected. B=Present in b J=Present at less than detection limit.

k. NRP=Not Reported =Not requested. DATA SUMMARY FOR: BLACK & DECKER R.F.W. NO.: 8806-803-006

SAMPLE DESCRIPTION: SBIIA-I-06

TENTATIVELY IDENTIFIED COMPOUNDS (VOA FRACTION)

COMPOUND NAME

SCAN NUMBER

655

ESTIMATED CONCENTRATION (UG/KG)

C6-OXYGENATED COMPOUND

24J

.

R.F.W. NO.: 88VY0053-MB1

SAMPLE DESCRIPTION: SOIL BLANK

TENTATIVELY IDENTIFIED COMPOUNDS (VOA FRACTION)

COMPOUND NAME

SCAN NUMBER

.

ESTIMATED CONCENTRATION (UG/KG)

UNKNOWN

964

20J

DATA SUMMARY FOR: BLACK AND DECKER R.F.W. NO.: 8806-764 BLANK

SAMPLE DESCRIPTION: BLANK

TENTATIVELY IDENTIFIED COMPOUNDS (VOA FRACTION)

COMPOUND NAME

,

SCAN NUMBER

UNKNOWN

.

967

.

ESTIMATED CONCENTRATION (UG/KG)

_ 17J

R.F.W. NO.: 88VY0057-MB1

SAMPLE DESCRIPTION: SOIL BLANK

TENTATIVELY IDENTIFIED COMPOUNDS (VOA FRACTION)

COMPOUND NAME

SCAN NUMBER

ESTIMATED CONCENTRATION (UG/KG)

UNKNOWN

972

15J

R.F.W. NO.: 88VW0076-MB1

SAMPLE DESCRIPTION: 0709W270

TENTATIVELY IDENTIFIED COMPOUNDS (VOA FRACTION)

COMPOUND NAME

SCAN NUMBER

ESTIMATED CONCENTRATION (UG/KG)

UNKNOWN

272

17J

R.F.W. NO.: 8806-864-014

SAMPLE DESCRIPTION: SB-IIA-403

TENTATIVELY IDENTIFIED COMPOUNDS (VOA FRACTION)

COMPOUND NAME	SCAN NUMBER	ESTIMATED CONCENTRATION (UG/KG)
C9-CYCLOALKANES	771	16000J
C9-CYCLOALKANES	781	9300J
UNKNOWN	816	8000J
C ₁₀ -ALKENYLBENZENES	998	68000J
C ₁₀ -HYDROCARBONS	1015	78000J
C ₁₀ -ALKYLBENZENES	1110	97000J

R.F.W. NO.: 8806-864-020

SAMPLE DESCRIPTION: SB-IIA-501

TENTATIVELY IDENTIFIED COMPOUNDS (VOA FRACTION)

COMPOUND NAME C9-CYCLOALKANES C9-CYCLOALKANES UNKNOWN UNKNOWN	SCAN NUMBER	ESTIMATED CONCENTRATION (UG/KG)
C9-CYCLOALKANES	770	1500J
	780	900J
	814	800J
UNKNOWN	968	700J
C10-HYDROCARBONS	979	1500J
DECALON	1111	8500J

R.F.W. NO.: 8806-864-032

SAMPLE DESCRIPTION: SB-IIA-606

TENTATIVELY IDENTIFIED COMPOUNDS (VOA FRACTION)

COMPOUND NAME	SCAN NUMBER	ESTIMATED <u>CONCENTRATION (UG/KG)</u>
DIETHYLBENZENES	932	1500J
DIETHYLBENZENES	989	2200J
C ₁₀ -ALKYLBENZENES	1084	17000J

.

R.F.W. NO.: 8806-864-038

SAMPLE DESCRIPTION: SB-IIA-705

TENTATIVELY IDENTIFIED COMPOUNDS (VOA FRACTION)

COMPOUND NAME

SCAN NUMBER

ESTIMATED CONCENTRATION (UG/KG)

C69-OXYGENATED COMPOUND 655

325

R.F.W. NO.: 8806-864-040

SAMPLE DESCRIPTION: SB-IIA-707

TENTATIVELY IDENTIFIED COMPOUNDS (VOA FRACTION)

COMPOUND NAME	SCAN NUMBER	ESTIMATED CONCENTRATION (UG/KG)
UNKNOWN	692	100J
OXYGENATED COMPOUNDS	725	75J
UNKNOWN	785	1700J
OXYGENATED COMPOUNDS	790	1000J
UNKNOWN	1101	800J

R.F.W. NO.: 8806-864-041

SAMPLE DESCRIPTION: SB-IIA-707D

TENTATIVELY IDENTIFIED COMPOUNDS (VOA FRACTION)

COMPOUND NAME	SCAN NUMBER	ESTIMATED CONCENTRATION (UG/KG)
C _{10,11} -ALKANES	826	6700J
C _{10,11} -ALKANES	830	6000J

VOC ANALYSIS RESULTS: GROUNDWATER SAMPLES

WESTON ANALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

RFW Batch Number: 8807-987	Client:	BLACK & DI	CKER	(REVISED	08/29/88)	Page: 1
Cust ID: Sample RFW#: Information Matrix: D.F.: Units:	BLANK BLANK Water 1 ug/L	BLANK BLANK Water 1 ug/L	BLANK BLANK Water 1 ug/L	BLANK BLANK Water 1 ug/L	001 Water 1	PW05 002 Water 1 ug/L
Surrogate Toluene-d8: Recovery Bromofluorobenzene: (%) 1,2-Dichloroethane-d4:	99 99 113	६ 91 ६ 91	t 97 ⁹ t 83 ⁹	t 103 t 89	¥ 66 ሄ 135	\$ 97
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethene Trans-1,2-Dichloroethene Chloroform 1,2-Dichloroethane	. 10 . 10 . 10 . 10 . 17 . 34 . 5 . 5 . 5 . 5 . 5 . 5 . 5	U 10 U 10 U 10 U 10 U 10 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5	J 10 J 5 J 5 J 5 J 5 J 5 J 5 J 5	U 10 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5	U 10 U 10 U 10 U 25 200 U 5 U 5 U 5 U 5 U 5 U 5	U 10 U B 4 JE B 10 U U 5 U U 5 U U 19 U U 5 U U 5 U U 5 U
2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Trans-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethylvinylether Bromo 4-Met -2-pentanone 2-Hexanone	. 5 . 5 . 10 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5	U 5 U 10 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 10 U 5 U 10	U 5 U 5 U 10 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 10 U 5 U 10 U 10	U 5 U 5 U 10 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5	0 5 0 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 6 0 7 0 6 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0	U 5 U U 5 U U 5 U U 10 U U 5 U U 5 U U 5 U U 5 U U 5 U J 27 U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U

RFW Batch Number: 8807-987	Client:	BLACK & DECK	======================================	(REVISED 08	/29/88)	Page: 1
Cust ID:	BLANK	BLANK	BLANK	BLANK	RFW01A	PW05
RFW#:	BLANK	BLANK	BLANK	BLANK	001 ======f]=	002 =====fl
Tetrachloroethene		5 U	1. 5 U	· 5 U	4 J	26
1,1,2,2-Tetrachloroethane		5 U	5 U	5 U	5 U	5 U
Toluene		5 U	5 U	5 U	5 U	5 U
Chlorobenzene	- 11	5 U	5 U	5 U	5 U	5 U
Ethylbenzene		5 U	5 U	5 U	5 U	5 U
Styrene		5 U	5 U	5 U	5 U	5 U
Total Xylenes		5 U	5 U	5 U	5 U	5 U

Other:

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit. NR=Not requested.

WESTON ANALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

	mber: 8807-987	Client:		LACK & D	ECF	======================================		(REVISED)				Page: 2
	Cust ID:	 PW06		PW07		PW07		W-4		W-4		RFW01B
Sample	RFW#:	003		004		004 DL		005		005 DL		006
Information	Matrix:	Water		Water		Water		Water		Water		Water
	D.F.:	1		1		100		1		100		1
	Units:	ug/L		ug/L		ug/L		ug/L		ug/L		ug/L
Surrogate	Toluene-d8:	80	-	80		99		74		97		122 %
Recovery	Bromofluorobenzene:	81		97	-	109		88		104		117 %
(%)	1,2-Dichloroethane-d4:	82		80		84	-	74		82		160 %
Chloromethar				10		1000		10	Ú	1000	U	10 U
	2		U	10	U	1000	U	10	U	1000	U	10 U
	de		U	10	U	1000	U	10	U	1000	U	10 U
	2	. 10	-	10	-	1000		10	-	1000		10 U
	loride	. 4	JB		JB	760			JB	770		16 B
			JB	10		2100		10	U	1900		40 B
Carbon Disul	fide	•	U	-	U	500		34		500	-	870 E
1,1-Dichloro	ethene	-	U	-	U	500	-	5	-	500	-	5 U
1,1-Dichlord	bethane	• •	U		U	500		5	U.	500	-	5 U
	chloroethene	• •	J	-	U	500	-	8		500		5 U
		• •	U	÷	U	500	-	5	-	500	-	5 U
	bethane	• •	U	-	U	500	_	5	-	500	-	5 U
				10		1000		10	-	1000	-	10 U
	oroethane	-	U	-	U	500		•	U	500	-	10
	achloride		U	•	U	500	-	-	U	500	-	5 U
	:e		-	10	-	1000		10	-	1000	-	10 U
	comethane	• •	U	•	U	500	-	5	-	500		5 U
	propane	-	U	•	U	500	-	-	U	500	-	5 U 5 U
	chloropropene	-	U	•	U	500	-	•	U	500		5 U 5
	nene		••	15	.,	500	-	26 5	U	500		5 5 U
	comethane	•	U	-	U	500	-	-	U U	500 500		5 U 5 U
	loroethane	·	U	-	U	500		-	U U	500	-	5 U 2 J
		•	U	-	U	500		5	•	500	-	2 J 5 U
	loropropene	-	U		U	500 1000		5 10	-	1000		5 U 10 U
	lvinylether		U U	10	U U	500	-	10	-	500	_	10 U 5 U
		•	-	10^{5}	-	1000		10	-	1000	-	10 U
4-Metal-2-p 2-Hexanone.	pentanone	. 10		10	-	1000		10		1000	(10 U
								-				

RFW Batch Number: 8807-987	Client:	BLACK & DE	======================================	(REVISED)		Page: 2
Cust ID:	PW06	 PW07	PW07	W-4	W-4	RFW01B
RFW#:	003	004	004 DL	005	005 DL	006
	======f	1=====f	1=====f.	l====fl=		
Tetrachloroethene	. 12	5900 E	3100	4100 E	1500	2 J
1,1,2,2-Tetrachloroethane		5 U	500 U	5 U	500 U	5 U
Toluene		5 U	500 U	5 U	500 U	5 U
Chlorobenzene	- **	5 U	500 U	5 U	500 U	5 U
		5 U	500 U	5 U	500 U	5 U
Ethylbenzene				5 U	500 U	5 U
Styrene Total Xylenes				5 U	500 U	5 U

ō

Other:

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit. NR=Not requested.

WESTON ANALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

RFW Batch Number: 8807-987	Client:	BLACK & I	DECK	ER)	REVISED)				Page:	3
Cust ID:	RFW01B	P8		P8		P8		FB01		W-1	
Sample RFW#:	006 DL	007		007 MS		007 MSD		008		009	
Information Matrix:	Water	Water		Water		Water		Water		Water	
D.F.:	10	1		1		1		1		1	
Units:	ug/L	ug/L		ug/L		ug/L		ug/L		ug/L	
Surrogate Toluene-d8:	90	•	-	71		96	*	79	-	78	¥
Recovery Bromofluorobenzene:	103		*	81	-	101	-	92	-		8
(%) 1,2-Dichloroethane-d4:	.78			75		89	•	77	•	77	-
Chloromethane	100		-	10		10		10		— -	U
Bromomethane	100		U	10	-	10	-	10	-		U
Vinyl Chloride	100		-	10	-	10	-	10			U
Chloroethane	100	-	-	10		10	-	10	-) U
Methylene Chloride	130		JB		JB		В		JB		JB
Acetone	170		JB	-	JB	-	JB	10			U
Carbon Disulfide	110	-	U	-	U	5	U	-	U	14	
1,1-Dichloroethene	. 50	• •	U	64	-	69	-	-	U	-	U
1,1-Dichloroethane	50	• •	U	-	U	-	U	-	U	5	•
Trans-1,2-Dichloroethene	50	•	U	•	U	2	•	•	U	5	
Chloroform	50		U	-	U	-	U	5			U
1,2-Dichloroethane	50		U	-	U	-	U	-	U	5	-
2-Butanone	100		-	10	-	10	-	10			U
1,1,1-Trichloroethane	50		U	-	U	-	U	•	U	•	U
Carbon Tetrachloride	50		U	-	U	-	U	•	U	-	U
Vinyl Acetate	100		-	10	-	10	-	10	-		U
Bromodichloromethane	50	• •	U	-	U	-	U	0	U	•	5 U
1,2-Dichloropropane	50	•	U	-	U	-	U	5	U	-	5 U
Trans-1, 3-Dichloropropene	50	•	U	-	U	-	U	5	U	-	5 U
Trichloroethene	50	-		. 71		62		5	U	5	
Dibromochloromethane	50	• •	U	-	U	•	U	5	U	•	5 U
1,1,2-Trichloroethane	50		U		U	-	U	•	U		5 U
Benzene	50	U 5	U	70	•	92		5	U	5	-
cis-1,3-Dichloropropene	50	U 5	U	-	U	-	U	5	U	5	
2-Chloroethylvinylether	100		-	10		10	_	10	-) U
Bromoform	50	· _ ·	U	-	U	-	U	5	U	-	5 U
4-M 1-2-pentanone	100		-	10	-	10	-	10	Y) U
2-He one	100	U 10	U	10	U	10	U	10		10	U (

RFW Batch Number: 8807-987	Client:	==== B	LACK & D	DECKEI	====== R		REVISED)			===	Page: 3
Cust ID: RFW#:	RFW01B 006 DL	- -	P8 007		P8 007 MS		P8 007 MSD		FB01 008		W-1 009 ======f]
Tetrachloroethene	. 50	U	110 5		130 5		75 5		2 5	J	180 5 U
Toluene Chlorobenzene	. 50 . 50	Ū	5 5	U	80 110	8	100 118	*	5 5	Ū	5 U 5 U
Ethylbenzene Styrene Total Xylenes	. 50	U	5 5 5	-	5 5 5	Ū		บ บ บ	5 5 5	Ŭ	5 U 5 U 5 U

Other:

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit. NR=Not requested.

WESTON ANALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

======================================	Client:		LACK & D	ECI	KER		(REVISED)				Page: 4
Cust ID:	 S-1		 S-1		RFW5A		RFW5B		B-1		B-1
Sample RFW#:	010		010 DL		011		012		013		013 DL
Information Matrix:	Water		Water		Water		Water		Water		Water
D.F.:	1		10		1		1		1		100
Units:	ug/L		ug/L		ug/L 		ug/L		ug/L		ug/L
Surrogate Toluene-d8:	81	8	95		130	-	73		81		101 9
Recovery Bromofluorobenzene:	83		102		50		75		75		113 9
(%) 1,2-Dichloroethane-d4:	83	°8 -€1-	83	-€]	137		72 ==== == ==		177		81 =================================
chloromethane			100		10	U	10	Ū	10	U	1000 t
Bromomethane		U	100	U	10	U	10	-	10		1000 t
Vinyl Chloride		U	100	U	_ 10	U	10		10	-	1000 (
Chloroethane		U	100		10	-	10		10	-	1000 (
Methylene Chloride		JB	64			В		JB		JB	1500 1
Acetone	. 3	JB	180	В	72			JB	13	_	2300 1
Carbon Disulfide	. 5	U	50	-		U	-	U	-	U	500 1
1,1-Dichloroethene	. 5	U	50		-	U		U		U	500 0
1,1-Dichloroethane	. 5	U	50			U	-	U	-	U	500 1
Trans-1,2-Dichloroethene	, 7		50			J	10		23		500 1
Chloroform	• •	U	50	-		U	-	U	-	U	500
1,2-Dichloroethane	•	U	50	-	_	U	+	U	5 10	U	500 U 1000 U
2-Butanone			100	-	10		10	J		U	500
1,1,1-Trichloroethane	•	U	50			U	-	U U	-	U	500 1
Carbon Tetrachloride		U	50		=	U	10	-	10		1000
Vinyl Acetate		-	100		10	U U	= -	U		U	500
Bromodichloromethane	-	U	50	-	-	U U	-	Ŭ	5		500
1,2-Dichloropropane	• •	ប ប	50 50	-	-	U	-	Ŭ	5	-	500
Trans-1, 3-Dichloropropene	· .	J	50	-	-	J	12	·	34	Ŭ	500
Trichloroethene		บ่	50	-	_	U		U	5	U	500
Dibromochloromethane	-	บ บ	· 50		-	U	-	U	5		500
1,1,2-Trichloroethane	•	U U	50 50		-	U	_	Ŭ	5	-	500
Benzene	•	UU	50	-	-	U	-	Ŭ	5	-	500
cis-1, 3-Dichloropropene		-	100	_	10	-	10	-	10	-	1000
2-Chloroethylvinylether	-	U U	50	-	= •	U		Ŭ		Ū	500
Bromo			100	-	10	-	10	-	10	U	1000
4-Met. 2-pentanone	10		100		10		10		10	U	1000
2-Hexanone	. 10	5	- 100	-		-					

RFW Batch Number: 8807-987	Client:		BLACK & DE	ECKER		REVISED)	===3#==4=;	Page: 4
Cust ID: RFW#:	S-1 010		S-1 010 DL	RFW5A 011		RFW5B 012 =======fl==	B-1 013	B-1 013 DL
Tetrachloroethene	. 330		240 50 U	14	-11- U	110 5 U	2100 E 5 U	2500 500 U
Toluene Chlorobenzene	. 5 . 5	U U	50 U 50 U	J 5	U U	5 U 5 U	5 U 5 U	500 L 500 L
Ethylbenzene Styrene Total Xylenes	. 5	บ บ บ	50 U 50 U 50 U	J 5	U U U	5 U 5 U 5 U	5 U 5 U 5 U	500 t 500 t 500 t

Other:

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit. NR=Not requested.

WESTON ANALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

RFW Batch Number: 8807-987	Client:	BLACK & DECKER	(REVISED)	Page: 5
Cust ID: Sample RFW#: Information Matrix: D.F.: Units:	TB-01 014 Water 1 ug/L	RFW07 015 Water 1 ug/L		
Surrogate Toluene-d8: Recovery Bromofluorobenzene: (%) 1,2-Dichloroethane-d4:	96 104 96	¥ 76 % % 70 %	* * * * * * * *	* * * * * * * *
Chloromethane. Bromomethane. Vinyl Chloride. Chloroethane. Methylene Chloride. Acetone. Carbon Disulfide. 1,1-Dichloroethene. 1,1-Dichloroethane. Trans-1,2-Dichloroethene. Chloroform. 1,2-Dichloroethane. 2-Butanone. 1,1,1-Trichloroethane. Carbon Tetrachloride. Vinyl Acetate. Bromodichloromethane. 1,2-Dichloropropane. Trans-1,3-Dichloropropene. Trichloroethene. Dibromochloromethane. 1,1,2-Trichloroethane. 1,1,2-Trichloroethane. 0is-1,3-Dichloropropene. 2-Chloroethylvinylether. Bromo 2-Dentanone. 2-Hexanone. 2-Hexanone.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

RFW Batch Number: 8807-987	Client:	BLACK & DECKER	(REVISED)	Page: 5
Cust ID: RFW#:	014	RFW07 015 fl=====fl====	=====fl=======fl======	====fl======fl
Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene	. 2J . 5U	4 J J 5 U		
Chlorobenzene Ethylbenzene Styrene	. 5 U	5 U 5 U		
Total Xylenes		J 5 U		

Other:

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit. NR=Not requested.

WESTON ANALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

RFW Batch Number: 8807-008	Client:	BLACK & DE	CKER	(REVISED	08/29/88)	Page: 1
Cust ID: Sample RFW#: Information Matrix: D.F.: Units:	VWBK BLANK Water 1 ug/L	VWBK BLANK Water 1 ug/L	VWBK BLANK Water 1 ug/L	VWBK BLANK Water 1 ug/L	RFW06 001 Water 1 ug/L	RFW06 001 MS Water 1 ug/L
Surrogate Toluene-d8: Recovery Bromofluorobenzene: (%) 1,2-Dichloroethane-d4:	102 107 106	¥ 87	99 1 96 1	s 99 s 76	8 99 8 97	% 99 % % 100 %
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethene Trans-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon Tetrachloride	10 10 10 23 23 23 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	U 10 U 20 20 U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U	10 U 10 U 10 U 9 25 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5	J 10 J 10 J 10 J 10 J 10 J 5	U 10 U 10 U 10 U 10 U 5 U 5 U 5 U 5 U 5 U 7 U 2 U 5 U 10 U 5 U 10 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5	U 10 U U 10 U U 10 U U 10 U B 5 U JB 7 JE U 5 U U 64 % U 5 U J 2 J U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U
Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Trans-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethylvinylether Bromof.com 4-Metl 2-pentanone 2-Hexa	. 10 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 10 . 5	U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 10 U U 10 U		J 5 J 5 J 5 J 5 J 5 J 5 J 5 J 5 J 5 J 10 J 10 J 10	U 5 U 5 U 5 U 20 U 5 U 5 U 5 U 5 U 5 U 5 U 10 U 5 U 10	U 5 U U 5 U U 5 U V 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 5 U U 10 U U 10 U

======================================	Client:	BLACK & DECK	======================================	(REVISED 08/	29/88)	Page: 1
Cust ID: RFW#:	VWBK BLANK	VWBK BLANK	VWBK BLANK	VWBK BLANK	RFW06 001	RFW06 001 MS ======f
Tetrachloroethene 1,1,2,2-Tetrachloroethane	5 U	5 U 5 U	5 U 5 U	5 U 5 U	59 5 U	57 5 U
Toluene	5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	87 % 109 %
Ethylbenzene Styrene Total Xylenes	5 U 5 U	5 U 5 U 5 U	5 U 5 U 5 U	5 U 5 U 5 U	5 U 5 U 5 U	5 U 5 U 5 U

Other:

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit. NR=Not requested.

.

		WESTON	ANALYTICS			
			TA SUMMARY			
	VOLATILE	HAZARDOUS	SUBSTANCE	LIST	COMPOUNDS	
z						 ====

RFW Batch Number: 8807-008	Client:	BLAC	CK & D	DECK	ER	(R	EVISED	08/	/29/88)		Page
Cust ID: Sample RFW#:	RFW06 001 MSD		B-3 002		S-4 003		RFW04A 004		RFW04A 004 DL		RFW02.
Information Matrix:	Water	W	later		Water		Water		Water		Wate
D.F.:	1		1		1		1		• 10		,
Units:	ug/L		ug/L		ug/L		ug/L		ug/L		ug/
Surrogate Toluene-d8:	85		94		82		126		88	•	. 9
Recovery Bromofluorobenzene:	93		93		· 88		118		88		9
(%) 1,2-Dichloroethane-d4:	96		98		97		79		82		8
Chloromethane			 10		10		10		100		1
Bromomethane			10	U	10	U	10	U	100	U]
Vinyl Chloride		U	10	U	10	U	10	U	100	U	1
Chloroethane		U	10	U	10	U	10	U	100	U	1
Methylene Chloride		В	6	В	3	JB	14	В	180	В	
Acetone		JB	7	JB		JB	14		120	В	
Carbon Disulfide		U	20		-	U	960		170		13
1,1-Dichloroethene	66	*		U		U		U	50		
1,1-Dichloroethane	5	U		U		U	_	U	50		
Trans-1, 2-Dichloroethene			-		-	U	22		13		
Chloroform			-	U		U		U	50		
1,2-Dichloroethane		U	-			U	-	U	50		-
2-Butanone			10		10		10		100		1
1,1,1-Trichloroethane		U	-	U		U	-	U	50		
Carbon Tetrachloride			5	-		U	-	U	50	-	
Vinyl Acetate			10		10		10	U U	100		1
Bromodichloromethane		U	_	U		บ บ	-	U U	50 50		
1,2-Dichloropropane	-	U	-	บ บ		U U	_	U	50	-	
Trans-1,3-Dichloropropene		ጜ U	_	U U	-	U	24	-	24	-	
Trichloroethene	-	U U	•	U	_	Ŭ		U	50	-	
Dibromochloromethane	-	U	-	-	_	U		Ŭ	50		
1,1,2-Trichloroethane	07			U		Ŭ		Ĵ	50		
Benzene		ົ U		U		Ŭ		Ŭ	50		
cis-1,3-Dichloropropene			10		10			Ū	100		1
2-Chloroethylvinylether Bromoferm		υ		Ŭ		Ŭ		Ū	50		-
4-Met -2-pentanone			10		10		-	Ū	100		
2-Hexa. one	10		10		10			U	100		

	Client:		BLACK & DECI	======================================	===	 (REVISED 08	 /29/88)	Page: 2
Cust ID: RFW#:	001 MSD		B-3 002	S-4 003	 =f]:	RFW04A 004 ======f1	RFW04A 004 DL ====================================	RFW02A 005 =======fl
Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene	• 55 • 5	U	5 U 5 U 5 U	5 5	U U U	330 E 5 U 5 U	330 50 U 50 U	5 U 5 U 5 U
Chlorobenzene Ethylbenzene	. 105 . 5	ዩ ሀ	5 U 5 U	5	U U U	5 U 5 U 5 U	50 U 50 U 50 U	5 U 5 U 5 U
Styrene Total Xylenes	•	U U	5 U 5 U		U U	5 U 5 U	50 U	5 U

Other:

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit. NR=Not requested.

WESTON ANALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

	mber: 8807-008	Client:		LACK & D				(REVISED (Page:	3
	Cust ID:	RFW02B		RFW04B		RFW04B		RFWO4B DU	 Р І	RFWO4B DUP	RFW03B	3
Sample	RFW#:	006		007		007 DL		008		008 DL	009	
Information	Matrix:	Water		Water		Water	·	Water		Water	Water	•
	D.F.:	1		1		10		1		10	1	
	Units:	ug/L		ug/L		ug/L		ug/L		ug/L	ug/L	,
Surrogate	Toluene-d8:	74	-	114		89	¥	72		80 %		8
Recovery	Bromofluorobenzene:	76	-	95	૪	96	-	80		98 8		8
(%)	1,2-Dichloroethane-d4:	68	ै - £1 -	30		88		68		85 %		}
Chloromethar				10		100		10		100 U) U
	2		U	10	U	100	U	10	U	100 U	10	U (
	de		U	10	U	100	U	10	U	100 U	10	U (
Chloroethane	2	. 10	U	10	U	100	U	10		100 U	10) U
	loride		JB	9	В	180	В	2	JB	190 B		2 JE
			JB	30	В	400	В	3	JB	230 B	-	5 JI
Carbon Disul	lfide		J	5	U	50	U	-	U	50 U	5	-
1,1-Dichloro	bethene	•	U	5	U	50	U	-	U	50 U	-	5 U
	bethane	. 5	U	-	U	50	-	-	U	50 U		IJ
Trans-1,2-Di	ichloroethene	. 5	U		U	50		6	_	50 U	33	-
Chloroform.		• •	U	•	U	50	-	1	-	50 U	-	5 U
1,2-Dichlord	bethane	• •	U	-	U	50	-	5	-	50 U	-	5 U
			-	10		100		10	-	100 U		U C
1,1,1-Trich]	loroethane	• •	U	-	U	50	-	5	-	50 U		5
Carbon Tetra	achloride	• •	U		U	50	-	•	U	50 U	-	5 U
	te			10		100		10		100 U	. —	U C
	romethane	·	U	-	U	50	-	5	-	50 U		5 U
	opropane	-	U	-	U	50	-	5	-	50 U 50 U		5 U 5 U
	ichloropropene	• -	U		U	50	-	5	U		-	
	nene	•	U	24		23	-	23		20 J	19	9 5 U
	romethane	• •	U	-	U	50	-	5	-	50 U 50 U	-	ว U 5 U
	loroethane	-	U	-	U	50	-	5 5	-	50 U 50 U	-	5 U 5 U
			-	-	U	50	-	5	-	50 U 50 U	-	5 U 5 U
	nloropropene	-	U		U	50	-	5 10	-	100 U	-	5 U 0 U
	ylvinylether			10	-	100 50	-	5		100 U 50 U	_	5 U
			U		U	100	-	10	-	100 U		0 U
	pentanone	. 10 . 10		10 10		100	-	10	-	100 U		ου
2-Hexanone.		. 10	Ų		U	100	U	10	0	100 0		

RFW Batch Number: 8807-008	 Client:	BLACK & DI		(REVISED 08	 3/29/88)	Page: 3
Cust ID:	RFW02B 006	RFW04B 007	RFW04B 007 DL	RFWO4B DUP		RFW03B 009
RFW#: Tetrachloroethene	f	[]=========	fl====================================			======f 430 E
1,1,2,2-Tetrachloroethane Toluene	. 5 L	J 51	U 50 T	J 5 U	50 U 50 U	5 U 5 U
Chlorobenzene Ethylbenzene	. 5 L . 5 L	J 51	U 50 U	J 5 U	50-U 50 U 50 U	5 U 5 U 5 U
Styrene Total Xylenes			-		50 U 50 U	5 U 5 U

Other:

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit. NR=Not requested.

WESTON ANALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

.

1

RFW Batch Number: 8807-008	Client:		LACK & D				REVISED		29/88)		Page: 4
Cust ID:	RFW03B		 RFW08		RFW08		RFW09		TB02		
Sample RFW#:	009 DL		010		010 DL		011		012		
Information Matrix:	Water		Water		Water		Water		Water		
D.F.:	10		1		50		1		1		
Units:	ug/L		ug/L		ug/L		ug/L	~ ~	ug/L		
Surrogate Toluene-d8:	80	* *	82		90	*	126		88		
Recovery Bromofluorobenzene:	93	8	82	*	108	-	123		94		
(%) 1,2-Dichloroethane-d4:	92	8-€1-	74		98		113		102		
Chloromethane			10		500		10	Ū	10	U	
Bromomethane		U	10	U	500	U	10	U	10		
Vinyl Chloride		U	10	U	500	U	10	U	10		
Chloroethane	. 100	U	10	U	500	U	10	-	10		
Methylene Chloride		В	4	JB	910	В	18	В	-	JB	
Acetone	. 280	B	3	JB	1400	В	10		-	JB	
Carbon Disulfide	. 50	U	5	U	250	U	-	U	-	U	
1,1-Dichloroethene		U	3	J	250	U	5	-	5	-	
1,1-Dichloroethane		U	9		250	-		U	5		
Trans-1,2-Dichloroethene	, 38	J	20		250	-	14		5	U	
Chloroform		U	1	J	250		-	U	8		
1,2-Dichloroethane		U	5	U	250		•	U	5		
2-Butanone	. 100	-	10	U	500		10	-	10	-	
1,1,1-Trichloroethane	. 50		23		250		-	U	5	-	
Carbon Tetrachloride	. 50		-	U	250		-	U	-	U	
Vinyl Acetate	. 100		10	-	500	-		U	10	-	
Bromodichloromethane		U	_	U	250		•	U	5	-	
1,2-Dichloropropane	•	U		U	250	-	-	U	-	U	
Trans-1,3-Dichloropropene	. 50	U		U	250	U	-	U	-	U	
Trichloroethene		J	1900		1700		-	J	•	U	
Dibromochloromethane	. 50	U		U	250	-	-	U	-	U	
1,1,2-Trichloroethane	. 50	U	-	U	250		-	U	•	U	
Benzene	. 50	U	-	U	250		-	J	-	U	
cis-1,3-Dichloropropene	. 50	U	-	U	250		-	U		U	
2-Chloroethylvinylether	. 100		10	-	500	-		U	10		
Bromof	. 50	U		U	250		-	U	-	U	
4-Met 2-pentanone	. 100		10		500	-	_	U	10		
2-Hexa	. 100	U	10	U	500	U	10	U	10	U	

RFW Batch Number: 8807-008	Client:	BLACK	& DEC	======================================	(REVISED	08/29/88)	Page: 4
Cust ID: RFW#:	RFW03B 009 DL	-	010	RFW08 010 DL	RFW09 011		
Tetrachloroethene	. 250	1	===fl 50 5 U	======================================	J 46		U
1,1,2,2-Tetrachloroethane Toluene Chlorobenzene	. 50	U	5 U 5 U	250 250 250	U 8	1 U 5	J U
Ethylbenzene Styrene Total Xylenes	. 50 . 50	U	5 U 5 U 5 U	250 250 250	U 5	U 5 U 5 U 5	Ū

.

;

Other:

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit. NR=Not requested.

PETROLEUM HYDROCARBON ANALYSIS RESULTS: SOIL SAMPLES

DATA SUMMARY REPORT 07/22/88 ORGANICS

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-0000

-001

-002

-003

-004

-005

-006

-007

-008

-009

-010

-011

-012

-013

-014

-015

REPORTING RESULT UNITS · LIMIT SITE ID ANALYTE SAMPLE _____ _____ -----_____ ______ ======= MG/KG PETROLEUM HYDROCARBONS 20 0.2 SB-IIA-1-01 PETROLEUM HYDROCARBONS 3 MG/KG 0.2 SB-IIA-1-02 32 MG/KG SB-IIA-1-03 PETROLEUM HYDROCARBONS Λ PETROLEUM HYDROCARBONS 20 MG/KG SB-11A-1-04 MG/KG 0.5 PETROLEUM HYDROCARBONS 45 SB-11A-1-05 PETROLEUM HYDROCARBONS 16 MG/KG SB-IIA-1-06 Ο. PETROLEUM HYDROCARBONS 17 MG/KG 0.2 SB-IIA-1-07 SB-IIA-1-08 PETROLEUM HYDROCARBONS 13 MG/KG 21 MG/KG PETROLEUM HYDROCARBONS SB-IIA-1-09 PETROLEUM HYDROCARBONS 71 MG/KG SB-IIA-2-01 PETROLEUM HYDROCARBONS 14 MG/KG SB-IIA-2-02 PETROLEUM HYDROCARBONS 14 MG/KG SB-IIA-2-03 SB-IIA-2-04 PETROLEUM HYDROCARBONS 14 MG/KG PETROLEUM HYDROCARBONS 18 MG/KG 0.2 SB-11A-2-05 6 MG/KG PETROLEUM HYDROCARBONS SB-11A-2-06

WESTON BATCH #: 8806-803

0.2

.

DATA SUMMARY REPORT 07/28/88 ORGANICS

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-0000

. •

WESTON BATCH #: 8806-864

SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	REPORTING LIMIT
-001	======================================	PETROLEUM HYDROCARBONS	1.0 u	====== MG/L	1.0
-003	SB-IIA-207	PETROLEUM HYDROCARBONS	15	MG/KG	1
-004	SB-II1-208	PETROLEUM HYDROCARBONS	4	MG/KG	1
-005	SB-IIA-301	PETROLEUM HYDROCARBONS	5	MG/KG	1
-006	SB-11A-302	PETROLEUM HYDROCARBONS	3	MG/KG	0.9
-007	SB-IIA-303	PETROLEUM HYDROCARBONS	9	MG/KG	1
-008	SB-IIA-304	PETROLEUM HYDROCARBONS	4	MG/KG	1
-009	SB-11A-305	PETROLEUM HYDROCARBONS	5	MG/KG	1
-010	SB-IIA-306	PETROLEUM HYDROCARBONS	3	MG/KG	0.
11	SB-IIA-307	PETROLEUM HYDROCARBONS	5	MG/KG	1
-012	SB-IIA-401	PETROLEUM HYDROCARBONS	67	MG/KG	1
-013	SB-IIA-402	PETROLEUM HYDROCARBONS	8	MG/KG	1
-014	SB-IIA-403	PETROLEUM HYDROCARBONS	12000	MG/KG	1000
-015	SB-IIA-404	PETROLEUM HYDROCARBONS	15	MG/KG	1
-016	SB-IIA-405	PETROLEUM HYDROCARBONS	5	MG/KG	1
-017	SB-IIA-405D	PETROLEUM HYDROCARBONS	3	MG/KG	1
-018	SB-11A-406	PETROLEUM HYDROCARBONS	4	MG/KG	1
-019	SB-11A-407	PETROLEUM HYDROCARBONS	3	MG/KG	1
	SB-IIA-501	PETROLEUM HYDROCARBONS	6500	MG/KG	950
-020					

ORGANICS DATA SUMMARY REPORT 07/28/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-0000

WORK ORDE	R: 2501-02-01-0000				REPORTING	
SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	LIMIT	
-022	SB-IIA-503	PETROLEUM HYDROCARBONS	9	MG/KG	1	
-023	SB-IIA-504	PETROLEUM HYDROCARBONS	3	MG/KG	1	
-024	SB-IIA-505	PETROLEUM HYDROCARBONS	3	MG/KG	1	
-025	SB-IIA-506	PETROLEUM HYDROCARBONS	2	MG/KG	1	
-026	SB-IIA-507	PETROLEUM HYDROCARBONS	3	MG/KG	1	
-027	SB-IIA-601	PETROLEUM HYDROCARBONS	7	MG/KG	1	
-028	SB-IIA-602	PETROLEUM HYDROCARBONS	4	MG/KG	1	
-029	SB-IIA-603	PETROLEUM HYDROCARBONS	2	MG/KG	1	
-030	SB-IIA-604	PETROLEUM HYDROCARBONS	2	MG/KG	1	
-031	SB-ILA-605	PETROLEUM HYDROCARBONS	4	MG/KG		
-032	SB-IIA-606	PETROLEUM HYDROCARBONS	10	MG/KG		
-033	SB-IIA-607	PETROLEUM HYDROCARBONS	4	MG/KG	1	<u>í</u>
-034	SB-11A-701	PETROLEUM HYDROCARBONS	9	MG/KG	1	
-035	SB-11A-702	PETROLEUM HYDROCARBONS	4	MG/KG	1	
-036	SB-IIA-703	PETROLEUM HYDROCARBONS	4	MG/KG	1	
-037	SB-IIA-704	PETROLEUM HYDROCARBONS	3	MG/KG	1	
-038	SB-11A-705	PETROLEUM HYDROCARBONS	4	MG/KG	1	
-039	SB-11A-706	PETROLEUM HYDROCARBONS	4	MG/KG	1	
-040	SB-11A-707	PETROLEUM HYDROCARBONS	2	MG/KG	1	

ORGANICS PRECISION REPORT 07/28/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-0000

HOILIC OILDE			INITIAL		
SAMPLE	SITE ID	ANALYTE	RESULT	REPLICATE	% DIFF
		**********************		=================	3222522
-015REP	SB-IIA-404	PETROLEUM HYDROCARBONS	15	37	83.4
-029REP	SB-IIA-603	PETROLEUM HYDROCARBONS	2	1	54.8

ORGANICS DUPLICATE SPIKE REPORT 07/28/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-0000

WURK URDE	R: 2501-02-01-0000	SPIKE#1 SPIKE#2			
SAMPLE	SITE ID	ANALYTE	%RECOV	%RECOV	%DIFF
			======	=====	=====
-029 BLANK10	SB-IIA-603 88IR783C-MB1	PETROLEUM HYDROCARBONS PETROLEUM HYDROCARBONS	134 77.6	98.9 65.7	30.2 16.6

ORGANICS ACCURACY REPORT 07/28/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-0000

SAMPLE	SITE ID	ANALYTE	SPIKED SAMPLE	INITIAL RESULT	SPIKED AMOUNT	%RECOV
				=============	======	======
-009	SB-11A-305	PETROLEUM HYDROCARBONS	120	5	150	79.2
-029	SB-11A-603	PETROLEUM HYDROCARBONS	180	2	140	134
		PETROLEUM HYDROCARBONS	140	2	140	98.9
BLANK10	881R783C-MB1	PETROLEUM HYDROCARBONS	31	1.0	u 40	77.6
02/11/20		PETROLEUM HYDROCARBONS	26	1.0	u 40	65.7
BLANK10	88IR721B-MB1	PETROLEUM HYDROCARBONS	120	2	120	95.4

ORGANICS METHOD BLANK DATA SUMMARY PAGE 07/28/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-0000 WESTON BATCH #: 8806-864

_ _

SAMPLE BLANK10	SITE ID ====================================	ANALYTE PETROLEUM HYDROCARBONS	RESULT 1.0 u	UNITS MG/L	REPORTING LIMIT 1.0
BLANK10	88IR721B-MB1	PETROLEUM HYDROCARBONS	2	MG/KG	0.8
BLANK10	88IR783F-MB1	PETROLEUM HYDROCARBONS	2	MG/KG	0.8

ORGANICS DATA SUMMARY REPORT 07/14/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-0000

•

	SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	REPORTING LIMIT
	-003	SB-IIA-207		======== 15	MG/KG	 1
-	-004	SB-111-208	PETROLEUM HYDROCARBONS	4	MG/KG	1
	-005	SB-IIA-301	PETROLEUM HYDROCARBONS	5	MG/KG	1
	-006	SB-11A-302	PETROLEUM HYDROCARBONS	3	MG/KG	0.9
	-007	SB-11A-303	PETROLEUM HYDROCARBONS	9	MG/KG	1
	-008	SB-11A-304	PETROLEUM HYDROCARBONS	4	MG/KG	1
	-009	SB-11A-305	PETROLEUM HYDROCARBONS	5	MG/KG	1
	-010	SB-IIA-306	PETROLEUM HYDROCARBONS	3	MG/KG	0.9
1	011	SB-IIA-307	PETROLEUM HYDROCARBONS	5	MG/KG	1
	-012	SB-IIA-401	PETROLEUM HYDROCARBONS	67	MG/KG	1
Î	-013	SB-IIA-402	• PETROLEUM HYDROCARBONS	8	MG/KG	1
	-014	SB-IIA-403	PETROLEUM HYDROCARBONS	12000	MG/KG	1000
	-015	SB-IIA-404	PETROLEUM HYDROCARBONS	15	MG/KG	1
	-016	SB-IIA-405	PETROLEUM HYDROCARBONS	5	MG/KG	1
	-017	SB-IIA-405D	PETROLEUM HYDROCARBONS	3	MG/KG	1
	-018	SB-IIA-406	PETROLEUM HYDROCARBONS	4	MG/KG	1
_	-019	SB-11A-407	PETROLEUM HYDROCARBONS	3 ·	MG/KG	1
	-020	SB-11A-501	PETROLEUM HYDROCARBONS	6500	MG/KG	950
		-				

ORGANICS METHOD BLANK DATA SUMMARY PAGE 07/14/88

CLIENT: BLACK & DECKER WESTON BATCH #: 8806-864 WORK ORDER: 2501-02-01-0000 REPORTING SAMPLE SITE ID ANALYTE RESULT UNITS LIMIT

 SAMPLE
 STE ID
 ANALTTE
 RESULT
 ONTTS
 EINTT

 ======
 ======
 ======
 =====
 =====
 =====
 =====

 BLANK10
 88IR721B-MB1
 PETROLEUM HYDROCARBONS
 2
 MG/KG
 0.8

ORGANICS ACCURACY REPORT 07/14/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-0000

WURK UKUL	K: 2501-02-01-0000		SPIKED	INITIAL	SPIKED	
SAMPLE	SITE ID	ANALYTE	SAMPLE	RESULT	AMOUNT	%RECOV
			=======		=====	
-009	SB-11A-305	PETROLEUM HYDROCARBONS	120	5	150	79.2
BLANK10	88IR721B-MB1	PETROLEUM HYDROCARBONS	120	2	120	95.4

ORGANICS PRECISION REPORT 07/14/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-0000

WUKK UKDI	.R. 2501-02-01-0000		INITIAL		
SAMPLE	SITE ID	ANALYTE	RESULT	REPLICATE	% DIFF
			=======		======
-015REP	SB-IIA-404	PETROLEUM HYDROCARBONS	15	37	83.4

ORGANICS METHOD BLANK DATA SUMMARY PAGE 07/22/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-0000

WURN UNDE	K. 2001-02-01-0000				
SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	REPORTING LIMIT
=======		=======================	========	=====	===========
BLANK10	881R680E-MB1	PETROLEUM HYDROCARBONS	3	MG/KG	0.2

ORGANICS ACCURACY REPORT 07/22/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-0000

WESTON BATCH #: 8806-803

	SPIKED	INITIAL	SPIKED	
ANALYTE	SAMPLE	RESULT	AMOUNT	%RECO
		======	======	2822222
PETROLEUM HYDROCARBONS	120	6	150	75.
PETROLEUM HYDROCARBONS	130	3	140	91.
	PETROLEUM HYDROCARBONS	ANALYTE SAMPLE PETROLEUM HYDROCARBONS 120	ANALYTE SAMPLE RESULT PETROLEUM HYDROCARBONS 120 6	ANALYTE SAMPLE RESULT AMOUNT PETROLEUM HYDROCARBONS 120 6 150

ORGANICS PRECISION REPORT 07/22/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-0000

WUKK UKDE	IR. 2301-02-01-0000		INITIAL		
SAMPLE	SITE ID	ANALYTE	RESULT	REPLICATE	% DIFF
				========	======
-010REP	SB-IIA-2-01	PETROLEUM HYDROCARBONS	71	49	36.0

ORGANICS DATA SUMMARY REPORT 07/14/88

WESTON BATCH #: 8806-764

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-35

WORK ORD	ER: 2501-02-01-35				REPORTING
SAMPLE	SITE ID	ANALYTE		UNITS	
-001	======================================	PETROLEUM HYDROCARBONS	30	MG/KG	2
-002	RFW902	PETROLEUM HYDROCARBONS	28	MG/KG	2
-003	RFW903	PETROLEUM HYDROCARBONS	3	MG/KG	0.2
-004	RFW904	PETROLEUM HYDROCARBONS	4	MG/KG	0.2
-005	RFW905	PETROLEUM HYDROCARBONS	4	MG/KG	0.2
-006	RFW906	PETROLEUM HYDROCARBONS	2	MG/KG	0.2
-007	RF W907	PETROLEUM HYDROCARBONS	3	MG/KG	0.2
-008	RFW908	PETROLEUM HYDROCARBONS	7	MG/KG	0.2
-009	RFW909	PETROLEUM HYDROCARBONS	2	MG/KG	
-010	RFW910	PETROLEUM HYDROCARBONS	5	MG/KG	J.2
-011	RFW801	PETROLEUM HYDROCARBONS	29000	MG/KG	210
-012	RFW802	PETROLEUM HYDROCARBONS	330	MG/KG	20
-013	RFW803	PETROLEUM HYDROCARBONS	930	MG/KG	47
-014	RFW804	PETROLEUM HYDROCARBONS	180	MG/KG	2
-015	RFW805	PETROLEUM HYDROCARBONS	8	MG/KG	0.2
-016	RFW806	PETROLEUM HYDROCARBONS	3	MG/KG	0.2
-017	RFW807	PETROLEUM HYDROCARBONS	4	MG/KG	0.2
-018	RFW808	PETROLEUM HYDROCARBONS	2	MG/KG	0.2
-019	RFW809	PETROLEUM HYDROCARBONS	4	MG/KG	0.2
-020	RFW810	PETROLEUM HYDROCARBONS	3	MG/KG	0.2

ORGANICS METHOD BLANK DATA SUMMARY PAGE 07/14/88

CLIENT: BLACK & DECKER WESTON BATCH #: 8806-764 WORK ORDER: 2501-02-01-35 REPORTING

SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	LIMIT
======			=======	======	*********
BLANK10	88IR667B-MB1	PETROLEUM HYDROCARBONS	3	MG/KG	0.2

ORGANICS ACCURACY REPORT 07/14/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-35

.

WORK ORDE	R: 2501-02-01-35		SPIKED	INITIAL	SPIKED	
SAMPLE	SITE ID	ANALYTE	SAMPLE	RESULT	AMOUNT	%RECOV
======			======		======	=======
-020	RFW810	PETROLEUM HYDROCARBONS	61	3	160	36.6

ORGANICS PRECISION REPORT 07/14/88

CLIENT: BLACK & DECKER WORK ORDER: 2501-02-01-35

Î

SAMPLE	SITE ID	ANALYTE	RESULT	REPLICATE	% DIFF	
=======			========	*********		
-020REP	RFW810	PETROLEUM HYDROCARBONS	3	2	46.5	

APPENDIX F

PHASE IIA SOIL BORING LOGS, WELL BOREHOLE LOGS, AND WELL CONSTRUCTION DIAGRAMS

Boring No. SB-IIA-3 Client: Black and Decker Time/Date Began: ____1305/6-27-88 Time/Date Ended: ____1435/6-27-88 Geologist:______Dave Cairns
Driller:______Gary Truver / Walton Corporation
Drilling Method:______Hollow-stem Auger
Sampling Method:______Split Spoon

TELET

Comments: Top 1 foot is concrete, water on spoon at 31.5 feet.

ample	Depth	Recovery	Blow	Moisture	SAMPLE DESCRIPTION	HNU *	HNu *
No.	[Interval (ft.)	(ft.)	Counts	Content		reading	reading
	Ì	1 1		1	1	(spoon)	(headspace
1	3.5-5	1.4	3-7-9	Dry	orange-brown clayey SILT with some weathered schist	ND	1
	i	i i		Ì	fragments and few quartz pebbles.	1	1
2	8.5-10	0.9	64-19-34	Dry	top 0.2 feet is quartz gravel. Bottom 0.7 feet is orange-	ND	1
-	1	i i		i	brown clayey SILT with some quartz pebbles.	i	ł
3	, 13.5-15	1.2	8-10-21	Damp	orange-brown clayey SILT with some quartz pebbles and few	ND	0.5
		i i			augite lenses.	1	1
4	18.5-20	1.0	28-24-26	Damp	same as above.	ND	ND
	i	i i		Ì	ĺ	1	1
5	23.5-25	0.8	9-8-10	Damp	same as above.	I ND	ND
	i	i i		1		1	4
6	28.5-30	1.5	28-38-36	Moist	top 0.1 feet is orange-brown clayey SILT. Bottom 1.4 feet	1	1
	ì	i i		i	reddish brown clayey SILT and weathered SCHIST fragments.	1	1
7	33.5-35	1.35	16-76-44	Wet	dark reddish-brown weathered SCHIST and clayey silt.	ND	5
	i	i i		i	Bottom of spoon has some quartz pebbles.	1	1

SAMPLE COLLECTION INFORMATION

ND - Not detected above background level.

* HNu readings in units above background.

Boring No. SB-IIA-4 Client: Black and Decker Time/Date Began:____0920/6-28-88 Time/Date Ended:____1115/6-28-88 Geologist:_____Dave Cairns Driller:_____Gary Truver / Walton Corporation Drilling Method:_____Hollow-stem Auger Sampling Method:_____Split Spoon

CTAR TO A

Comments: Water on spoon at 20 feet, in level C from 1000 - 1035.

Sample No.	Depth Interval (ft.) 	Recovery (ft.) 		Moisture Content 	•	HNu * reading (spoon)	HNu * reading (headspace
1	1-2.5	1.1	2-3-4	 Dry 	<pre>brown clayey SILT with some weathered rock fragments, consisting mainly of quartz.</pre>	12 	 15
2	3.5-5	1.0	2-2-2	 Dry 	brown clayey SILT with trace weathered rock fragments, consisting of quartz and feldspar.	, 15 	30
3	 8.5-10	1.25	3-3-5	Moist	dark brown clayey silt with trace rock fragments. Strong odor in this interval.	180 	190
4	13.5-15	1.5	3-5-10	Moist	gray-brown clayey SILT with some rock fragments.	8	34
5	18.5-20	1.4	6-10-12	Moist- Wet	orange-brown clayey SILT with highly weathered schist	1 	2.5
6	23.5-25	· 1.1	9-13-24	Wet	top 0.2 feet is coarse SAND and is saturated. Bottom 0.9 feet is orange-brown clayey SILT with highly wthd SCHIST.		1.5
7	28.5-30	1.0	7-19-18	Wet	<pre>highly weathered SCHIST fragments and orange-brown clayey silt.</pre>		2

SAMPLE COLLECTION INFORMATION

ND - Not detected above background level.

* HNu readings in units above background.

Boring No. SB-IIA-1 Client: Black and Decker Time/Date Began:____1510/6-23-88 Time/Date Ended:____1710/6-23-88 Geologist:______Dave Cairns
Driller:______Gary Truver / Walton Corporation
Drilling Method:______Hollow-stem Auger
Sampling Method:______Split Spoon

Comments: Water at 35 feet, perched zone at 30 feet.

SAMPLE COLLECTION INFORMATION

HNu * HNu * SAMPLE DESCRIPTION Recovery Blow Moisture | Depth Sample reading | reading Content | [Interval (ft.) | (ft.) Counts No. (spoon) (headspace) top 0.1 feet is top soil. Bottom 0.5 feet is brown clayey ND 8 10-10-11 1-2.5 0.6 Dry | 1 SILT with trace rock fragments. 10.5 orangish-brown clayey SILT with some highly weathered ND 1.2 3.5-5 8-9-10 Dry 2 rock fragments. orange-brown clayey SILT and rock fragments. Rock ND 6.5 6-16-12 Dry 8.5-10 1.2 3 fragments larger than previous interval. light brown clayey SILT and weathered rock fragments, with 5 ND 5-13-19 Damp 13.5-15 1.1 quartz, feldspar, mica and lenses of augite. 5.5 light brown clayey SILT and weathered rock fragments, with ND 50/0.41 Moist | 18.5-18.9 0.4 5 some quartz pebbles. Spoon refusal. 30 reddish-brown clayey SILT and weathered rock fragments. ND 21-10-10 Moist | 23.5-25 0.5 6 top 0.85 feet is reddish-brown weathered SCHIST. At ND 10 Moist-28.5-30 0.9 8-7-4 7 bottom of spoon is a pink-white-black silty CLAY. Wet highly weathered SCHIST with brown clayey silt. ND 17 33.5-35 1.2 28-24-42 Moist | 8 12 highly weathered SCHIST with dark red-brown clayey ND Wet 42-50/0.3' 0 38.5-39.3 0.8 silt. Spoon refusal.

ND - Not detected above background level.

* HNu readings in units above background.

Boring No. SB-IIA-2 Client: Black and Decker Time/Date Began:___0935/6-24-88 Time/Date Ended: ___1010/6-27-88 Geologist:_____Dave Cairns
Driller:_____Gary Truver / Walton Corporation
Drilling Method:______Hollow-stem Auger
Sampling Method:______Split Spoon

CONTRACTOR OF THE PARTY OF THE

Comments: Water on spoon at 31 feet.

SAMPLE COLLECTION INFORMATION

Sample No.	Depth Interval (ft.)	Recovery (ft.) 	Blow Counts	Moisture Content 	SAMPLE DESCRIPTION	HNu * reading (spoon)	HNu * reading (headspac
1	1-2.5	0.9	5-6-5	- Dry 	top 0.2 feet is top soil and gravel. Bottom 0.7 feet is orange-brown clayey SILT and some weathered rock frags.	1 	 170
2	3.5-5	1.1	6-7-10	Dry	reddish-brown clayey SILT with some weathered rock frags.	ND	300
3	 8.5-10 		8-10-11		top 0.1 feet is dark reddish-brown clayey SILT. Bottom 1.0 feet is light orange-brown clayey SILT with trace quartz pebbles.	 ND 	480
4	13.5-15	1.2	7-14-18	Moist	light orangish-brown clayey SILT with some highly weathered schist.	ND 	210
5	18.5-20	1.2	14-28-59	Moist	same as above with quartz pebbles in bottom 0.2 feet.	I ND	210
6	23.5-25		27-36-42	Moist 	light orangish-brown highly weathered SCHIST and clayey SILT with some quartz pebbles.	I ND	200
7	28.5-30	1.3	28-56-41	Moist	same as above.	ND	50
8	 33.5-35 	1.2	10-15-37	 Wet 	reddish-brown weathered SCHISI and orange-reddish brown clayey SILI.	 ND 	85

SOIL BORING LOGS

4178B

J.

Boring No. SB-11A-5 Client: Black and Decker Time/Date Began:____1430/6-28-88 Time/Date Ended:____1615/6-28-88 Geologist:______Dave Cairns
Driller:______Gary Truver / Walton Corporation
Drilling Method:______Hollow-stem Auger
Sampling Method:______Split Spoon

Comments: Water on spoon at 25 feet.

Sample	Depth	[Recovery]	Blow	Moisture	SAMPLE DESCRIPTION	HNu *	HNu.*
No.	Interval (ft.)	(ft.)	Counts	Content		reading	reading
	i	i i		1		(spoon)	(headspace
1	1 1-2.5	0.6	4-4-4	Dry	orange-brown clayey SILT with few quartz pebbles and	110	80
		i i		Ì	trace rock fragments.		l I
2	3.5-5	0.55	1-2-1	Dry	same as above.	60	60
	1	1 1		1			
3	8.5-10	1.4	3-4-5	Moist	same as above.	50	40
4	13.5-15		6-10-10	 Moist	top 0.2 feet is brown clayey SILT. Bottom 0.9 feet is	3	7
		i i		i	reddish-brown highly weathered SCHIST fragments and clayey	l	1
	i	i i		i	silt, with trace augite and chlorite.	1	1
5	18.5-20	į 1.1 j	7-10-14	Moist	brick-colored highly weathered SCHIST, with quartz, mica,	1	6
	1	1 1		1	feldspar and trace augite.	1	1
6	23.5-25	1.0	5-7-17	Moist-	orange-brown to reddish-brown weathered SCHIST and clayey	ND	2
	Ì	1 1		Wet	SILT. Augite lenses in bottom 0.1 feet.	ł	1
7	28.5-30	1.0	2-4-8	Wet	highly weathered SCHIST, variable in color due to	ND ND	1
	1	i i		1	concentrations of feldspar, quartz, chlorite and augite.	1	1

SAMPLE COLLECTION INFORMATION

ND - Not detected above background level

* HNu readings in units above background.

XIDIGINA

Boring No. SB-11A-6	Geologist:	_Dave Cairns
Client: Black and Decker	Driller:	_Gary Truver / Walton Corporation
Time/Date Began:0855/6-29-88	Drilling Method:	_Hollow-stem Auger
Time/Date Ended:1050/6-29-88	Sampling Method:	_Split Spoon

Comments: Water on spoon at 18.5 feet, level C from 1025-1115.

SAMPLE COLLECTION INFORMATION

.

Sample	Depth	[Recovery]	Blow	Moisture	SANPLE DESCRIPTION	HNu *	HNu *
No.	Interval (ft.)	(ft.)	Counts	Content		reading	reading
	Ì	1 1		ļ	1	(spoon)	(headspace
1	1-2.5	1.15	3-4-2	Dry	top 0.2 feet top soil. Bottom 0.95 feet is orange-brown	1 ND	ND
	1	i i		- i	clayey SILT with trace quartz pebbles.	1	1
2	3.5-5	1.2	3-4-4	Dry	orange-brown clayey SILT with trace weathered schist	I ND	ND ND
	Ì	i i		Ì	fragments.	1	1
3	8.5-10	1.5	3-6-7	Damp	orange-brown clayey SILT with trace weathered schist	ND	ND ND
	Ì	i i		I	and quartz pebbles.	1	1
4	13.5-15	1.05	4-5-7	Moist	gray-brown clayey SILT with little weathered schist	10	5
	i	i i		1	fragments.	1	1
5	18.5-20	1.1	5-5-6	Wet	orange-brown highly weathered SCHIST fragments and clayey	180	400
	i	i i		Ì	SILT. Feldspar, quartz and augite dominate minerals.	1	1
6	23.5-25	1.0	4-5-12	Wet	gray-brown highly weathered SCHIST fragments with some	900	800
		i i		i	clayey silt.	ļ	1
7	28.5-30	0.9	10-14-23	Wet	top 0.1 feet is saturated SILT and f SAND. Bottom 0.8	450	800
	i	i i		i	feet is highly weathered SCHIST fragments.	1	1

NT STAT

ND - Not detected above background level.

* HNu readings in units above background.

Boring No: SB-IIA-7 Client: Black and Decker Time/Date Began:____1350/6-29-88 Time/Date Ended:____1515/6-29-88 Geologist:______Dave Cairns Driller:______Gary Truver / Walton Corporation Drilling Method:______Hollow-stèm Auger Sampling Method:______Split Spoon

NT STON

Comments: Water on spoon at 23.5 feet.

Sample	Depth	[Recovery]	Blow	 Moisture	SAMPLE DESCRIPTION	HNu *	HNu *
No.	Interval (ft.)	(ft.)	Counts	Content		reading	reading
	Ì	i I		I	1	(spoon)	(headspace
 1	i 1-2.5	1.05	2-2-2	Dry	top 0.2 feet top soil. Bottom 0.85 feet is light orange-	ND	ND
	1	i i		1	brown clayey SILT with trace quartz pebbles.		1
2	3.5-5	1.25	2-2-2	Dry	orange-brown clayey SILT with trace weathered schist	ND	ND
-		i i		1	fragments.	1	1
3	, 8.5-10	1.2	3-4-5	Dry	orange-brown clayey SILT with trace weathered schist	ND	ND
-	1	i i		i	fragments, quartz pebbles and augite.	I	1
4	13.5-15	1.3	4-5-6	Moist	gray-brown clayey SILT with highly weathered SCHIST	1	ND
	1	i i		i	fragments.	1	1
5	18.5-20	i 1.5 i	9-10-15	Moist	same as above.	1	1
		i i		i	l	ļ	1
6	23.5-25	1.0	16-17-17	Wet	same as above, wet.	4	5
		i i		i	1	1	1
7	, 28.5-30	0.85	8-14-15	Wet	Gray-light brown weathered SCHIST fragments with trace	60	200
	1	i i		i	quartz pebbles in bottom 0.1 feet. Feldspar, quartz, mica	1	1
	1	i i		i	augite and chlorite all present.	1	ļ

SAMPLE COLLECTION INFORMATION

ND - Not detected above background level.

* HNu readings in units above background.

WELL BOREHOLE LOGS

.

4178B

Well No. RFW-1A	Geologist:	J. Kimberly Harriz
Client: Black & Decker	Driller:	Paul Foley
Time/Date Began:0826/6-29-88	Subcontractor:	Walton Corporation
Time/Date Ended:1115/6-29-88	Drilling Method:	Air-rotary

Depth	Moisture	LITHOLOGIC LOG	HNU
Interval (ft.)	Content	1	reading
0-30	Damp	pinkish- to orangish-brown clayey SILT, micaceous	ND
30-47	Moist-	as above, except pinkish- to dark reddish-brown	I ND
	Damp		1
47-66	Moist	l olive brown to greyish-brown weathered, micaceous SCHIST	I ND
66-70	Wet	weathered SCHIST and quartzite veins, water-bearing	ND
1		fracture at 66.5′, yield 6 gpm	1
70-80	Wet	as above, except harder, water-bearing fracture at 77'	I ND
i		yield 30 gpm	1

NT STATE

Well No. RFW-1B	Geologist:	J. Kimberly Harriz
Client: Black & Decker	Driller:	Paul Foley
Time/Date Began:1330/6-21-88	Subcontractor:	Walton Corporation
Time/Date Ended:1135/6-22-88	Drilling Method:	Air-rotary

Depth	Moisture	LITHOLOGIC LOG	HNU
Interval (ft.)	Content	1	reading
0-39 	Damp	reddish- to yellowish-brown clayey SILT, micaceous 	ND
39-66	Moist to	weathered micaceous SCHIST/PHYLLITE	ND
į l	Wet	at 63' quartz vein, water-bearing, yield 10 gpm	
 39-80	Wet	 slightly weathered micaceous SCHIST/PHYLLITE	ND
1		at 74 - 75′ quartz vein, water-bearing, yield 20 gpm	1
 80-200	Wet	 green-gray micaceous SCHIST/PHYLLITE	ND
		at 148' water-bearing zone, yield <1 gpm	Ì
====================================		***************************************	**********

Well No. RFW-2A	Geologist:	J. Kimberly Harriz
Client: Black & Decker	Driller:	Paul Foley
Time/Date Began: 1200/6-29-88	Subcontractor:	Walton Corporation
Time/Date Ended: 1400/6-29-88	Drilling Method:	Air-rotary

Comments:

.

	pth l (ft.)	Mois Con	ture tent	LITHOLOGIC LOG	HNu reading
0-	10	Da	mp	pinkish- to orangish-brown clayey SILT	 ND
10	-25	Moi Da	st-	 as above, except olive brown to greyish-brown 	I ND
25	-40	 4	let	 alternating weathered, micaceous SCHIST and quartz viens, water in fractures from 25' to 40', yield 10 gpm	 ND
		l 		Water in tractures from 25° to 40°, yield to gpm	1

NEW

ND - Not detected above background levels

.

Well No. RFW-2B Client: Black & Decker Time/Date Began:____1330/6-22-88 Time/Date Ended:____1015/6-23-88

Geologist:_____J. Kimberly Harriz
Driller:_____Paul Foley
Subcontractor:_____Walton Corporation
Drilling Method:_____Air-rotary

NINGIN

Depth	Moisture	LITHOLOGIC LOG	HNu
terval (ft.)	Content		reading
0-23	Damp	reddish-brown clayey SILT, micaceous	ND
23-50	Wet	quartz vein, fractured with micaceous SCHIST	I ND
ĺ		water-bearing zone, yield 40 gpm	l
50-55	Moist	slightly weathered micaceous SCHIST and QUARTZ	1 ND
55-75	Wet	 micaceous SCHIST/PHYLLITE	I ND
ļ		at 64-65'- fractured quartz vein, water-bearing, 7 gpm	1
ĺ		at 72' - fractured quartz vein, water-bearing, 10 gpm	
·		1	
i		1	1

Well No. RFW-3B	Geologist:	J. Kimberly Harriz
Client: Black & Decker	Driller:	Paul Foley
Time/Date Began:1145/6-23-88	Subcontractor:	Walton Corporation
Time/Date Ended:0950/6-24-88	Drilling Method:	Air-rotary

Depth	Moisture	LITHOLOGIC LOG	j HNU
nterval (ft	.) Content	i	reading
0-24	L Damp	reddish- to yellowish brown clayey SILT, micaceous	ND
24-70	Moist 	 highly weathered brown SCHIST to clayey SILT, occasional thin quartz veins	1 ND
70-86	 Moist	slightly weathered micaceous SCHIST	 ND
86-153	Wet	 green-gray micaceous SCHIST/PHYLLITE weathered zone at 94-97', water-bearing, <1 gpm	ND
	1	weathered zone at yeyr , watch beat that it appro-	i

NIGIN

Well No. RFW-4A	Geologist:	J. Kimberly Harriz
Client: Black & Decker	Driller:	Paul Foley
Time/Date Began:1100/6-30-88	Subcontractor:	Walton Corporation
Time/Date Ended: 1330/6-30-88	Drilling Method:	Air-rotary

.

Comments:

.

Depth	Moisture	LITHOLOGIC LOG	HNu
Interval (ft.)	Content	1	reading
0-20	Damp	reddish- to orangish-brown clayey SILT with weathered	ND
		SCHIST	1
			i
20-37	Damp	as above, except olive brown to greyish-brown	ND
	l	1	l
37-50	Moist	greyish-brown weathered PHYLLITE/SCHIST	ND
	1	1	1
50-63	Moist	blueish-grey PHYLLITE	ND
	1	water-bearing zone at 57′ to 58′, yield 7.5 gpm	
	1	1	

Well No. RFW-48	Geologist:	J. Kimberly Harriz
Client: Black & Decker	Driller:	Paul Foley
Time/Date Began:1230/6-24-88	Subcontractor:	Walton Corporation
Time/Date Ended:1130/6-27-88	Drilling Method:	Air-rotary

٠

Depth	Moisture	LITHOLOGIC LOG	KNu
nterval (ft.)) Content	1	reading
0-45	Damp	reddish- to yellowish-brown clayey SILT, micaceous	ND
45-65	 Moist to	weathered micaceous SCHIST/PHYLLITE	ND
	Wet	at 58' water-bearing, yield 10 gpm	1
65-83	 Wet	 slightly weathered micaceous SCHIST/PHYLLITE	I ND
	i	at 75-77' quartz vein, water-bearing, yield 1 gpm	1
	1		
83-120	Damp	green-gray micaceous SCHIST/PHYLLITE	I ND
	1		

Well No. RFW-5A Client: Black & Decker Time/Date Began:___0830/6-30-88 Time/Date Ended:___1030/6-30-88 Geologist:______J. Kimberly Harriz Driller:______Paul Foley Subcontractor:______Walton Corporation Drilling Method:______Air-rotary

NEW

Comments:

Depth	Moisture	LITHOLOGIC LOG	HNU HNU
nterval (ft.)	Content	1	reading
0-20	Damp	reddish- to orangish-brown clayey SILT	∦ ND
20-22	Moist	as above	ND
22-32	Wet	 weathered SCHIST and quartzite veins water-bearing zone at 24′ to 25′, yield 15 gpm	ND

.

Well No. RFW-5B	Geologist:	J. Kimberly Harriz
Client: Black & Decker	Driller:	Paul Foley
Time/Date Began:1330/6-27-88	Subcontractor:	Walton Corporation
Time/Date Ended:1330/6-28-88	Drilling Method:	Air-rotary

Depth	Moisture	LITHOLOGIC LOG	HNU
Interval (ft.)	Content	i	reading
0-37	Damp	reddish- to yellowish-brown clayey SILT, micaceous	ND
37-54	Moist to	weathered micaceous SCHIST/PHYLLITE	I ND
1	Wet	at 45-46′ quartz vein with schist, water-bearing, 5 gpm at 54′ water-bearing, yield 5 gpm	
 54-78	Wet	 green-gray micaceous SCHIST/PHYLLITE	I ND
		at 65-67′ quartz vein, water-bearing, yield 60 gpm 	1

ND - Not defected above background level

.

Well No. RFW-6 Client: Black & Decker Time/Date Began:____1547/6-27-88 Time/Date Ended:____1030/6-28-88 Geologist:______J. Kimberly Harriz Driller:______Paul Foley Subcontractor:______Walton Corporation Drilling Method:______Air-rotary

====		************	***************************************	*************
1	Depth	Moisture	LITHOLOGIC LOG	HNU
Int	terval (ft.)	Content	1	reading
	0-30	Damp to	reddish-brown clayey SILT, micaceous	ND
i		Wet	at 15' water-bearing at 2-3 gpm	
1	30-75	 Wet	weathered SCHIST/PHYLLITE	 ND
ļ		i	at 66-68' quartz vein	1 1
ł	75-120	 1 Wet	green-gray micaceous SCHIST/PHYLLITE	I I I
i			at 82' quartz vein, water bearing, yield <1 gpm	1 1
i		1	1	
===	===================			

Boring No. RFW-7	Geologist:	Dave Cairns
Client: Black and Decker	Driller:	Gary Truver
Time/Date Began:0900/6-30-88	Subcontractor:	Walton Corporation
Time/Date Ended:1030/6-30-88	Drilling Method:	Hollow-stem Auger

Comments: Water at 15 feet.

•

SAMPLE COLLECTION INFORMATION

Moisture Content	SAMPLE DESCRIPTION	HNu reading
Dгу- Damp	dark brown clayey SILT with trace quartz pebbles. 	ND
Moist	<pre>brown silty CLAY with trace quartz pebbles and weathered schist.</pre>	I ND
Moist	 gray silty CLAY with trace quartz pebbles. 	I ND
Wet	 gray-brown silty CLAY with trace pebbles. 	 ND
 Wet	same as above.	 ND _.
 Wet	 same as above. Auger refusal at 30 feet.	 ND
	Content Dry- Damp Moist Moist Wet	Content Dry- dark brown clayey SILT with trace quartz pebbles. Damp Hoist brown silty CLAY with trace quartz pebbles and weathered schist. Moist gray silty CLAY with trace quartz pebbles. Wet gray-brown silty CLAY with trace pebbles. Wet same as above.

ND - Not detected above background level.

.

Boring No. RFW-8 Client: Black and Decker Time/Date Began:____1103/6-22-88 Time/Date Ended:____1505/6-22-88 Geologist:______Dave Cairns
Driller:______Gary Truver / Walton Corporation
Drilling Method:______Hollow-stem Auger
Sampling Method:______Split Spoon

VINGERAN

Comments: Last sample taken at 44 feet, drilled to 54 feet.

Sample No.	Depth Interval (ft.) 	Recovery (ft.) 	Blow Counts	Moisture Content 	SAMPLE DESCRIPTION	HNu * reading (spoon)	HNu * reading (headspace)
1	1-2.5	1.0	5-3-3	Dry	orangish-brown clayey SILT with trace pebbles and f sand.	14	35
2	4-5.5	0.4	1-1-2	Dry	orangish brown clayey SILT with GRAVEL and trace f sand and pebbles. All material in this interval is fill.	ND	4
3	9-10.5	0.2	1/1.5	Dry	same as above	1	25
4	 14-15.5	1.5	5-10-13	Damp 	orange-brown clayey SILT with some rock fragments. Black lenses throughout interval are augite.	2	5
5	19-20.5	1.4	17-32-24	Damp	top 0.4' is orange brown clayey SILT. Next 1.0' is as above with highly weathered schist fragments.	ND	1
6	24-25.5	1.4	15-30-60	Damp	same as above.	ND	1
7	29-30.5	1.4	25-22-21	Moist	same as above, but with larger and increasing amounts of rock fragments.	ND	2
8	34-35.5	1.5	12-40-49	Moist	highly weathered SCHIST fragments with feldspar, quartz and lenses of augite.	1	3
9	39-39.4	0.4	50/0.41	Wet	dark reddish-brown SCHIST fragments, saturated. Spoon refusal.	ND	5
10	44-44.8	0.8	38-50/0.3'	Wet	reddish-brown weathered SCHIST consisting of feldspar, mica, augite and quartz. Schist fragments in this interval are larger than those above. Spoon refusal.	ND	15

SAMPLE COLLECTION INFORMATION

ND - Not detected above background level

* HNu readings in units above background.

Boring No. RFW-9 Client: Black and Decker Time/Date Began:____1350/6-20-88 Time/Date Ended:____1050/6-21-88 Geologist:______Dave Cairns Driller:______Gary Truver / Walton Corporation Drilling Method:_____Hollow-stem Auger Sampling Method:_____Split Spoon

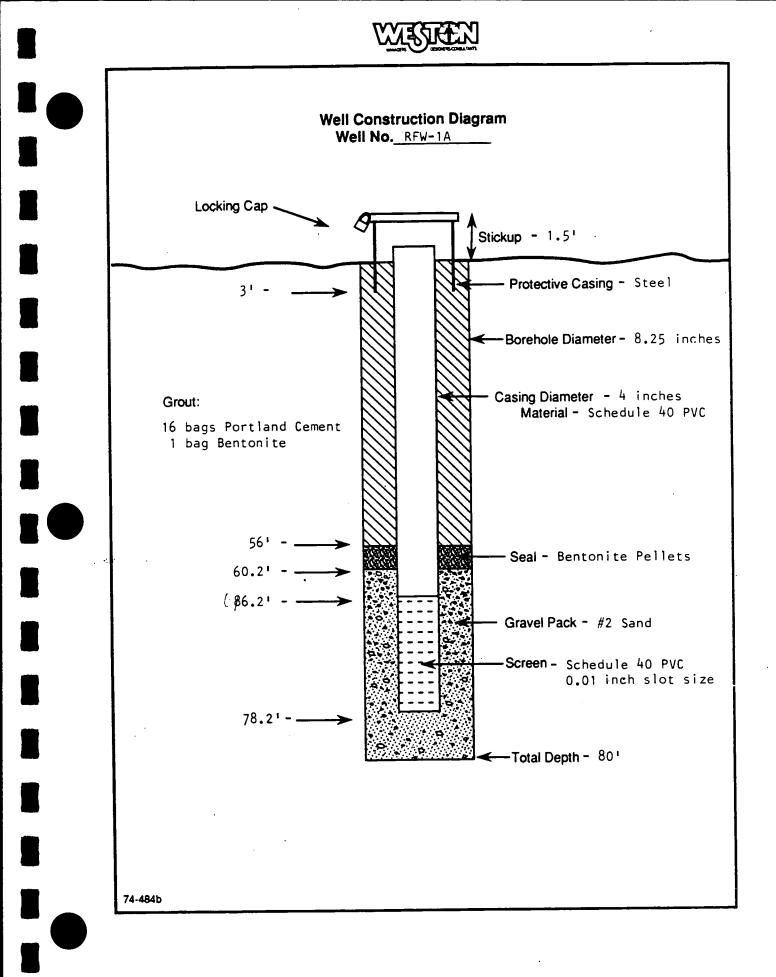
Comments: Last sample taken at 44 feet, drilled to 49 feet.

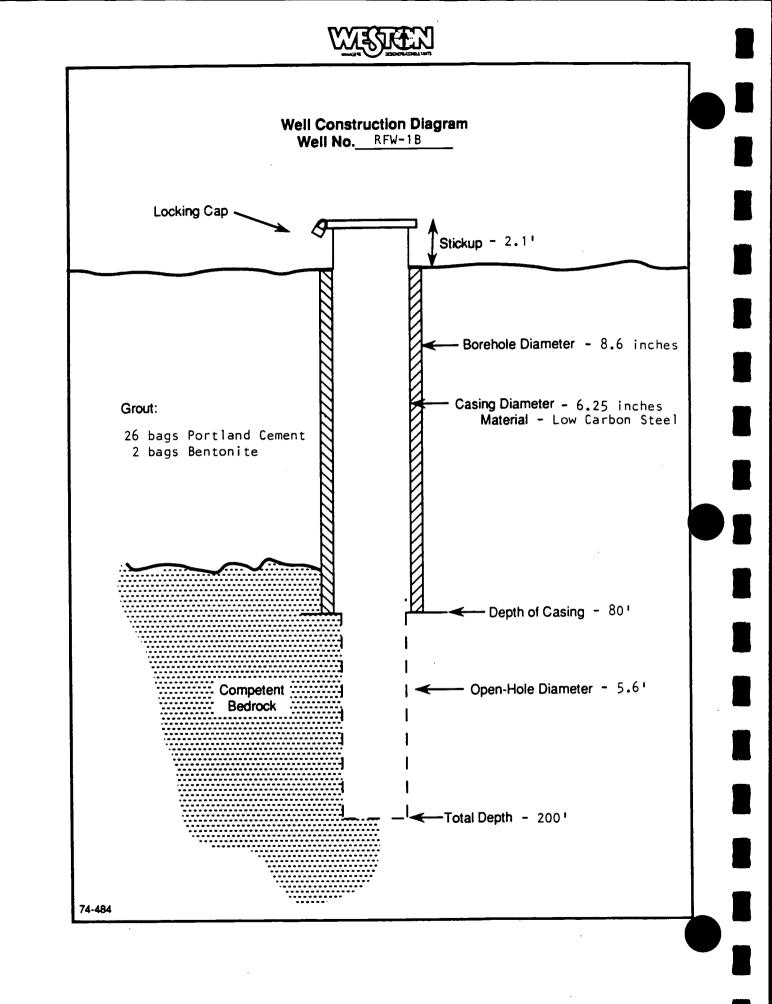
SANPLE COLLECTION INFORMATION

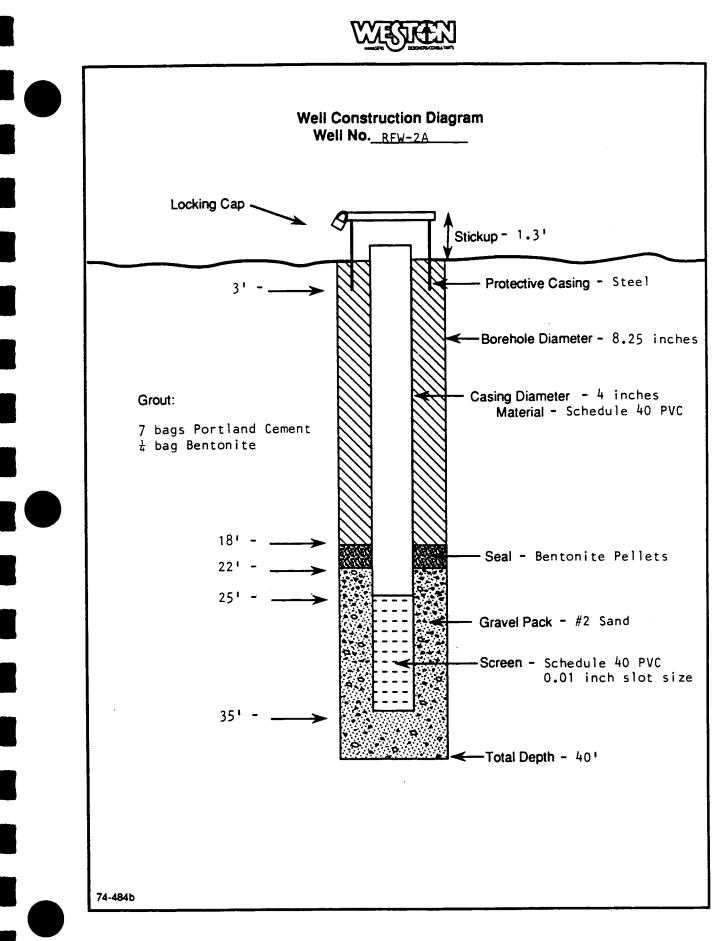
	1 - F - C	Recovery	Blow	Moisture	SAMPLE DESCRIPTION	HNu *	HNU *
No.	Interval (ft.)	(ft.)	Counts	Content		reading	-
	I	I I				(spoon)	(headspace
1	1-2.5	1.5	5-5-5	Dry	brown sandy SILT with little clay, and highly weathered	ND	170
	i	i i		1 1	rock fragments.		1
2	4-5.5	j 1.0 j	2-2-2	Damp	same as above, but with increasing amounts of rock	ND	40
		i i		i i	fragments.		1
3	9-10.5	j 1.2 j	4-5-3	Damp	brown clayey SILT with some schist fragments.	ND	40
	İ					ND	 70
4	14-15.5	1.1	3-6-9	Damp	same as above, but with increasing amounts of rock frags.	NU	
5	 19-20,5	 1.5	3-6-9	Damp	brown clayey SILT with some highly weathered rock	ND	200
			•••		fragments with quartz, mica, augite and feldspar.		Ì
6	1 24-25.5	1.5	17-31-31	Moist	greenish-brown weathered SCHIST and clayey SILT. Top	ND	j 50
					.4' of spoon is wet - possibly a perched zone.		Ì
7	29-29.4	0.4	50/0.4'	Moist	same as above. Quartz, mica, augite, feldspar and chlorite	NS	NS
					are the dominant minerals present. Spoon refusal.		Ì
8	30-30.7	0.7	28-50/0.11	Moist	same as above. Spoon refusal.	ND	70
•	1						i –
9	34-34.5	0.5	74/0.5'	Wet	same as above. Schist is more weathered than above, spoon	26	150
	1				refusal in first 6".		1 I
10	39-39.2	1 0.2	50/0.2'	Wet	same as above. Spoon refusal.	ND	1 75
	1						1
11	44-44.2	0.2	50/0.2'	Wet	same as above. Spoon refusal.	ND	120
••	1		•	i			1

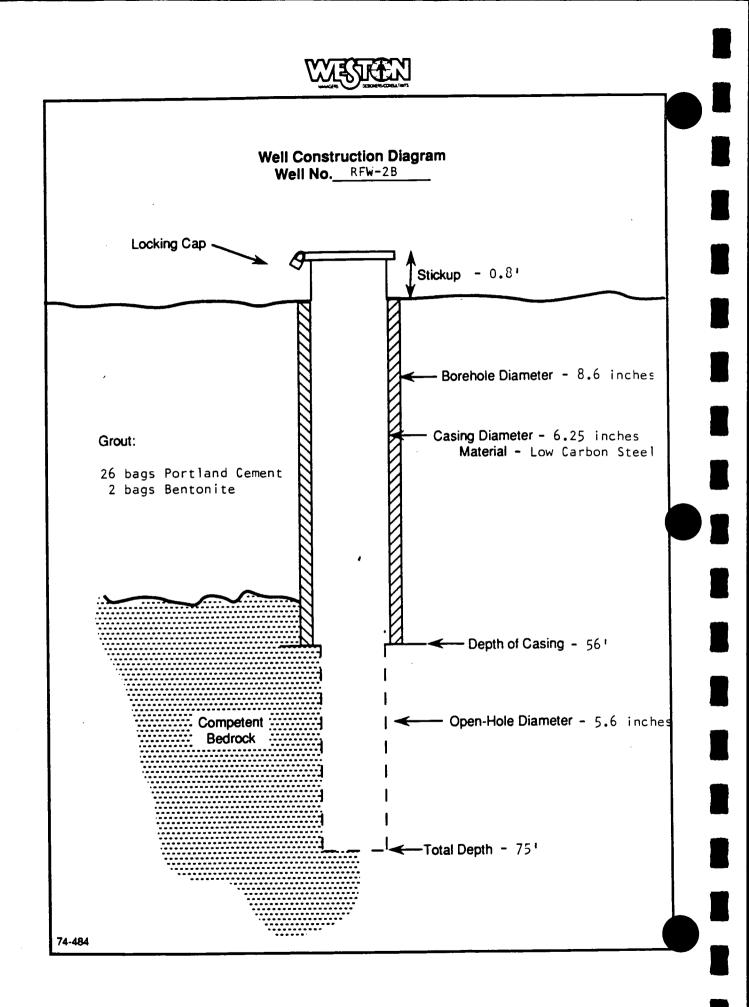
ND - Not detetected above background level.

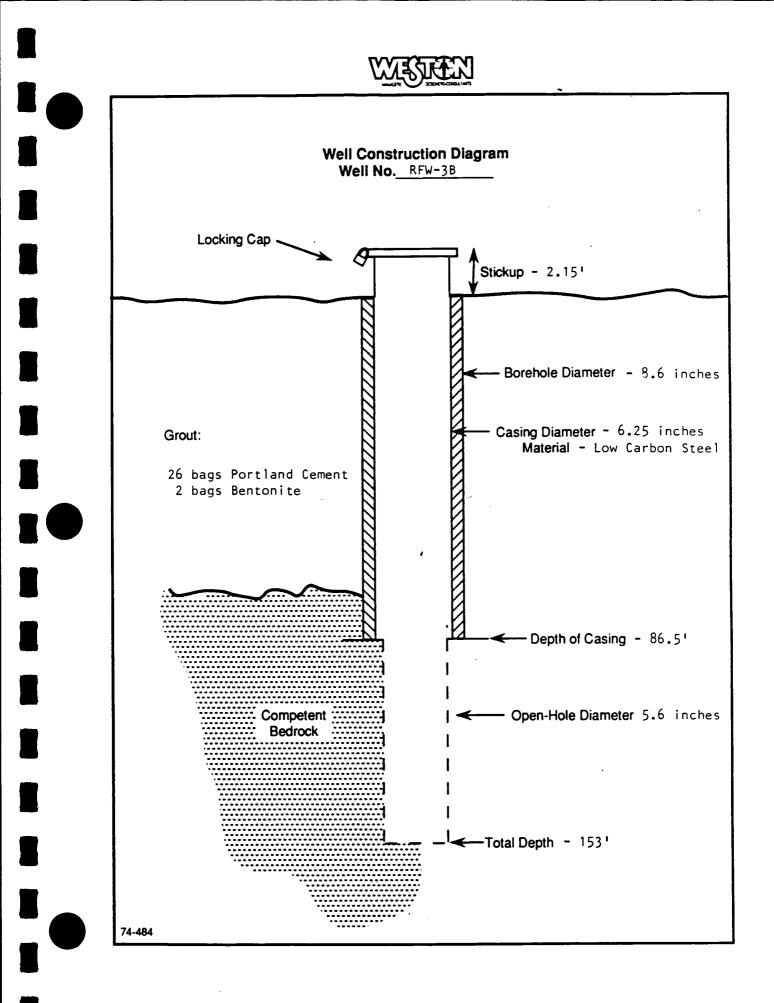
* HNu readings in units above background.

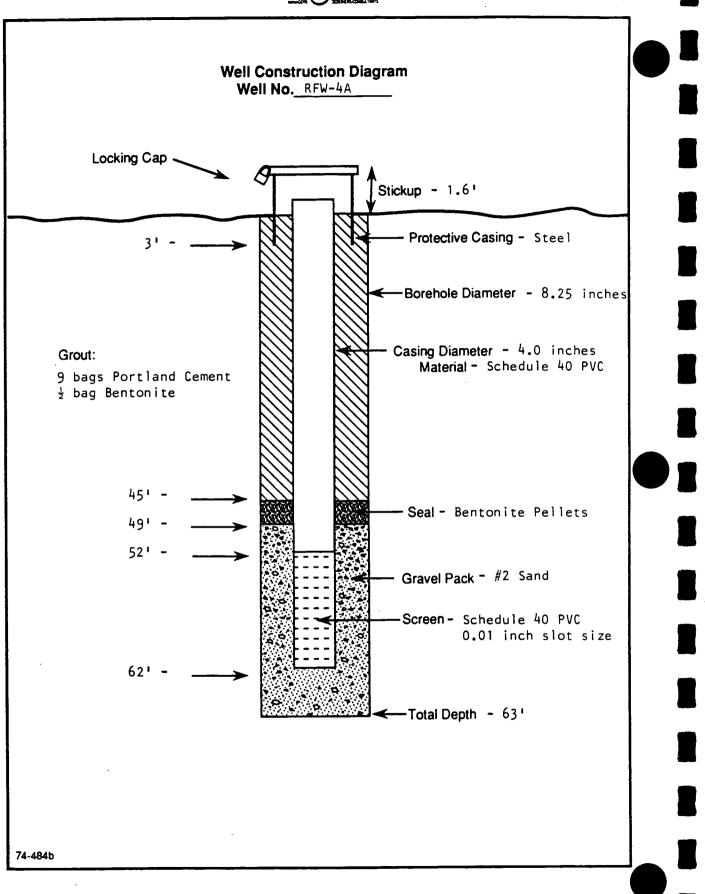

NS - No sample taken in interval.

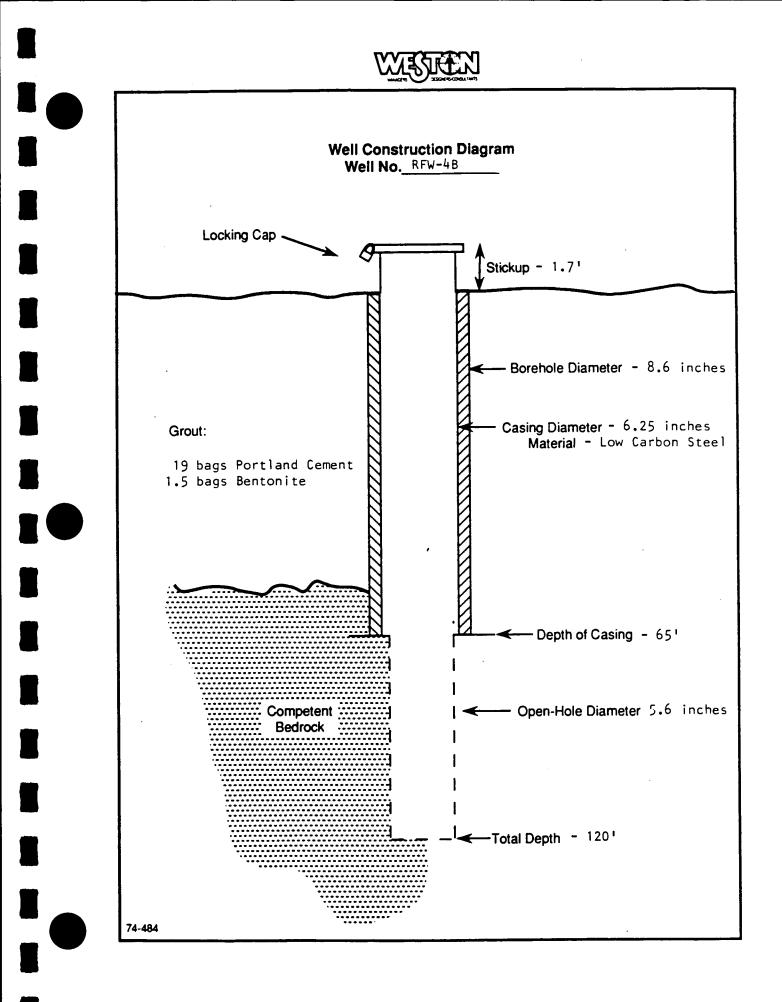

CIPIE EXA

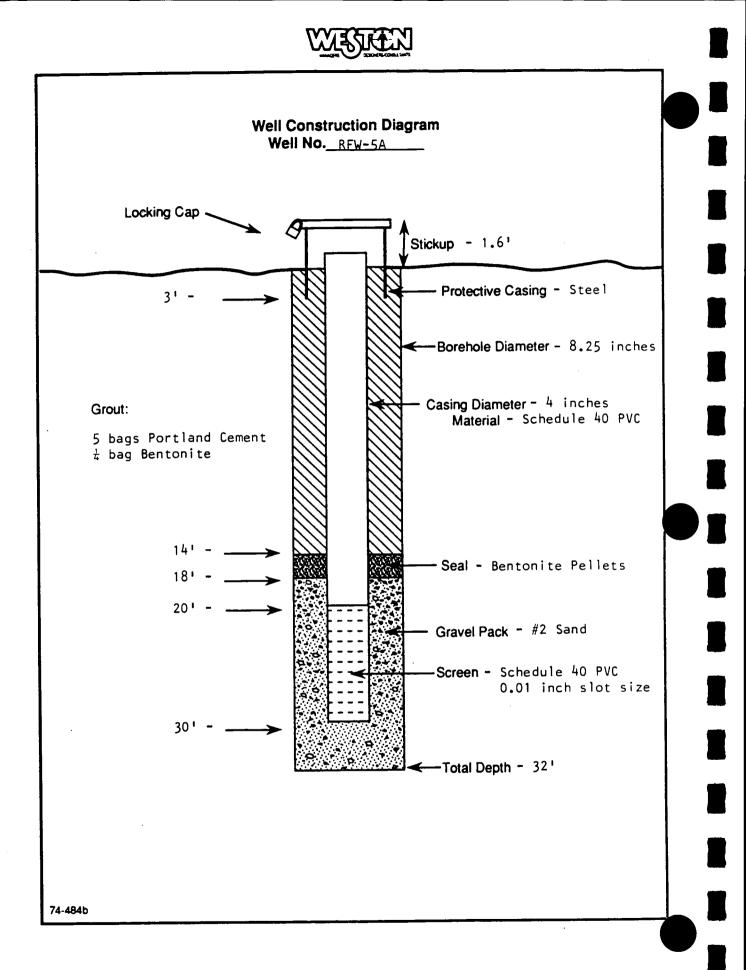

WELL CONSTRUCTION DIAGRAMS

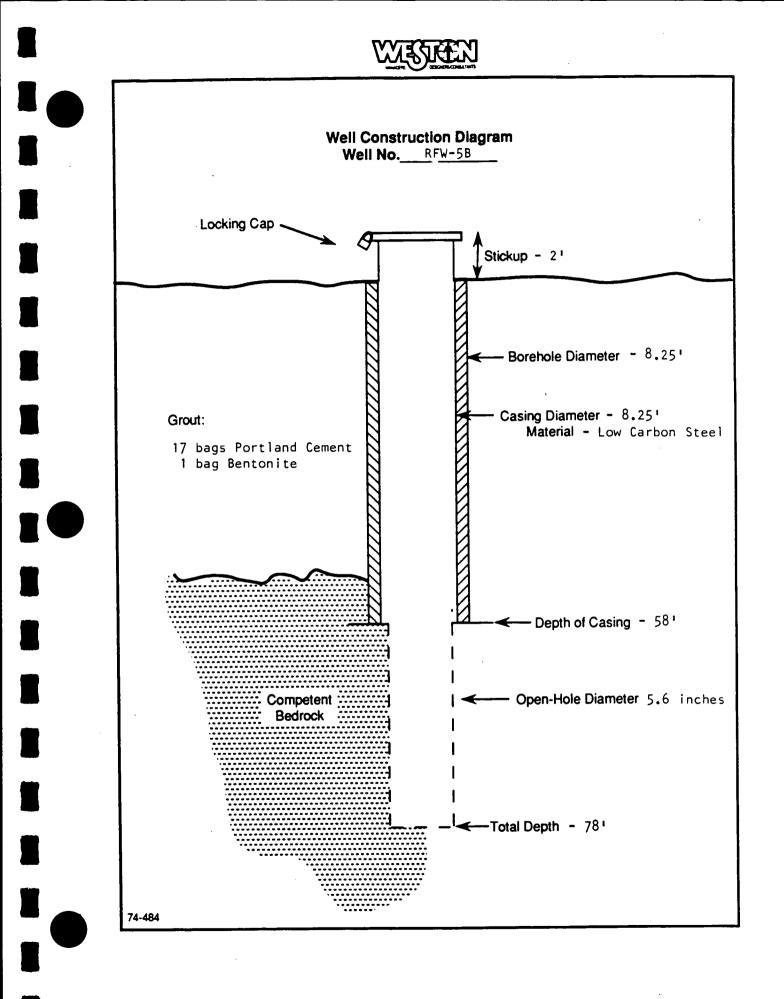

4178B

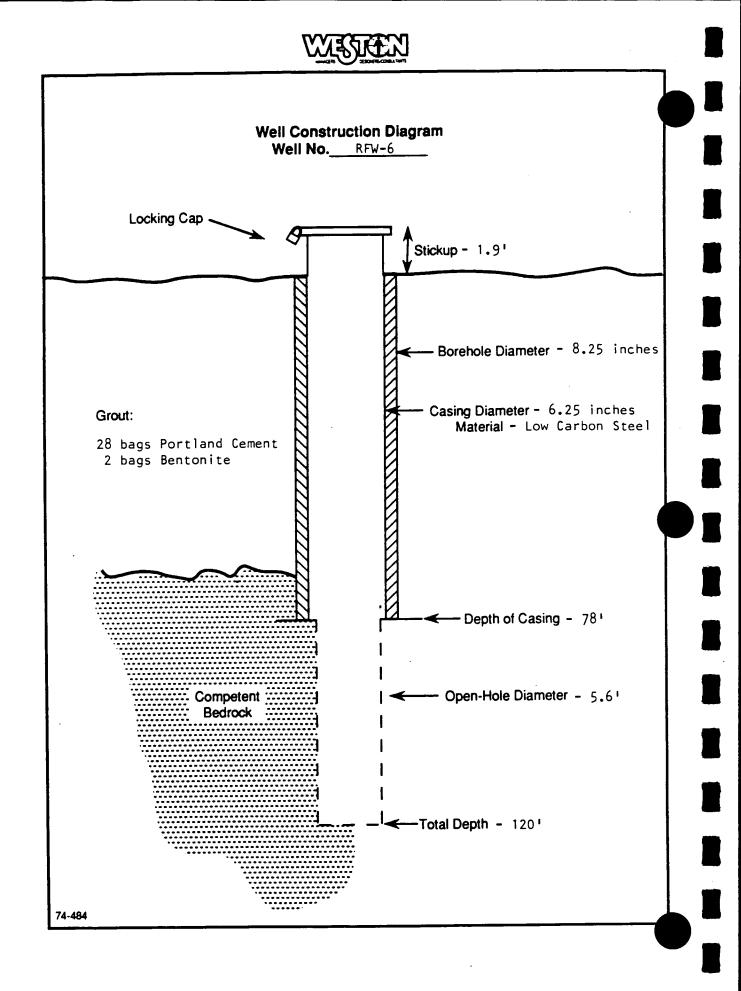

.

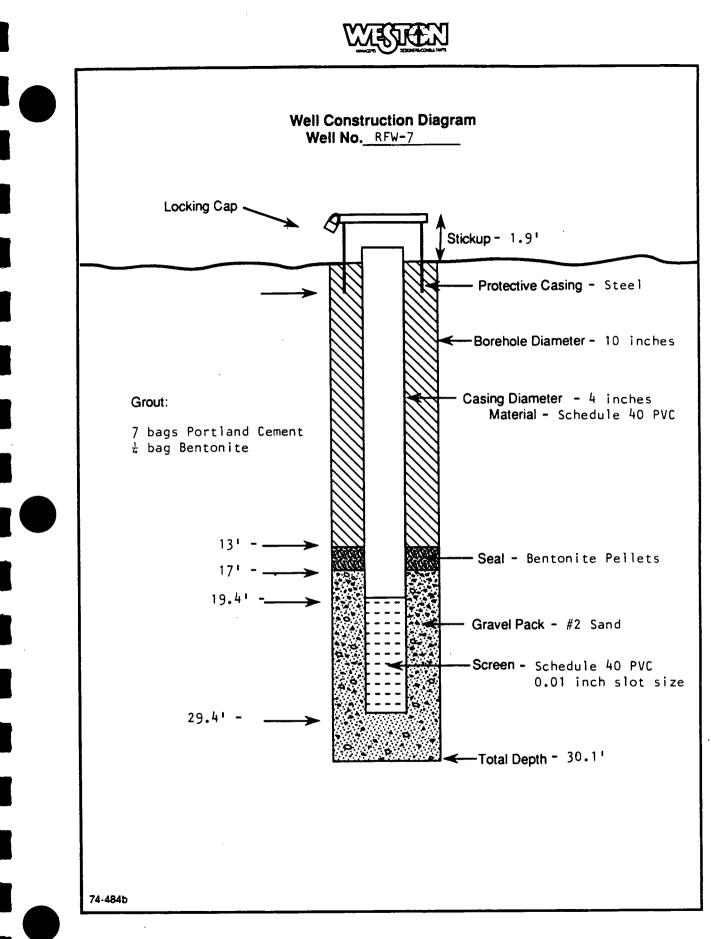


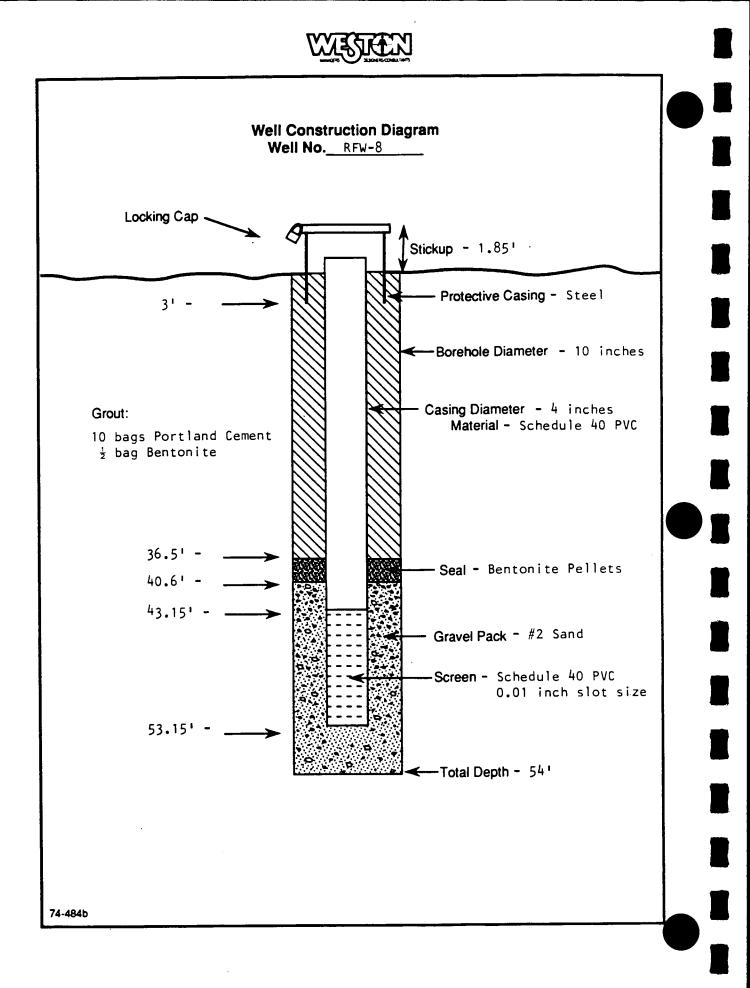


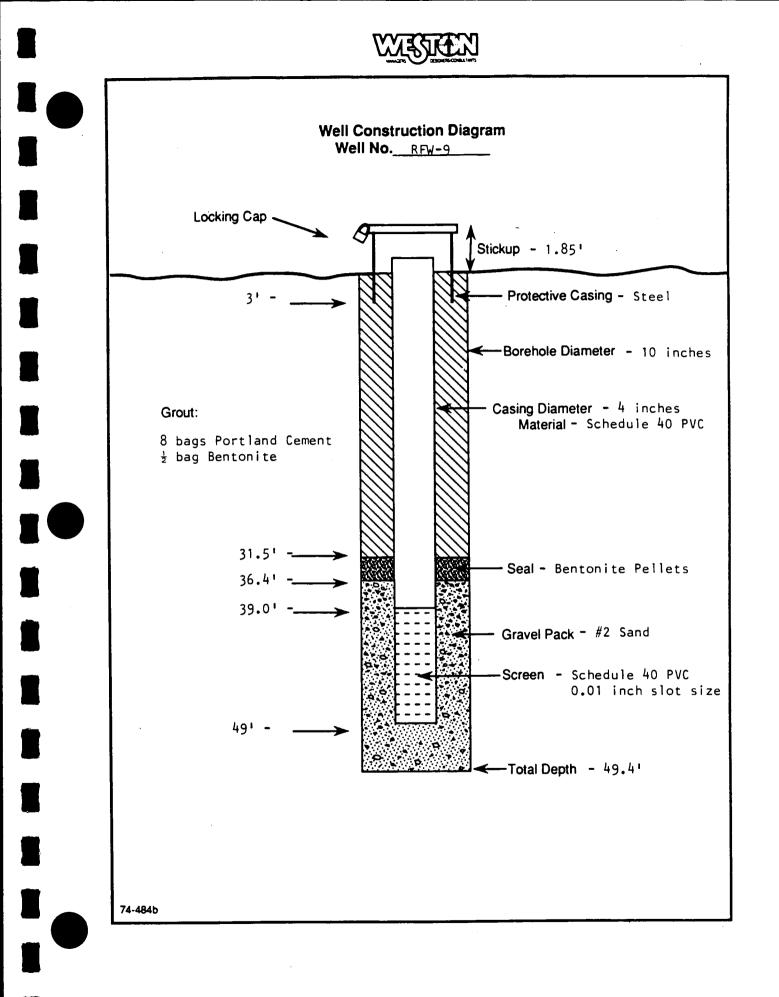












APPENDIX G PHASE IID ANALYTICAL DATA

4178B

•

DATA QUALIFIERS

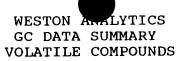
- U = Compound was analyzed for but not detected. The associated numerical value is the estimated sample quantitation limit which is included and corrected for dilution and percent moisture.
- J = Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero; for example, if the limit of detection is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- B = This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination. This flag is also used for a TIC as well as for a positively identified TCL compound.
- E = Indicates that the compound was detected beyond the calibration range and was subsequently analyzed at a dilution.
- I = Interference.
- X = Additional qualifiers used as required are explained in the case narrative.

ABBREVIATIONS

- BS = Indicates blank spike in which reagent grade water is spiked with the CLP matrix spiking solutions and carried through all the steps in the method. Spike recoveries are reported.
- BSD = Indicates blank spike duplicate.
- MS = Indicates matrix spike.
- MSD = Indicates matrix spike duplicate.
- DL = Indicates that surrogate recoveries were not obtained because the extract had to be diluted for analysis.
- NA = Not applicable.
- DF = Dilution factor.

NR = Not required.

VOC ANALYSIS RESULTS: SOIL SAMPLES


4178B

4

.

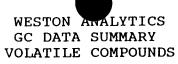
4178B

RFW Batch Number: FIELD DATA		Client:	BLACK & DE	Page: 1			
	 1st ID: RFW#:	SB3-A-105	SB3-A-106	SB3-A-107	SB3-A-108	SB3-A-109	SB3-A-202
Sample Information M	Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
	D.F.:	1	2	1	1	1	1
	Units:	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
		=======f: 31	L=====================================	1========= 24	1========== 2.0	1=======1 0.6 J	1========================1 1 U
Trichloroethene		1 U	0.8 J			1 U	1 U
		44	170	1 U	10	1 U	1 U
Tetrachloroethene		44	170				
		 SB3-A-204	SB3-A-206		SB3-A-208		SBE-A-302
Sample	ust ID: RFW#:	SB3-A-204	SB3-A-206	SB3-A-206 R	SB3-A-208	SB3-A-209	
Cu Sample	ust ID: RFW#: Matrix:	SB3-A-204 Soil	SB3-A-206 Soil	SB3-A-206 R Soil			Soil
Cu Sample Information	ust ID: RFW#: Matrix: D.F.: Units:	SB3-A-204 Soil 1 ug/kg	SB3-A-206 Soil 2 ug/kg	SB3-A-206 R Soil 5 uq/kq	SB3-A-208 Soil 1 ug/kg	SB3-A-209 Soil 1 ug/kg	Soil 1 ug/kg
Cu Sample Information	ust ID: RFW#: Matrix: D.F.: Units:	SB3-A-204 Soil 1 ug/kg	SB3-A-206 Soil 2 ug/kg 1======f	SB3-A-206 R Soil 5 uq/kq	SB3-A-208 Soil 1 ug/kg	SB3-A-209 Soil 1 ug/kg	Soil 1 ug/kg
Cu Sample Information	ust ID: RFW#: Matrix: D.F.: Units:	SB3-A-204 Soil 1 ug/kg ======f 1 U	SB3-A-206 Soil 2 ug/kg 1======f	SB3-A-206 R Soil 5 ug/kg	SB3-A-208 Soil 1 ug/kg	SB3-A-209 Soil 1 ug/kg 1======f 1 U	Soil 1 ug/kg 1======f 0 1 U

							
	Cust ID:	SB3-A-302	SB3-A-305	SB3-A-305	SB3-A-306	SBE-A-309	SB3-A-310
Sample	RFW#:	R		R			
Information	Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
intormation	D.F.:	1	1	1	1	1	1
	Units:	uq/kq	uq/kq	ug/kg	uq/kq	ua/ka	uq/kq
		ug/ng f] ====================================	l=====fl
		I	1	T T			
1,1,1-Trichloroethane		1 U	1 U	I U 1 U	I 1 U	10	1 U
Trichloroethene		1 U	1 U	1 U	1 U	U 1 U	1 U
Tetrachloroethene		1 U	1 0	I U	1 U	1 U	1 U
recrucintorocontenent							

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported J=Present at less than detection limit. NR=Not requested.

RFW Batch Number: FIELD DATA	Client:					Page:
	SB3-A-403				SB3-A-501	SB3-A-504
Information Matrix:	Soil	Soil	Soil		Soil	Soil
D.F.:		1			1	1
Units: 	f	ug/kg	1f	1f	1f]========
richloroethene	1.5	1 U	1 U	1 U	59	1
richloroethene	1 U	1 U	1 U	1 U	10	1
'etrachloroethene	1 U	1 U	1 U	1 0		
	SB3-A-507	SB3-A-604	SB3-A-606	SB3-A-607	SB3-A-607 R	SB3-A-609
ample RFW#: Information Matrix:		Soil	Soil	Soil		Soil
	1	1	1	1	1	1
Units:	ua/ka	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
1.1-Trichloroethane	1 U	1 U	1 U	1 U	J 1 U	J 20
richloroethene	1 U	1 U	1 U	1 L	J 1 U	J 1
etrachloroethene	1 U	1 U	1 U	1 U	J 1 U	3 2.7
Cust ID: ample RFW#:	SB3-A-609 R	SB3-A-611	SB3-A-611 R	SB3-A-701	SBE-A-705	SB3-A-707
information Matrix:		Soil	Soil	Soil	Soil	Soil
D.F.:		1	5	1	1	2
Units: ====================================		ug/kg	ug/kg	ug/kg	ug/kg fl====================================	ug/kg fl========
======================================		130	120	10	J 10	J 12
richloroethene	1 U					
etrachloroethene	2.7	700 E	300	1 (J 1 L	J 150


.

RFW Batch Number:	FIELD DATA	Client:	BLACK & DE	CKER			Page: 3
	Cust ID: RFW#:	SB3-A-709	SB3-A-712	SB3-A-802	SB3-A-806	SB3-A-901	SB3-A-904
Sample Information	Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
mormación	D.F.:	1	2	1	1	· · 1	1
	Units:	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg 1f1
1 1 1-Trichloroet	======================================		1======== 64	1 U		1 U	1 U
Trichloroethene	· · · · · · · · · · · · · · · · · · ·	1 U	0.6 J	1 U	1 U	1 U	
Tetrachloroethene	•••••	32	590	1 U	1 U	180	1 U
		SB3-A-906	SB3-A-1002	SB3-A-1005	SB3-A-1005 R	SB3-A-1007	SB3-A-1101
Sample	RFW#: Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
Information	D.F.:	1	1	1	1	1	1
	Units.	<u>υα/ka</u>	ua/ka	ua/ka	ua/ka	ug/kg	ug/kg
1 1 1-Trichloroet	======================================	========f 1 U	1=====================================	1=====================================	1======================================	1======1 1 U	1 U
Trichloroethene.		1 U		1 U	1 U	1 U	1 U
	•••••		45	1 U	1 U	1 U	10
		SB3-A-1105		SB3-A-1202	SB3-A-1204		SB3-A-1206
Sample	RFW#:		R		a 13	R	a - 12
Information	Matrix:		Soil	Soil	Soil	Soil	Soil
	D.F.:		1	5	5	25 	25 Ng (kg
	Units:	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg

Units:	ug/kg	ug/xy	uy/ ky	ug/ xg	fl	fl
1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	=====fl== 1 U 1 U 1 U 1 U	=====fl== 1.8 1 U 1 U 1 U	=====fl== 2.7 J 5.5 100	======f1= 140 360 5100 E	======f1 * * 1100	=======f] 520 1300 38000 E

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported. E=Out of calibration range. J=Present at less than detection limit. NR=Not requested. *=Refer to lower dilution.

	GC DA	N ANALYTICS TA SUMMARY LE COMPOUNI				
RFW Batch Number: FIELD DATA	Client:	BLACK & DE	CKER			Page: 4
Cust ID: Sample RFW#: Information Matrix: D.F.: Units:	R Soil 500 ug/kg	Soil 1 ug/kg	R Soil 5 ug/kg	SB3-A-1301 Soil 1 ug/kg 1=======f]	Soil 1 ug/kg	Soil 1 ug/kg
1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	* * 70000	20 30 1900 E	63 30	1 U 1 U 4.4	1 U 1 U 290 E	1 U 1 U
Sample RFW#: Information Matrix: D.F.: Units:	Soil 1 ug/kg	Soil 1 ug/kg	Soil 1 ug/kg	SB3-A-1502 R Soil 1 ug/kg	Soil 1 ug/kg	Soil 1 ug/kg
1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	1 U	1 U	1 U	1 U 1 U	1 U 1 U	1 U
Sample RFW#: Information Matrix: D.F.: Units:	R Soil 2 ug/kg	Soil 1 ug/kg	Soil 1 ug/kg	Soil 1 ug/kg	R Soil 25 ug/kg	SB3-A-1604 Soil 1 ug/kg
1,1,1-Trichloroethane Trichloroethene Tetrachloroethene U=Analyzed, not detected. B	=======f 2 U 2 U 400	1======f 1 U 1 U 2.4	1 U 1 U 4.0	2.3 12 1500 E orted. E=Ou	* * 3400	1 U 1 U 4.8 ion range.

RFW Batch Number:	FIELD DATA	Client:	BLACK & DE	CKER			Page: 5
	Cust ID:	SB3-A-1606	SB3-A-1701	SB3-A-1701	SB3-A-1703	SB3-A-1708	SB3-A-1803
Sample	RFW#:			R			
Information	Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
	D.F.:	1	1	2	1	1	1
	Units:	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
======================================	======================================			* T=========	1.1	1 U	
				*	6.2	1 U	
			470 E	460	91	2.5	2200 E
		 SB3-A-1803	 SB3-A-1805	 SB3-A-1807	 SB3-A-1807	 SB3-A-1809	
Sample	RFW#:	BB5 A 1005 R	5D5 A 1005	555 n 1007	R		
Information	Matrix:		Soil	Soil	Soil	Soil	
Información	D.F.:	25	1	1	25	1	
	Units:	ua/ka	ug/kg	ug/kg	ug/kg	ug/kg	
		========f	1=====f	1========f	1=====f	l=====f	1======f
1.1.1-Trichloroet	hane	*	1 U	240 E	420	0.9 J	
-, -,					1 6 0 0		

*

5000

Trichloroethene.....

Tetrachloroethene.....

.

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported. E=Out of calibration range. J=Present at less than detection limit. NR=Not requested. *=Refer to lower dilution.

1 U

2.3

1 U

4.1

1600

15000 E

900 E

2300 E

WESTON Analytics - Dedicated Lab

JAN BALL

GEOSCIENCES DEPT

RECEIVED

CLIENT: BLACK & DECKER RFW # : FIELD WORK-VOA'S W.O.# : 2501-02-01-0000

DATA QUALIFIER

1.

The following qualifiers are used on the data summary:

U - Indicates that the compound was analyzed for but not detected. The minimum detection limit for the sample (not the method detection limit) is reported with the U (e.g., 10U).

J - Indicates an estimated value. This flag is used in cases where a target analyte is detected at a level less than the lower quantification level. If the limit of quantification is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.

BS - Indicates blank spike in which reagent grade water is spiked with the CLP matrix spiking solutions and carried through all the steps in the method. Spike recoveries are reported.

BSD - Indicates blank spike duplicate.

MS - Indicates matrix spike.

MSD - Indicates matrix spike duplicate.

DL - Indicates that surrogate recoveries were not obtained because the extract had to be diluted for analysis.

NA - Not applicable.

DF - Dilution factor.

NR - Not required.

I - Interference.

J. Michael Taylor Project Director Lionville Analytical Laboratory DATE

WESTON ALYTICS GC/MS DATA SUMMARY VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS Client: BLACK & DECKER **REW Batch Number: FIELD DATA**

Page: 1

RFW Batch Number:	FIELD DATA	crient:	DTACK & DEV	CRER			14901 1
		SB3-A-105	SB3-A-106	SB3-A-108	SB3-A-109	SB3-A-202	SB3-A-206
Sample Information	RFW#: Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
Intormación	D.F.:	1	200	1	1	5	2000
	Units:	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
		======================================	1======f	1=====f	l======f		L============f1
					5 U	25 U	10000 U
	• • • • • • • • • • • • • • • • • • •		480000 E	100 E	5.9	26	1300000 E
			35000	2.0 J	2.2 J		160000
Total Xylenes		. 93	NR	NR	NR ·	8600 E	1100000 E
	Cust ID:	SB3-A-206	SB3-A-208	SB3-A-209	SB3-A-302	SB3-A-302	SB3-A-305
Sample	RFW#:	R				R	
Information	Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
	D.F.:	10000	1	1	1	1	1
	Units:	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
					1======f	1=====f.	1======f1
Benzene		. 50000 U					
Toluene	• • • • • • • • • • • • • • • •	. 1000000	5 U				
Ethylbenzene		. 120000	5 U			• -	
Total Xylenes		. 310000	5 U	5 U	5 U	5 0	300
			SB3-A-306	SB3-2-309	SB3-A-310	SB3-A-403	SB3-A-406
Cample	RFW#:	853-A-303 R	2D1 Y 100	5D2 K 202	665 H 510	000 11 100	
Sample Information	Matrix:		Soil	Soil	Soil	Soil	Soil
Information	D.F.:		1	1	1	1	. 1
	Units:		ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
		======================================	1=====================================	1=====================================	1======f	1======f	l=====f1
			5 U	5 U	5 U	5 U	5 U
			3.7 J	5 U	5.3	5 U	• •
	••••		3.0 J			5 U	
			29	5 U	65	. 5 U	5 U

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported. E=Out of calibration range. J=Present at less than detection limit. NR=Not requested.

	VOLATI	GC/MS LE HAZARDOU	DATA SUMMAI JS SUBSTANCI		DUNDS		
RFW Batch Number:		Client:	BLACK & DE				Page: 2
					SB3-A-604	SB3-A-606	SB3-A-607
Sample Information	Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
monación	D.F.:	1	1	1	1	1	1
	Units:	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
			L======1 5 U		5 U	5 U	5 U
		. 5 U			5 U	5 U	
Ethylbenzene		, 5U	5 U			5 U	
Total Xylenes	• • • • • • • • • • • • • • • • • • •	. 5 U	5 U	5 U	5 U	5 U	5 U
	Cust ID:	SB3-A-607	SB3-A-609	SB3-A-609	SB3-A-611	SB3-A-701	SB3-A-705
Sample	RFW#:	R		R		• -	• -
Information	Matrix:	Soil	Soil				Soil
	D.F.:	200	1	1	10000	1	1
	Units: ====================================	ug/kg	ug/kg l======f	ug/kg l======f	ug/kg 1======f	ug/kg 1======f	ug/kg 1=====f1
							5 U
Toluene			240	100	4600000 E	5 U	5 U
Ethylbenzene				5 U	50000 U		
Total Xylenes		. 1000 U			50000 U	5 U	5 U
Sample	Cust ID: RFW#:	SB3-A-707	SB3-A-709	SB3-A-712	SB3-A-802	SB3-A-806	SB3-A-901
Information	Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
1111 01 ma 01 01	D.F.:	50	5	50	1	1	1
	Units: ====================================	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
						. 5 Ŭ	5 Ū
		050 T	100 I		5 U	J 5 U	I 5 U
-	••••••		270 I		5 U	5 U	5 U
J=Present	d, not detected. B at less than dete entities and arb	ction limit	. NR=Not r		orted. E=Ou	t of calibr	on range.

WESTON ANALYTICS GC/MS DATA SUMMARY YOLATILE HAZARDOUS SUBSTANCE LIST COMPOUND

.

WEST ANALYTICS GC/MS DATA SUMMARY

VOLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

RFW Batch Number:	FIELD DATA	Client:	BLACK & DE	======================================			Page: 3
	Cust ID: RFW#:	SB3-A-904	SB3-A-906	SB3-A-1002	SB3-A-1005	SB3-A-1101	SB3-A-1105
Sample Information	Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
Información	D.F.:	1	1	1	1	1	1
	Units:	$\frac{1}{100}$	ua/ka	ug/kg	ug/kg	ug/kg	ug/kg
			[================== 5 U	11 5 U	5 U	5 U	5 0
	••••••		5 U	5 U			
			5 U				
Total Xylenes		. 5 U	5 U	5 U	5 U	5 U	5 U
	Cust ID:	SB3-A-1105	SB3-A-1202	SB3-A-1204	SB3-A-1206	SB3-A-1206	SB3-A-1209
Sample	RFW#:	R				R	0-11
Information	Matrix:	Soil	Soil				Soil 1
	D.F.:			1 ug/kg	5 1)g /kg		-
	Units: ====================================	ug/kg	ug/kg	uy/ky 1=f	$ug/\kappa g$	l = = = = = = = = = = = = f	1====== = =f1
			5 U	110	460	280	190
			5 U				-
Ethylbenzene		. 5 U	5 U		25 U		
Total Xylenes		. 5 U	5 U	5 U	25 U	25 U	5 U
		SB3-A-1301	SB3-A-1304	SB3-A-1401	SB3-A-1502	SB3-A-1503	SB3-A-1504
Sample	RFW#:	· Coil	Soil	Soil	Soil	Soil	Soil
Information	Matrix: D.F.:	Soil 1	5011	1	1	1	1
	Unite.	na/ka	<u>ua/ka</u>	ua/ka	ua/ka	uq/kq	ug/kg
		========f:	l=====f	1=====f	1====f	1=====f	1=====f]
		. 5 U	2.1 J	5 U	5 U	5 U	5 0
		. 5 U					
Ethylbenzene		. 5 U					
Total Xylenes		. 5 U	5 U	5 U	5 U	5 U	5 0

U=Analyzed, not detected. B=Present in blank. NRP=Not Reported. E=Out of calibration range. J=Present at less than detection limit. NR=Not requested.

	VOLAT	ILE HAZARDO	US SUBSTANC	E LIST COMPO	DUNDS		
RFW Batch Number:	FIELD DATA	Client:	BLACK & DE	CKER			Page: 4
Comple	Cust ID: RFW#:	SB3-A-1603	SB3-A-1603 R	SB3-A-1604	SB3-A-1606	SB3-A-1701	SB3-A-1703
Sample Information	Matrix: D.F.: Units:	1	Soil 1	Soil 1 ug/kg	1	1	Soil 1 ug/kg
Benzene Toluene Ethylbenzene		. 25 . 5 U . 5. U	5 U 5 U 5 U	5 U 5 U 5 U	5 U 5 U 5 U	5 U 5 U	5 U 5 U 5 U
Sample	Cust ID: RFW#:	SB3-A-1708	SB3-A-1803	SB3-A-1807	SB3-A-1809		
Information	Matrix: D.F.: Units:	1 ug/kg	1 ug/kg	2 ug/kg	Soil 1 ug/kg	1	1
Benzene Toluene Ethylbenzene		. 5 U . 5 U . 5 U	130 5 U 5 U	1500 E 10 U 10 U	5 U 5 U 5 U		1 - []

WESTON ANALYTICS GC/MS DATA SUMMARY OLATILE HAZARDOUS SUBSTANCE LIST COMPOUNDS

Analyzed, not detected. B=Present in bl J=Present at less than detection limit.

NRP=Not Reported

NRP=Not Reported. E=Out of calibrat

range.

RFW Batch Number: 88	112L023	Client:	BLACK	& DECKER			<u>Work</u>	<u> Order: 250</u>	01-02	-01-0000	Page:	1
	Cust ID:	RFW-10		RFW-10		RFW-10)	RFW-11A		RFW-11B	RFW-11A D	UP
Sample	RFW#:	001		001 MS		001 MSD		002 WATER		003 WATER	OO WATE	
Information	Matrix:	WATER 1.0		WATER 1.0		WATER 1.0			h	1.00	1.	
	D.F.: Units:	ug/L	0	ug/L	0	ug/L		ug/L	,	ug/L	ug/	
	Toluene-d8	87 *	%	97	%	91	%	99	%	100 %	95	%
Surrogate Bromo	ofluorobenzene		%	97	%	91	%	72 *	%	81 * %		%
	loroethane-d4	78	%	89	%	83	%			72 * %	82 1=========	% ==f
chloromethane	1##22#55622235523	10	=TI== U	10	U	10	U	20	U	10 L	10) U
Bromomethane		10	U	10	U	10	U	20	U	10 L		
/inyl Chloride		10	U	10	U	10	U	20	U	10 U		
Chloroethane		10	U	10	U	10	U	20	U	10 L 6 E		
lethylene Chloride_		3	JB	8	B	/	B J	15 52	8 B	6 E 120 E		, D ; J
Acetone		2 5	J U	8 5	ม U	5	Ŭ	10	Ŭ	5 L		; U
Carbon Disulfide L.1-Dichloroethene		5	U	104	%	95	%	10	Ŭ	5 U		i Ŭ
1,1-Dichloroethane		5	ŭ	5	Ű	5	Ũ	10	Ŭ	5 ไ		i U
1,2-Dichloroethene	(total)	5	Ū	5	Ŭ	5	Ū	10	U	5 L	5	5 U
Chloroform	()	5	U	5	U	5	U	2	J	1 3]	J
1,2-Dichloroethane_		5	U	5	U	5	U	10	U	5 l		5 U
2-Butanone		6	J	8	J	10	U	17	J	10 (
1,1,1-Trichloroethar		5	U	5	Ü	5	U	10	U U	5 l 5 l		
Carbon Tetrachloride	2	5	U U	5 10	U U	5 10	U U	10 20	U	10 l		
Vinyl Acetate		10 5	Ŭ	5	Ŭ	5	Ŭ	10	Ŭ	10 C		
Bromodichloromethane 1,2-Dichloropropane	·······	5	Ŭ	5	Ŭ	5	Ŭ	10	Ŭ	5 1		5 Ū
cis-1,3-Dichloroprop	pene	5	Ŭ	5	Ŭ	5	Ŭ	10	Ŭ	5 L	JE	5 U
Trichloroethene		340	-	115	%	130 🕈	* %	51		20	51	l
Dibromochloromethane	2	5	U	5	U	5	U	10	U	5 L		
1,1,2-Trichloroetha		5	U	5	U	5	U	10	U	5 L	-	
Benzene		5	U	133_*		118	%	10	U	5 U		
Trans-1,3-Dichlorop		5	U	5	U	5	U	10	U	-	J 5	
Bromoform 4-Methyl-2-pentanone		5	U	5	U	5	U	10 20	U U) 5 J 10	
4-Methyl-2-pentanone	2	10	U	10 10	U U	10 10	U U	20 20	U	10 U		
2-Hexanone		10	U J	10	J	10	J	10	Ŭ		j E	
Tetrachloroethene 1,1,2,2-Tetrachloroe	athane	5	U	5	Ŭ	5	บ	10	Ŭ		, 5	
*= Outside of EPA Cl	D OC limite	5	-	5	-	•	~					

RFW Batch Number: 8812L023	Client: BLACK	& DECKER	Work	Order: 2501-02	2-01-0000	Page: 1b
Cust ID:	RFW-10	RFW-10	RFW-10	RFW-11A	RFW-11B	RFW-11A DUP
RFW#:	001	001 MS	001 MSD	002	003	004
Toluene	<u> </u>	96 %	87 %	10 U	5 U	5 U
Chlorobenzene	5 U	104 %	97 %	10 U	5 U	5 U
Ethylbenzene	5 U	5 U	5 U	10 U	5 U	5 U
Styrene	5 U	5 U	5 U	2 J	5 U	5 U
Xylene (total) *= Outside of EPA CLP QC limits.	5 U	5 U	5 U	10 U	5 U	5 U

O Int int int the sale and the s

) (1111) (1111) (1111) (1111) (1111) (1111) (1111)

ample nformation	RFW#:			RFW-12	•	RFW-13		RFW-14		VBLK		VBLK	
	Matrix: D.F.: Units:	005 WATER 1.0 ug/L	0	005 DL Water 10 Ug/L	₹ 00	006 WATER 1.00 ug/L		007 WATER 1.0 ug/L	0	89LVY002-M WATER 1.0 ug/l	l 10	89LVQ008-M WATER 1.0 ug/L	≀)0
	Toluene-d8 ofluorobenzene lloroethane-d4	98 95 76	% % %	110 97 87	% % %	70 *		91 96 83	% % %	103 105 94	% % %	101 91 82	% % %
hloromethane		10	U	, NA		10	U	10	U	10 10	U U U	10 10	Ŭ
romomethane /inyl Chloride		10 10	บ บ	NA . NA		10 10	U U	10 10	U U	10	U	10	U U
hloroethane		10	Ŭ	NA		10	Ŭ	10	Ŭ	10	Ŭ	10	Ū
lethylene Chloride		6	В	760	В	5	В	16	В	5		7	
cetone		79	В	940	JB	8	JB	5	JB	10	U	18	
arbon Disulfide		5	U	NA		5	U	5	U	5	U	5	U
,1-Dichloroethene		5	U U	NA NA		5 5	บ บ	5 5	U	5	U U	5	U U
,1-Dichloroethane,2-Dichloroethene (totall	5	Ŭ	NA		5	Ŭ	5	Ŭ	5	Ŭ	5	Ŭ
hloroform		j i	Ĵ	120	J	ĩ	Ĵ.	2	J	5	Ŭ	5	Ŭ
,2-Dichloroethane	·····	5	Ŭ	NĂ	•	5	Ū	5	U	5	U	5	U
-Butanone		8	J	NA		10	U	10	U	10	U	10	U
,1,1-Trichloroethan		5	U	NA		5	U	5	U	5	U	5	U
arbon Tetrachloride)	5	U	NA		5	U	5	U	5	U	5	U
inyl Acetate		10	U	NA		10	U	10 5	U U	10	U U	10 5	U U
romodichloromethane		5 5	U U	NA NA		5 5	บ บ	5 5	U	5	U	5	U U
,2-Dichloropropane_ is-1,3-Dichloroprop	ana	5	Ŭ	NA		5	Ŭ	5	Ŭ	5	Ŭ	5	Ŭ
richloroethene		650	v	1100		5	Ŭ	5	Ŭ	5	Ū	· 5	Ū
ibromochloromethane	<u> </u>	5	U	NA		5	Ū	5	ป	5	U	5	U
,1,2-Trichloroethan		5	U	NA		5	U	5	U	5	U	5	U
enzene		5	U	NA		5	U	5	U	5	U	5	U
rans-1,3-Dichloropr	opene	5	U	NA		5	U	5	U	5	U	5	U
romoform		5	U	NA		5	U	5	U	5	U	5	U
-Methyl-2-pentanone	<u> </u>	10	U	NA		10	U	10	U	10 10	U U	10 10	ี ป
-Hexanone		10	U	NA NA		10 5	U U	10 5	U U	10	U	10	U
etrachloroethene	thang	12 5	U	NA		5 5	U	5	U	5	Ŭ	5	บ

.

•

RFW Batch Number: 8812L023	Client: BLACK	& DECKER	Work (Order: 2501 -	02-01-0000	Page: 2b
Cust ID:	RFW-12	RFW-12	RFW-13	RFW-14	VBLK	VBLK
RFW#:	005	005 DL	006	007	89LVY002-MB1	89LVQ008-MB1
Toluene Chlorobenzene Ethylbenzene Styrene Xylene (total) *= Outside of EPA CLP QC limits.	5 U 5 U 5 U 1 J 5 U	200 J NA NA NA NA NA	5 U 5 U 5 U 1 J 5 U	5 U 5 U 5 U 5 U 5 U 5 U	5 U 5 U 5 U 5 U 5 U 5 U	5 U 5 U 5 U 5 U 5 U 5 U

.

•

•

	16		CLIENT SAMPLE NO.
	RGANICS ANALYSIS SHEET ELY IDENTIFIED COMPOUNDS		 FW-11A
Lab Name: Roy F. West	<u>on,Inc.</u> Work Order: <u>250</u>		
Client: <u>BLACK & DEC</u>	KER		
Matrix:	WATER	Lab Sample ID:	<u>8812L023-002</u>
Sample wt/vol:	<u>2.50</u> (g/mL) <u>ML</u>	Lab File ID:	<u>Q011213</u>
Level: (low/med)	LOW	Date Received:	12/30/88
% Moisture: not dec.		Date Analyzed:	01/12/89
Column: (pack/cap) <u>P/</u>	ACK	Dilution Factor	: <u>2.00</u>
Number TICs found:		NTRATION UNITS: or ug/Kg) <u>UG/L</u>	

RT EST. CONC. Q CAS NUMBER COMPOUND NAME _____ ------================== ===== ------------3.03 400 29.87 10 UNKNOWN UNKNOWN J 1. Ĵ 2.

FORM 1 VOA-TIC

12/88 Rev.

1E VOLATILE ORGANICS ANALYSIS SHEET	CLIENT SAMPLE NO.						
TENTATIVELY IDENTIFIED COMPOUNDS	RFW-11B						
Lab Name: <u>Roy F. Weston, Inc.</u> Work Order: <u>250</u>							
Client: <u>BLACK & DECKER</u>							
Matrix: <u>WATER</u>	Lab Sample ID: <u>8812L023-003</u>						
Sample wt/vol: <u>5.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>Q011207</u>						
Level: (low/med) <u>LOW</u>	Date Received: <u>12/30/88</u>						
% Moisture: not dec	Date Analyzed: <u>01/12/89</u>						
Column: (pack/cap) <u>PACK</u>	Dilution Factor: <u>1.00</u>						
Number TICs found: 2 CONCENTRATION UNITS: (ug/L or ug/Kg)							
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q						
1. 2. UNKNOWN	5.30 10 J 29.87 10 J						

1. 2.

VOLATILE	1E ORGANICS ANALYSIS SHEET	CLIENT SAMPLE NO.		
TENTATI	TENTATIVELY IDENTIFIED COMPOUNDS Lab Name: <u>Roy F. Weston, Inc.</u> Work Order: <u>2501-02-01-0000</u>			
Client: <u>BLACK & DE</u>				
Matrix:	WATER	Lab Sample ID: <u>8812L023-004</u>		
Sample wt/vol:	<u>5.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>Q011208</u>		
Level: (low/med)	LOW	Date Received: <u>12/30/88</u>		
% Moisture: not dec.		Date Analyzed: <u>01/12/89</u>		
Column: (pack/cap) <u>P</u>	PACK	Dilution Factor: <u>1.00</u>		
Number TICs found:		NCENTRATION UNITS: g/L or ug/Kg) <u>UG/L</u>		

.

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	29.87	8	J

.

	1E RGANICS ANALYSIS SHEET ELY IDENTIFIED COMPOUNDS		CLIENT SAM	PLE NO.
Lab Name: <u>Roy F. West</u>	<u>on,Inc.</u> Work Order: <u>250</u>]	1-02-01-0000		
Client: <u>BLACK & DEC</u>	KER			
Matrix:	WATER	Lab Sample II): <u>8812L023-(</u>	006
Sample wt/vol:	<u>5.00</u> (g/mL) <u>ML</u>	Lab File ID:	<u>0011209</u>	······································
Level: (low/med) [LOW	Date Received	i: <u>12/30/88</u>	
% Moisture: not dec.		Date Analyzed	1: <u>01/12/89</u>	
Column: (pack/cap) <u>PA(</u>	<u>CK</u>	Dilution Fact	tor: <u>1.00</u>	
Number TICs found:		NTRATION UNITS or ug/Kg) <u>UG</u> /		•
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	29.90		J .

	1E ORGANICS ANALYSIS SHE		SAMPLE NO.
TENTATI	VELY IDENTIFIED COMPC	DUNDS RFW-14	
Client: <u>BLACK & DE</u>			
Matrix:	WATER	Lab Sample ID: <u>88121</u>	_023-007
Sample wt/vol:	<u>5.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>Q01</u>	210
Level: (low/med)	LOW	Date Received: <u>12/30</u>)/88
% Moisture: not dec.		Date Analyzed: <u>01/12</u>	2/89
Column: (pack/cap) <u>P</u>	ACK	Dilution Factor: <u>1.00</u>)
Number TICs found:	<u> </u>	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>	

1

CAS NUMBERCOMPOUND NAMERTEST. CONC.Q1.UNKNOWN29.878J	CAS NUMBER		RT 29.87		CONC.	Q J
--	------------	--	-------------	--	-------	------------

1E VOLATILE ORGANICS	ANALYSIS SHEET		CLIENT SAMP	PLE NO.	
TENTATIVELY IDE	NTIFIED COMPOUNDS		/BLK		
Lab Name: <u>Roy F. Weston, Inc.</u>	Work Order: <u>2501-02</u>	-01-0000	<u></u>		
Client: LAB					
Matrix: <u>WATER</u>	Lab	Sample ID:	<u>89LVQ008-M</u>	<u>1B1</u>	
Sample wt/vol: _ <u>5.00</u>	(g/mL) <u>ML</u> Lab	File ID:	0011203		
Level: (low/med) <u>LOW</u>	Dat	e Received:	<u>01/12/89</u>		
% Moisture: not dec	Dat	e Analyzed:	01/12/89		
Column: (pack/cap) <u>PACK</u>	Dil	ution Factor	r: <u>1.00</u>		
Number TICs found: <u>3</u>		TION UNITS: ug/Kg) <u>UG/L</u>			
CAS NUMBER	COMPOUND NAME	RT ES	ST. CONC.	Q	

 CAS NUMBER
 COMPOUND NAME
 RT
 EST. CONC.
 Q

 1.
 UNKNOWN
 3.00
 300
 J

 2.
 UNKNOWN
 10.80
 5
 J

 3.
 UNKNOWN
 29.87
 J

	VOLATILE	1E ORGANICS ANALYSIS SH	CLIENT SAMPLE NO.
		IVELY IDENTIFIED COMP <u>ston,Inc.</u> Work Orde	RFW-12
	Client: <u>BLACK & D</u>	ECKER	
	Matrix:	WATER	Lab Sample ID: <u>8812L023-005</u>
	Sample wt/vol:	<u>5.00</u> (g/mL) <u>ML</u>	Lab File ID:0011212
-	Level: (low/med)	LOW	Date Received: <u>12/30/88</u>
	% Moisture: not dec	·	Date Analyzed: <u>01/12/89</u>
	Column: (pack/cap)	PACK	Dilution Factor: <u>1.00</u>
	Number TICs found:	_2	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

ļ

Ì

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
1. 2.	UNKNOWN UNKNOWN		10000 10000	J J
		l		I

PETROLEUM HYDROCARBON ANALYSIS RESULTS: SOIL SAMPLES

4178B

į .

RFW Batch Number:		Client:	BLACK & DE				Page: 1
	Cust ID:	SB3-A-101	SB3-A-101		SB3-A-102		
Sample	RFW#:	1		2	2 MS		B.S.
Information	Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
	D.F.:	1		1	-	1	1
	Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analvte:							
PHC (wet weight)	••••	26.0	44.0	17.0	108 %	3.0 J	96 2
Date		12/07/88	12/07/88	12/07/88	12/07/88	12/07/88	12/07/88
	Cust ID:	CHECK STD	SB3-A-103	SB3-A-104	SB3-A-105	SB3-A-106	SB3-A-107
Sample	RFW#:	100	3	4	5	6	7
Information	Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
*******	D.F.:	1	1	1	1	1	1
	Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analyte:							
PHC (wet weight)	•••••	140.0	7 J	20.0	20.0	750.0	12.0
Date	•••••	12/07/88	12/08/88	12/08/88	12/08/88	12/08/88	12/08/88
	Cust ID:	SB3-A-108	 SB3-A-109	SB3-A-104	SB3-A-105		 B.S.
Sample	RFW#:	8	9	4 DUP	5 MS		B.S.
Information	Matrix:		Soil			Soil	Soil
	D.F.:	1	1	1	1		1
	Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analyte: PHC (wet weight)							
Date		12/08/88	12/08/88	12/08/88	12/08/88	12/08/88	12/08/88

U=Analyzed, not detected. J=Present below detection limit.

RFW Batch Number:	Client:	BLACK & DE	CKER			Page: 2
Cust ID:	SB3-A-201	SB3-A-202	SB3-A-203	SB3-A-204	SB3-A-205	SB3-A-206
Sample RFW#:	10	11	12	13	14	15
information Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
D.F.:	1	1	1	1	1	1
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
nalvte:						
PHC (wet weight)	39.0	46.0	34.0	74.0	170.0	1800.0
Date	• •	12/08/88				
Cust ID:		SB3-A-208				
ample RFW#:		17	18	13 DUP	14 MS	BLANK
information Matrix:		Soil	Soil	Soil	Soil	Soil
D.F.:		1	1	1	1	1
Units:	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
nalyte: PHC (wet weight)						
Date						
Cust ID:	 B.S.	SB3-A-301	SB3-A-302	SB3-A-303	SB3-A-304	SB3-A-305
Sample RFW#:		19	20	21		23
Information Matrix:	Soil	Soil	Soil	Soil		Soil
D.F.:		1	1	1	1	1
Units:	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
nalvto.						
PHC (wet weight)	96	8 9.5	28.0	17.0	25.0	11.0
Date <u>.</u>	12/08/88	12/08/88	12/08/88	12/08/88	12/08/88	12/08/88

RFW Batch Number: Cust ID:	Client:	BLACK & DEG	CKER			Page: 3
						raye. J
0400 101	SB3-A-306	SB3-A-307				SB3-A-309
Sample RFW#:	24	25	26	27	28	27 DUP
				Soil	Soil	Soil
D.F.:		1	1	1	1	1
Units:	ma/ka	ma/ka	ma/ka	mg/kg	mg/kg	mg/kg
Analyte:			T=======	T=======I	T=======	T=======1
PHC (wet weight)	32.0	5.0	11.0	12.0	11.0	10.0
Date	12/08/88	12/08/88	12/08/88	12/08/88	12/08/88	12/08/88
Cust ID:	SB3-A-310	BLANK			SB3-A-402	
Sample RFW#:		BLANK			30	31
				Soil		
	1	1	1	1	1	1
Units:	ma/ka	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg
Analyte:					1=======1	11
PHC (wet weight)	88 %	4.0 U	103 %	12.0	5.4	2.1 J
- Date	12/08/88	12/08/88	12/08/88	12/08/88	12/08/88	12/08/88
Cust ID:	SB3-A-404	SB3-A-405				
Sample RFW#:	32			35 .		37
Information Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
D.F.:		1				1
Units: ====================================	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg fl======f
======================================					J 6.9	4.0 U
					12/08/88	12/08/88

U=Analyzed, not detected. J=Present below detection limit.

.

FW Batch Number:		Client:	BLACK & DEG	CKER			Page: 4
		SB3-A-405	SB3-A-409	BLANK	B.S.	SB3-A-501	SB3-A-502
ample	RFW#:	33 DUP	37 MS	BLANK			39
nformation	Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
	D.F.:		1	1	1	1	1
	Units:	mg/kg	mg/kg	mg/kg l======f	mg/kg l======f		mg/kg fl===== = f
nalyto.							
HC (wet weight)	••••	3.3 J	102 %	4.0 U	103 %	50.0	16.0 B
ate	•••••	12/08/88	12/08/88	12/08/88	12/08/88	12/09/88	12/09/88
	Cuct ID:		SB3-A-504	SB3-A-505	SB3-A-506	SB3-A-507	SB3-A-508
ample	RFW#:			42	43	44	45
information	Matrix:			Soil	Soil	Soil	Soil
D	D.F.:		1	1	1	1	1
	Units:	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg fl======f
nalvte.							
PHC (wet weight)	••••	11.0 B	18.0 B	17.0 B	13.0 B	17.0	B 17.0 E
Date	• • • • • • • • • • •	12/09/88	12/09/88	12/09/88	12/09/88	12/09/88	12/09/88
			SB3-A-510	BLANK	B.S.	SB3-A-801 48	SB3-A-802 49
Sample	RFW#:			BLANK Soil	B.S. Soil	Soil	Soil
Information	Matrix: D.F.:		5011	5011	1	1	1
	Units:	ma/ka	 ma/ka	ma/ka	mq/kq	mq/kg	mg/kg
Analyte:				•			[]=========]
PHC (wet weight)		12.0 E	B 11.0 B	9.9	93 %	6.2	20.0
Date		12/09/88	12/09/88	12/09/88	12/09/88	12/09/88	12/09/88
		, ,					

RFW Batch Number:		Client:	BLACK & DI	ECKER			Page: 5
			SB3-A-804	SB3-A-805	SB3-A-806	SB3-A-807	SB3-A-808
Sample	RFW#:	50	51	52	53	54	55
	Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
		1	1	1	1	1	1
	Units:	mg/kg	mg/kg	mg/kg fl=====f	mg/kg	mg/kg	mg/kg
Analyte: PHC (wet weight)							
Date		12/09/88	12/09/88	12/09/88	12/09/88	12/09/88	12/09/88
	Cust ID:			SB3-A-801			SB3-A-701
Sample	RFW#:			48 MS			
Information				Soil			Soil
					1	1	1
	Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analvte:					•		
PHC (wet weight)		8.1	4.8	100 %	1.4	99 %	110.0
Date		12/09/88	12/09/88	12/09/88	12/09/88	12/09/88	12/09/88
	Cust ID:	SB3-A-702	SB3-A-703	SB3-A-704			
Sample	RFW#:	58	59		61	62	63
Information	Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
				1			1
	Units:	mg/kg ===================================	mg/kg	mg/kg fl=======f	mg/kg]====================================	mg/kg []======f	mg/kg 1=======
Analyte: PHC (wet weight)							7500.0
Date		12 (00 (00	12/00/00	10/00/00	12/00/00	12/00/00	12/00/00

U=Analyzed, not detected. J=Present below detection limit.

						==============
RFW Batch Number:	Client:	BLACK & DE	CKER			Page: 6
Cust ID:	SB3-A-708	SB3-A-709	SB3-A-710	SB3-A-711	SB3-A-712	SB3-A-701
Sample RFW#:		65	66	67	68	57 DUP
Information Matrix:		Soil	Soil	Soil	Soil	Soil
D.F.:		1	1	1	· 1	1
Units:	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	======================================]=====f]======f	1=======t	1======##t	1===== ===t 1
Analyte: PHC (wet weight)	14000	340.0	21.0	2200.0	860.0	71.0
Date	12/09/88	12/09/88	12/09/88	12/09/88	12/09/88	12/10/88
Cust ID:	SB3-A-706	SB3-A-710	BLANK	B.S.	CHECK STD	SB3-A-601
Sample RFW#:		66 DUP	BLANK	B.S.		69
Information Matrix:		Soil	Soil	Soil	Soil	Soil
D.F.:		1	1	1	1	1
Units	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analyte:	:===============	[]=========1	1========================	:1====================================	T======1	T======IT
PHC (wet weight)	51.0	42.0	4.7	89 %	140.0	13.0
Date	12/10/88	12/10/88	12/10/88	12/10/88	12/10/88	12/12/88
Cust TD	SB3-A-602	SB3-A-603	SB3-A-604	SB3-A-605	 SB3-A-606	SB3-A-607
Sample RFW#		71	72	73	74	75
Information Matrix:			Soil	Soil	Soil	Soil
D.F.:		1	1		1	1
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
	=================	[]=========	[]========	[]=======	T=======I	:1=======I1
Analyte: PHC (wet weight)	18.0	33.0	74.0	2.4 J	1.7 J	3.1 J
Date	12/12/88	12/12/88	12/12/88	12/12/88	12/12/88	12/12/88

H=Analyzed, not detected. J=Present below detection limit.

RFW Batch Number:		Client:	BLACK & DE	CKER			Page: 7
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Cust ID:	SB3-A-608	SB3-A-609	SB3-A-611	SB3-A-901	SB3-A-902	SB3-A-903
Sample	RFW#:	76	77	78	79	80	81
Information	Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
	D.F.:	1	1	1	1	1	1
	Units:	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg
		=======f	1======f	1=====================================	1=======t	:1==========f.	1====== = =1
Analyte: PHC (wet weight)	••••	7.2	10.0	400.0	34.0	25.0	24.0
Date	•••••	12/12/88	12/12/88	12/12/88	12/12/88	12/12/88	12/12/88
	Cust ID:	 SB3-A-904	SB3-A-905	SB3-A-906	 SB3-A-907	SB3-A-908	SB3-A-909
Sample	RFW#:	82	83	84	85	86	87
Information	Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
	D.F.:	1	1	1	1	1	1
	Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analyte:	***********	===================	:T==============	T=====I	T======		T======t
PHC (wet weight)	••••	26.0	21.0	3.8 J	9.4	17.0	4.2
Date	•••••	12/12/88	12/12/88	12/12/88	12/12/88	12/12/88	12/12/88
	Cust ID:	 SB3-A-908	SB3-A-909	BLANK	 B.S.	SB3-A-1001	SB3-A-1002
Sample	RFW#:	86 DUP	87 MS	BLANK	B.S.	88	89
Information	Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
	D.F.:	1	1	1	1	1	1
•	Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		=======f	:1=======f	T======t	T=======	T======I	T========
Analyte: PHC (wet weight)	•••••	12.0	110 %	1.3	91 %	3 16.0	52.0
Date		12/12/88	12/12/88	12/12/88	12/12/88	12/12/88	12/12/88

U=Analyzed, not detected. J=Present below detection limit.

RFW Batch Number:	Client:	BLACK & DE				Page: 8
	: SB3-A-1003	SB3-A-1004	SB3-A-1005	SB3-A-1006	SB3-A-1007	
Sample RFW#	: 90	91		93	94	95
Information Matrix	: Soil					Soil
D.F.	: 1	1	1			
Units ====================================	: mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analyte:	:==============	T======1		1=====1	11	11.
PHC (wet weight)	. 17.0	20.0	64.0	4.6	5.2	2.7 J
Date	. 12/12/88	12/12/88	12/12/88	12/12/88	12/12/88	12/12/88
Cust II): SB3-A-1009	BLANK	 B.S.	SB3-A-1101	SB3-A-1102	SB3-A-1103
Sample RFW			B.S.		98	99
Dumpie	Soil	Soil	Soil	Soil	Soil	Soil
D.F.	• 1	1	1	1	1	1
Units	: ma/ka	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg
Analyte:						
PHC (wet weight)	4.0 U	2.4	97 %	11.0	3.5 J	4.0 U
Date	. 12/12/88	12/12/88	12/12/88	12/13/88	12/13/88	12/13/88
Cust II): SB3-A-1104	SB3-A-1105	SB3-A-1106	SB3-A-1107	SB3-A-1108	SB3-A-1109
Sample RFW			102	103	104	105
Information Matrix		Soil		Soil	Soil	Soil
THEOLMGOION	: 1				1	1
Units	s: ma/ka	ma/ka	ma/ka	mq/kq	mq/kq	mg/kg
	===============f	1======f	1=====================================	T=======	T===== I	T======t
Analyte: PHC (wet weight)	4.0 U	3.6 J	4.0 U	7.4	4.0 U	3.6 J
Date	. 12/13/88	12/13/88	12/13/88	12/13/88	12/13/88	12/13/88

r i or

imi

pel

sei

٠T

det

						=======================================	
RFW Batch Number:		Client:	BLACK & DEC				Page: 9
	 Cust ID:		SB3-A-1108	SB3-A-1109			SB3-A-1202
Sample	RFW#:		104 DUP	105 MS	B.S.	106	107
Information	Matrix:			Soil	Soil	Soil	Soil
In or matter on	D.F.:		1	1	1	1	1
	Units:	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analyte:		=======================	L==≠≠≖===I.		T=======I	1========1	111
PHC (wet weight)	• • • • • • • •	4.0 U	4.0 U	93 %	99 १	390.0	1700.0
Date	• • • • • • • •	12/13/88	12/13/88	12/13/88	12/13/88	12/13/88	12/13/88
	Cust ID:	SB3-A-1203	SB3-A-1204	SB3-A-1205	 SB3-A-1206	5 SB3-A-1207	SB3-A-1208
Sample	RFW#:	108	109	110	111	112	113
Information	Matrix:			Soil	Soil	Soil	Soil
Intermetron	D.F.:		1	1	1	1	1
	Uniter	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analvte:							
PHC (wet weight)	• • • • • • • •	34.0	3100.0	77000.0	93000.0	110.0	310.0
Date	••••	12/13/88	12/13/88	12/13/88	12/13/88	12/13/88	12/13/88
	Cust ID.	SB3-A-1209	SB3-1-1203	SB3-2-1204	BLANK	 B.S.	SB3-A-1301
	RFW#:	114	108 DUP	109 MS	BLANK	B.S.	115
Sample Information	Matrix:			Soil	Soil	Soil	Soil
TUTOTWALIOU	D.F.:		1	1	1	1	1
	Unite.	ma/ka	ma/ka	ma/ka	mg/kg	mg/kg	mg/kg
======================================	********	======f	1====f	T======t	T=========	LT=======	T======[]
Analyte: PHC (wet weight)	•••••	35.0	27.0	101 %	4.0 0	J 98 %	2600.0
Date		12/13/88	12/13/88	12/13/88	12/13/88	12/13/88	12/13/88

U=Analyzed, not detected. J=Present below detection limit.

RFW Batch Number:	Client:	BLACK & DEC				Page: 10
	D: SB3-A-1302		SB3-A-1304	SB3-A-1305	SB3-A-1306	
Sample RFW	∛#: 116	117	118	119	120	121
		Soil	Soil	Soil	Soil	Soil
D.F	7.: 1	1	1	1	1	1
Unit	s: mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analvte:						
PHC (wet weight)	48.0	2.2 J	130.0	24.0	46.0	4.0 U
Date	12/13/88	12/13/88	12/13/88	12/13/88	12/13/88	12/13/88
Cust 1	LD: SB3-A-1308	SB3-A-1309	SB3-A-1303	SB3-A-1401	SB3-A-1402	2 SB3-A-1403
Sample RFW			117 DUP		125	126
Information Matri	ix: Soil	Soil	Soil	Soil	Soil	
D.F	F.: 1	1	1	1	1	1
Unit	ts: ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analvte:						
PHC (wet weight)	4.0 U	4.0 U	4.2	180.0	20.0	4.0 U
Date	12/13/88	12/13/88	12/13/88	12/13/88	12/13/88	12/13/88
Cust 1	 ID: SB3-A-1404	SB3-A-1405	SB3-A-1406	5 SB3-A-1407	SB3-A-1408	SB3-A-1409
	W#: 127			130	131	132
Information Matri	ix: Soil	Soil	Soil	Soil	Soil	Soil
D. F	F.: 1	1	1	1	1	1
	ts: ma/ka	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg fl=====fl
Analyte						
PHC (wet weight)	4.0 U	i 20.0	7.1	4.0	4.0 U	1.6 J
Date	12/13/88	12/13/88	12/13/88	12/13/88	.12/13/88	12/13/88

|1i|

cti

b

e

ze

hot

tec

RFW Batch Number:	Client:	BLACK & DE	CKER			Page: 11
): SB3-A-1406			SB3-A-1501	SB3-A-1502	SB3-A-1503
Sample RFW#		129 MS	BLANK	133	134	135
Information Matrix		Soil	Soil	Soil	Soil	Soil
D.F.		1	1	1	1	1
Units 		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
======================================		T=======	1======1		T======t	T=======±=±I)
PHC (wet weight)	. 6.8	98 8	5 4.0 U	1200.0	4.0 U	1800.0
Date	. 12/13/88	12/13/88	12/13/88	12/13/88	12/13/88	12/13/88
Cust II): SB3-A-1504	SB3-A-1505	5 SB3-A-1506	SB3-A-1507	SB3-A-1508	SB3-A-1509
Sample RFW#		137	138	139	140	141
Information Matrix		Soil	Soil	Soil	Soil	Soil
D.F.	: 1	1	1	1	1	1
Units						mg/kg
======================================		T=======1	. T======= L	1======t.	1======f.	Tassessatl
PHC (wet weight)	. 35.0	8.4	5.0	4.0 U	18.0	4.0 U
Date	. 12/13/88	12/13/88	12/13/88	12/13/88	12/13/88	12/13/88
Cust ID	BLANK	 B.S.	SB3-A-1601	SB3-A-1602	SB3-A-1603	SB3-A-1604
Sample RFW#	: BLANK	B.S.	142	143	144	145
Information Matrix	: Soil	Soil	Soil	Soil	Soil	Soil
D.F.	: 1	1	1	1	1	1
Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
======================================		T========	T======L	T========	L===========	L=== == ===[]
PHC (wet weight)	. 4.0 U	109 %	57.0	39.0	1100.0	22.0 B

U=Analyzed, not detected. J=Present below detection limit.

	-======================================			==================			
RFW Batch Number:		Client:	BLACK & DE	CKER			Page: 12
Sample	RFW#:	146	147	148	SB3-A-1608 149	150	150 DUP
Information	Matrix:	Soil	Soil	Soil	Soil		Soil
	D.F.:	1		1		1	1
;;;;;;;	Units:	mg/kg	mg/kg	mc/kg	mg/kg	mg/kg	mg/kg
Analvte:							
PHC (wet weight)		2.6 JE	3 27.0 B	20.0 B	4.0 U	15.0 B	19.5 B
Date		12/14/88	12/14/88	12/14/88	12/14/88	12/14/88	12/14/88
	Cust ID:	SB3-A-1609	BLANK	B.S.			SB3-A-1703
Sample	RFW#:	150 MS	BLANK	B.S.	151	152	153
Information	Matrix:		Soil	Soil	Soil	Soil	Soil
	D.F.:	1	1	1	1	1	1
	Units:	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analyte:							
PHC (wet weight)	• • • • • • • • • • • • • •	94 8	8.4 *	91 %	220.0	23.0	13.0
Date		12/14/88	12/14/88	12/14/88	12/14/88	12/14/88	12/14/88
		SB3-A-1704	 SB3-A-1705	SB3-A-1706	SB3-A-1707	SB3-A-1708	SB3-A-1709
Sample	RFW#:		155	156	157	158	159
Information	Matrix:	Soil	Soil	Soil	Soil	Soil	Soil
	D.F.:	1	1	1	1	1	1
	Units:	mg/kg	mg/kg	mg/kg	1 mg/kg	mg/kg	. mg/kg
	================	==============	1==== = ====	T=======	T=====	1====	T======rı
Analyte: PHC (wet weight)		9.0	29.0	13.0	8.5	23.0	18.0
Date		12/14/88	12/14/88	12/14/88	12/14/88	12/14/88	12/14/88

<u>do</u>tec

ent below detection limit

RFW Batch Number:		Client:					Page: 1
		SB3-A-1801	SB3-A-1802		SB3-A-1804	SB3-A-1805	SB3-A-1806
Sample F	RFW#:	160	161		163	164	165
Information Mat	trix:	Soil	Soil	Soil	Soil	Soil	
Γ	D.F.:	1	1	1	1	1	
Ur ====================================	nits:	mg/kg	mg/kg	mg/kg	mg/kg 1f	mg/kg 1====================================	mg/kg 1====================================
Analyte.							
PHC (wet weight)		850.0	1400.0	1500.0	14.0	17.0	9100.0
Date	• • • • •	12/14/88	12/14/88	12/14/88	12/14/88	12/14/88	12/14/88
Cust		SB3-A-1807	SB3-A-1808	SB3-A-1809	SB3-A-1803	SB3-A-1803	BLANK
	RFW#:			168	162 DUP	162 MS	BLANK
			Soil			Soil	Soil
1	D.F.:	1	1	1	1	1	1
Ui	nits:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Analyte:	===#=:	===============	T======L		T=======T	1=====1	T
PHC (wet weight)		3300.0	220.0	28.0	28.9	106 %	4. 0,t
Date	• • • • •	12/14/88	12/14/88	12/14/88	12/14/88	12/14/88	12/14/88
Cus		 B.S.					
	RFW#:						
	trix:			9			
	D.F.:						
U	nits:	mg/kg	1£	1	1f	1f	1
Analyte:				T========	T-===1	11	T
		05 %					
PHC (wet weight)	• • • • •	95 %					

U=Analyzed, not detected. J=Present below detection limit.

.

VOC ANALYSIS RESULTS: TCLP LEACHATE SAMPLES

4178B

FW Batch Number: 88121	_946			K & DECKER		S, ICLP Lea		k Order: 2501		Report Date 2-01-0000		Page:	
	Cust ID:	SB3-A-1206		SB3-A-1803		SB3-A-1803		VBLK		TCLPBK 12-2	7	TCLPBK 12-	-28
ample nformation	RFW#: Matrix: D.F.:	003 WATER 1.0		004 WATER 1.0		004 MS WATER 1.0		88VW0201-MB1 WATER 1.00		88VW0201-MB WATER 1.00		88VW0201-M Water 1.0	2
	Units:	ug/L		ug/L		ug/L		ug/L		ug/l		ug/L	-
urrogate Bromoflu ecovery 1,2-Dichlo	Toluene-d8 uorobenzene roethane-d4	97 108 96	% % %	99 101 98	% % £1	103 108 109	% % ~ f]	92 % 97 % 87 %		96	% % %	96 98 98	% % %
inyl Chloride ethylene Chloride arbon Disulfide		10 5 3	=ri= U B J	10 48 5	U B U	10 77 1	U B	10 U 3 J 5 U)]		U B U	10 4 5	บ บ บ
,1-Dichloroethene hloroform		. 5 1	บ ม ม	5 1 5	บ ม ม	70 2 5	0 % J U	5 U 5 U 5 U	j J	5 5	U J U	5 1 5	U J U
,],l-Trichloroethane		5 21	JВ U	5 8 5 5	JB U U	-	JB U U)]	8 5 5	JB U U	7 5 5	J U U
arbon Tetrachloride richloroethene ,1,2-Trichloroethane enzene		60	U U	2 5 5	ม บ บ	73 5 83	% U %	5 U 5 U 5 U	j J	5	U U U	5 5 5	U U U
etrachloroethene ,1,2,2-Tetrachloroeth oluene	ane	170	U J	52 52 5	UU	44 5 79	U %	5 U 5 U 5 U	j J	5 5 5	U U U	5 5 5	UUU
hlorobenzene	ane	- 5 - 10 - 20	U U U	5 10 20	U U U	82 10 20	% U U	5 U 10 U 20 U	j	10	U U U	5 10 20	l l

-

	Roy F. Weston, Inc Lio Volatiles by GC/MS,	
RFW Batch Number: 8812L946	Client: BLACK & DECKER	Work Order: 2501-02-01-0000 Page: 2a
Cust ID:	VBLK	
Sample RFW#:	89LVW001-MB1	
Information Matrix:	WATER	
D.F.:	1.00	
Units:	ug/L	
Toluene-d8	101 %	
Surrogate Bromofluorobenzene	108 %	
Recovery 1,2-Dichloroethane-d4	103 %	
		======f]======f]======f]======f]======f]
Vinyl Chloride	10 U	() () () () () () () () () () () () () (
Methylene Chloride		
Carbon Disulfide		
1,1-Dichloroethene	- 5 U	
Chloroform		
1,2-Dichloroethane	- 5 U	
2-Butanone	6 J	
1,1,1-Trichloroethane	- 5 U	
Carbon Tetrachloride	5 U	
Trichloroethene	5 U	
1,1,2-Trichloroethane		
Benzene	5 U	
Tetrachloroethene	_ 5 U	
1,1,2,2-Tetrachloroethane	5 U	
Toluene	5 U	
Chlorobenzene	5 U	
1,1,1,2-Tetrachloroethane	10 U	
Isobutanol	20_U	
Acrylonitrile	10_U	
<pre>*= Outside of EPA CLP QC limits.</pre>		

	IE NICS ANALYSIS SHEET		CLIENT SAMPLE NO.
TENTATIVELY	IDENTIFIED COMPOUNDS		SB3-A-1206
Lab Name: Roy F. Weston, I	<u>Inc.</u> Work Order: <u>2501-(</u>	02-01-0000	
Client: <u>BLACK & DECKER</u>			
Matrix: WATE	<u>ER</u> La	ab Sample ID	<u>8812L946-003</u>
Sample wt/vol: _5.0	<u>00</u> (g/ml) <u>Ml</u> La	ab File ID:	<u>W123012</u>
Level: (low/med) <u>LOW</u>	· Da	ate Received	: <u>12/16/88</u>
% Moisture: not dec.	Da	ate Analyzed	: <u>12/30/88</u>
Column: (pack/cap) <u>PACK</u>	D	ilution Facto	or: <u>1.00</u>
Number TICs found: <u>11</u>		RATION UNITS r ug/Kg) <u>UG/</u>	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC. Q

			=======			ł
	1.	ACETONE	3.63	3000	С	İ
	2.	TOTAL XYLENES	29.07	3.0	С	l
!	3.	C6-ALKANE/ALKENE	10.50	30	J	
	4.	UNKNOWN	14.27	30	J	
ļ	5.	UNKNOWN	16.87	10	J	
	6.	UNKNOWN	18.40	10	J	
	7.	UNKNOWN	21.37	30	J	
	8	ETHYLDIMETHYL-BENZENE	24.10	90	J	
	9.	UNKNOWN	31.50		J	
	10.	ETHYLDIMETHYL - BENZENE	35.40	300	J	
	11.	UNKNOWN	39.07	90	J	
		·	l			

-

FORM 1 VOA-TIC

.

	IE ODCANICS ANALYSIS SHEET		CLIENT SAMPLE NO.
	ORGANICS ANALYSIS SHEET VELY IDENTIFIED COMPOUNDS		
Lab Name: <u>Roy F. Wes</u>	<u>ton,Inc.</u> Work Order: <u>25</u>		
Client: <u>BLACK & DE</u>	CKER		
Matrix:	WATER	Lab Sample ID:	88121946-004
Sample wt/vol:	<u>5.00</u> (g/mL) <u>ML</u>	Lab File ID:	<u>W123013</u>
Level: (low/med)	LOW	Date Received:	12/16/88
% Moisture: not dec.		Date Analyzed:	12/31/88
Column: (pack/cap) <u>f</u>	PACK	Dilution Facto	r: <u>1.00</u>
Number TICs found:		ENTRATION UNITS: 'L or ug/Kg) <u>UG/L</u>	
1			

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1 2 3 4 5 6 7 8 9 10 11	ACETONE TOTAL XYLENES C6-ALKANE/ALKENE C10-UNKNOWN BENZENE C6-ALKANE ETHYLMETHYL-BENZENE ETHYLMETHYL-BENZENE UNKNOWN ETHYLMETHYL-BENZENE UNKNOWN UNKNOWN	29.07 10.50 12.57 14.23	30 30 30 10 10 40 7 6	===== C J J J J J J J J J J J J J J

12/88 Rev.

	CLIENT SAM	PLE NO.				
Lab Na	TCLPBK 12-2	7				
Clien						
Matri	x :	WATER	Lab	Sample I	D: <u>88VW0201-</u>	MB2
Sample	e wt∕vol:	<u>5.00</u> (g/mL) <u>ML</u>	Lab	File ID:	W123008	
Level	: (low/med)	LOW	Date	e Receive	d: <u>12/30/88</u>	
% Moi	sture: not dec.	d: <u>12/30/88</u>				
Colum	n: (pack/cap) <u>PA</u>	<u>.CK</u>	Dilu	ition Fac	tor: <u>1.00</u>	
Numbe	r TICs found: _	<u>8</u>	CONCENTRAT (ug/l or u			
	CAS NUMBER	COMPOUND N	IAME	RT	EST. CONC.	Q
	1. 2. 3. 4. 5. 6. 7. 8.	ACETONE C6-ALKANE/ALKENE UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN		3.63 10.50 12.57 14.27 16.87 18.40 21.37 23.47	200 30 200 10 20 40	C J J J J J J J J J J

			CLIENT SAMPLE NO.
	GANICS ANALYSIS SHEET Y IDENTIFIED COMPOUNDS		TCLPBK 12-28
Lab Name: <u>Roy F. Weston</u>	<u>n,Inc.</u> Work Order: <u>250</u>	1-02-01-0000	N
Client: LAB			
Matrix: WA	ATER	Lab Sample ID:	88VW0201-MB3
Sample wt/vol: _5	5.00 (g/mL) <u>ML</u>	Lab File ID:	<u>W123009</u>
Level: <u>(</u> low/med) <u>LC</u>	<u> </u>	Date Received:	<u>12/30/88</u>
% Moisture: not dec		Date Analyzed:	12/30/88
Column: (pack/cap) <u>PACK</u>	<u><</u>	Dilution Facto	r: <u>1.00</u>
Number TICs found: <u>8</u>		NTRATION UNITS: or ug/Kg) <u>UG/L</u>	
CAS NUMBER	COMPOUND NAME	RTE	ST. CONC. Q

=======

3.60 810

10.50 30 12.57 20

14.27 90

16.87 10

18.43 20

21.37 50

23.50 6

=====

С

J

J

J

J

J

J

J

COMPOUND NAME

C: Response Factor from daily standard.

ACETONE

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

C6-ALKANE/ALKENE

CAS NUMBER

1.

2.

3.

4.

5.

6.

7.

8.

12/88 Rev.

FW Batch Number: 8812L854			K AND DECK		, TCLP Lead	lork	<u>Order: 25</u>	01-	Report Date: 02-01-0000	Page:	
Cust ID:	SB3-A-206		SB3-A-206		SB3-A-305		VBLK		TCLPBK 12-27	TCLPBK 12	2-28
ample RFW#:	. 003		003 DL		004		88VW0201-M		88VW0201-MB2		
nformation Matrix:	WATER		WATER		WATER		WATER		WATER	WATE	
D.F.:	1.0	0	10		1.00)	1.0		1.00		.00
Units:	ug/L		ug/l		ug/L		ug/L		ug/L	ug	/L
Toluene-d8	81 *	%	104	%	102	%	92	%	92 %		%
urrogate Bromofluorobenzene	101	%	110	%	106	%	97	%	96 %		
ecovery 1,2-Dichloroethane-d4	106	% £1	111	% _ £1_	105	% - £1.	87 ==========	% f1	97 % ====================================		% = = = f
inyl Chloride		=11= U	NA	= =	10	U	10	- T T	10 U	•	0 Ú
lethylene Chloride	- 9	В	1800	В	18	В	3	J	8 B		4 J
arbon Disulfide	- 5	U	NA		5	U	5	U	5 U		5 U
,1-Dichloroethene		U	NA		5	U	5	U	5 U		5 U
hloroform		J	NA		1	J	5	U	1 J		1 J
,2-Dichloroethane	5	U	NA		5	U	5	U	5 U		5 U
-Butanone	/	JB	390	JB	5	JB	9	J	8 J		7 J
,1,1-Trichloroethane arbon Tetrachloride	- 5	U	NA		5	U	5	U	5 U		5 L
arbon Tetrachloride	- 5	U	NA		5	U	5	U	5 U		5 U
richloroethene	5	U	NA		5	U	5	U	5 U		5 U
,1,2-Trichloroethane	5	U	NA		5	U	5	U	5 U		5 U
lenzene	<u>5</u>	U	NA		5	U	5	U	5 U		5 U
etrachloroethene	4	J	NA		5	U	5	U	5 U		5 U
,1,2,2-Tetrachloroethane	5	U	NA		5	U	5	U	5 U	_	5 L
oluene	880	E	1600		11		5	U	5 U	5	_ U
Chlorobenzene	5	U	NA		5	U	5	U	5 U		5 U
1,1,1,2-Tetrachloroethane	- 10	U	NA		10	U	10	U	10 U		0 L
sobutanol	20	U	NA		20	U	20	U	20 U		
Acrylonitrile	10	U	NA		10	U.	10	- U	10 U	1	0 U

.

*= Outside of EPA CLP QC limits.

RFW Batch Number: 881	2L854	Client: BLACK AND D	DECKER	Work Order:	2501-02-01-0000 Page:
	Cust ID:	VBLK			
Sample		89LVW001-MB1			
Information	Matrix: D.F.:	WATER 1.00			
	Units:	ug/L			
	Units.	ug/ L			
	Toluene-d8	101 %			
Surrogate Bromof	luorobenzene	108 %			
	oroethane-d4	103 %			
=======================================		==== = ===============================	=====f]=========	===f]=======	====f]=======f]=====f
Vinyl Chloride		10 U			
Methylene Chloride		17			
Carbon Disulfide		5 0			
1,1-Dichloroethene		5 U			
Chloroform		5 U			
1.2-Dichloroethane		5 U			
2-Butanone		6 J			
1,1,1-Trichloroethane	!	5 U			
Carbon Tetrachloride		5 U			
Trichloroethene		5 U			
1,1,2-Trichloroethane					
Benzene		5U			
letrachloroethene		5 0			
1,1,2,2-Tetrachloroet	hane	5 U			
Toluene		_ 5 U			
Chlorobenzene		5 U			
1,1,1,2-Tetrachloroet	.nane	10 U			
Isobutanol Acrylonitrile		20_U 10_U			

.

.

VOLATILE OF	CLIENT SAMPLE NO.						
TENTATIVE Lab Name: <u>Roy F. Westo</u>	TCLPBK 12-27						
Client: LAB							
Matrix:	VATER	Lab Sample ID	: <u>88VW0201-M</u>	1 <u>B2</u>			
Sample wt/vol:	<u>5.00</u> (g/mL) <u>ML</u>	Lab File ID:	W123008				
Level: (low/med)	<u>_OM</u>	Date Received	: <u>12/30/88</u>				
% Moisture: not dec.		Date Analyzed: <u>12/30/88</u>					
Column: (pack/cap) <u>PA</u>	<u>CK</u>	Dilution Factor: <u>1.00</u>					
Number TICs found:		NTRATION UNITS or ug/Kg) <u>UG/</u>					
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q			
1. 2. 3. 4. 5. 6. 7. 8.	ACETONE C6-ALKANE/ALKENE UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN	14.27 2	200 30 200 10 20	C J J J J J J J J			

C: Response Factor from daily standard.

8

.

1E	CLIENT SAMPLE NO.
VOLATILE ORGANICS ANALYSIS SHEET TENTATIVELY IDENTIFIED COMPOUNDS	TCLPBK 12-28
Lab Name: Roy F. Weston, Inc. Work Order: 2501	
Client: LAB	
Matrix: WATER	Lab Sample ID: <u>88VW0201-MB3</u>
Sample wt/vol: _ <u>5.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>W123009</u>
Level: (low/med) <u>LOW</u>	Date Received: <u>12/30/88</u>
% Moisture: not dec.	Date Analyzed: <u>12/30/88</u>
Column: (pack/cap) <u>PACK</u>	Dilution Factor: <u>1.00</u>
	NTRATION UNITS: or ug/Kg) <u>UG/L</u>
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
1. ACETONE	3.60 810 C

10.50 30

14.27 90

16.87 10

18.43 20 21.37 50

23.50 6

12.57

20

C: Response Factor from daily standard.

2.

3.

4.

5.

6.

7.

8.

C6-ALKANE/ALKENE

UNKNOWN UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

FORM 1 VOA-TIC

ັງ ງ ງ ງ ງ ງ ງ ງ

J J

VOLATILE OR	IE GANICS ANALYSIS SHEET		CLIENT SAMPLE NO.
TENTATIVE	LY IDENTIFIED COMPOUNDS		SB3-A-206
Lab Name: <u>Roy F. Westor</u>	<u>n,Inc.</u> Work Order: <u>2501-C</u>	02-01-0000	
Client: <u>BLACK AND DE</u>	CKER		
Matrix: <u>W</u>	ATER La	ab Sample ID:	<u>8812L854-003</u>
Sample wt/vol:	<u>5.00</u> (g/mL) <u>ML</u> La	ab File ID:	<u>W123010</u>
Level: (low/med) L	<u>Ow</u> Da	ate Received:	12/12/88
% Moisture: not dec	Da	ate Analyzed:	<u>12/30/88</u>
Column: (pack/cap) <u>PAC</u>	<u>к</u> Di	ilution Facto	or: <u>1.00</u>
Number TICs found: <u>13</u>		RATION UNITS: r ug/Kg) <u>UG/L</u>	

CAS NUMBER	COMPOUND NAME	RI	EST. CONC.	Q
1	ACETONE	3.63	3800	
2.	ETHYLBENZENE	22.67		Ċ
2.	TOTAL XYLENES		2200	Ċ
4.	C6-ALKANE/ALKENE	10.50		Ĵ
5.	UNKNOWN	12.60	30	J
6.	UNKNOWN	14.27	50	J
7.	UNKNOWN	18.43	10	J
8.	UNKNOWN	21.40	40	J
9.	METHYLETHYL-BENZENE	25.63	_	J
10.	UNKNOWN	31.20	-	J
11.	UNKNOWN	32.93	-	J
12.	UNKNOWN	36.07		J
13.	ETHYLMETHYLBENZENE	37.93	400	J
			l	l İ

FORM 1 VOA-TIC

_ _ _

---;

	νοι άτι ε (1E DRGANICS	S ANALYSIS SHEE	т			CLIENT SAMPLE NO.	
			INTIFIED COMPOU				B3-A-305	
Lab Name:	Roy F. West	<u>ton,Inc.</u>	Work Order:	<u>2501-02</u>	<u>2-01-0000</u>			
Client:	BLACK AND	DECKER						
Matrix:		WATER	_	Lat	o Sample II	D:	<u>8812L854-004</u>	
Sample wt/	/vol:	5.00	(g/mL) <u>ML</u>	Lat	o File ID:		<u>W010307</u>	
Level:	(low/med)	LOW		Dat	te Receive	d:	12/12/88	
% Moisture	e: not dec.	<u> </u>		Dat	te Analyzeo	d :	01/03/89	
Column: (p	back/cap) <u>P</u>	<u> </u>		Di	lution Fac	tor	·: <u>1.00</u>	
Number TIC	Cs found:	<u>11</u>	•		ATION UNIT: ug/Kg) <u>UG</u>			ļ
l								,

1				
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		=======	=================	=====
1.	ACETONE	3.60	3800	С
2.	TOTAL XYLENES	29.13	42	С
3.	C6-ALKANE/ALKENE	10.53	80	J
4.	UNKNOWN	12.60	30	J
5.	UNKNOWN	14.27	50	J
6.	UNKNOWN	16.90	10	J
7.	UNKNOWN	18.43	10	J
8.	UNKNOWN	21.37	40	J
9.	TRIMETHYL-BENZENE	32.73	7	J
10.	C9-METHYL-BENZENE	36.10	20	J
11.	ETHYL-METHYL-BENZENE	38.03	10	J

12/88 Rev.

APPENDIX H

PHASE IID SOIL BORING LOGS, WELL BOREHOLE LOGS, AND WELL CONSTRUCTION DIAGRAMS

. .

4178B

Boring No. SB-3A-1 Client: Black and Decker Time/Date Began:____1300/12-07-88 a Time/Date Ended:____0952/12-08-88 Geologist:______Daya Bettadapura
Driller:______Pat Benson / Hardin-Huber
Drilling Method:______Hollow-stem Auger
Sampling Method:______Split Spoon

NEW

SAMPLE COLLECTION . INFORMATION

Sample	Depth	Recovery	Blow	Moisture	SAMPLE DESCRIPTION	HNU *
No.	Interval (ft.)	(ft.)	Counts	Content		reading
	1					(spoon)
1	0-2.0	1.0	2-2-4-5	Moist	reddish-brown, sandy, clayey SILT, slight to medium	1.0
2	2.0-4.0	0.5	1-2-2-3	 Moist	plasticity reddish-brown, sandy, clayey SILT, slight to medium	 ND
i	1	İ		i I	plasticity	1
3	4.0-6.0	0.9	3-3-4-4	Moist	reddish-brown to grey clayey, sandy SILT, slightly plastic	1.0 1
4	6.0-8.0	1.4	2-3-2-3	Moist	greyish-brown, SILT, some fine sand	I ND
5	8.0-10.0	0.8	2-2-3-3	Moist	greyish-brown, fine sandy, SILT, slightly plastic	1 ND
6	 10.0-12.0	1.7	2-3-4-6	Moist	light brown SILT, non plastic to slightly plastic	I I ND
7	12.0-14.0	2.0	5-4-5-7	 Dry	 light brown, sandy SILT, some gravel, last 4" interbedded	 ND
8	14.0-16.0	 1.8	2-3-5-5	 Dry	with micaceous fragments, weathered, nonplastic light brown, sandy SILT, weathered, micaceous fragments nonplastic	 ND
9	18.0-20.0	1.8	3-4-6-7	 Moist	highly weathered mica SCHIST	ND
I	1	1			}	

ND - Not detected above background level.

Boring No. SB-3A-2 Client: Black & Decker Time/Date Began:____1050/12-08-88 Time/Date Ended:____1130/12-08-88 Geologist:______Daya Bettadapura
Driller:_____Pat Benson / Hardin-Huber
Drilling Method:______Hollow-stem Auger
Sampling Method:______Split Spoon

NEW

SAMPLE COLLECTION INFORMATION

ample		Recovery		Moisture	SAMPLE DESCRIPTION	HNu *
No.	Interval (ft.) 	(ft.) 	Counts	Content		reading
1	0-2.0 	0.5	4-4-4-4	 Moist	reddish-brown, sandy, clayey SILT, trace gravel, slightly plastic	ND
2	2.0-4.0	0.5	2-2-4-4	Moist	as above	9.0
3	 4.0-6.0		2-2-3-3		brown, sandy, clayey SILT, some pebbles, slightly plastic	1.0
4	6.0-8.0	0.8	2-1-3-3	Moist	as above, micaceous, middle 3 inches: fine to medium sand, loose	ND
5	8.0-10.0	1.5	2-1-1-2	Moist	0-0.33': brown, fine to medium SAND 0.33-1.5: clayey SILT, slightly plastic	20
6	10.0-12.0 	2.0	2-2-4-7	Moist	0-0.5: brown, clayey SILT, slightly plastic 0-2.0: brown-grey, sandy SILT to weathered SCHIST	15
7	12.0-14.0 	1.2	7-6-7-9	Dry to Moist	greyish brown, highly weathered mica SCHIST	ND
8	14.0-16.0	1.4	7-6-10-15	Dry	greyish brown, highly weathered mica SCHIST	20
9	 18.0-20.0		6-9-7-6	Wet	highly weathered mica SCHIST	ND
	1	1 1		1		l

* ND - Not detected above background level.

Boring No. SB-3A-3 Client: Black & Decker Time/Date Began:____1320/12-08-88 Time/Date Ended:____1403/12-08-88

Geologist:	Daya Bettadapura
Driller:	Pat Benson / Hardin-Huber
Drilling Method:	Hollow-stem Auger
Sampling Method:	Split Spoon

NEW

SAMPLE COLLECTION INFORMATION

ample	Depth	Recovery	Blow	Moisture	SAMPLE DESCRIPTION	HNu *
No.	interval (ft.)	(ft.)	Counts	Content		readin
	I	1 1				
1	0-2.0	0.8	2-2-3-4	Moist	reddish-brown, sandy, clayey,SILT, trace gravel, slightly	I ND
	1				plastic	1
2	2.0-4.0	1.0	1-4-8-6	Moist	as above	ND
	Ì	1 1		1		I
3	4.0-6.0	1.5	1-1-2-4	Moist	0-0.5': as above	ND
	Ì	i i		1	0.5-1.5': greyish-brown SILT, micaceous, nonplastic	1
4	6.0-8.0	1.0	1-1-2-4	Moist	greyish-brown, clayey SILT, nonplastic-slightly plastic	ND
	Ì	i i		i i		i
5	8.0-10.0	1.4	3-4-5-5	Moist	brown clayey SILT, slightly plastic	ND ND
-	1	i i		i i		İ
6	10.0-12.0	1.8	4-4-5-7	Moist	brown, sandy SILT, micaceous, nonplastic	20
•	1	1				i
7	12.0-14.0	1 1.6	2-6-7-9	Dry to	0-0.5': as above	1 10
•	1			Moist	0.5-1.6: greyish-brown, highly weathered mica SCHIST	i
8	1 14.0-16.0	1 1.0	, 7-10-15-18	Dry	highly weathered mica SCHIST	, I 20
U	1	1		1 0.7		1
9	1 18.0-20.0	1 1.2	1 9-12-16-19	1	ן greyish-brown, highly weathered mica SCHIST	I ND
7	1 10.0-20.0	1 1.6	1 7-12-10-17			1
	1	1	I	1		1

* ND - Not detected above background level.

Boring No. SB-3A-4 Client: Black & Decker Time/Date Began:____1510/12-08-88 Time/Date Ended:____1605/12-08-88 Geologist:_____Daya Bettadapura
Driller:_____Pat Benson / Hardin-Huber
Drilling Method:_____Hollow-stem Auger
Sampling Method:_____Split Spoon

CIPIE DAY

SAMPLE COLLECTION INFORMATION

ample	Depth	Recovery	Blow	Moisture	SAMPLE DESCRIPTION	HNu *
No.	Interval (ft.)	(ft.)	Counts	Content		readin
		<u> </u>				
1	0-2.0	1.0	6-5-2-7	Moist	reddish-brown, sandy, clayey SILT, slightly plastic	ND
2	1 2.0-4.0		3-4-5-7	Moist	as above	ND
3	4.0-6.0	1.2	3-4-4-5	Moist	as above	ND
4	6.0-8.0		4-7-10-9	Moist	as above except more clay, slight to medium plasticity	ND
5	8.0-10.0		1-9-11-13	Moist	middle 0.25' grey clayey SILT, trace gravel brown clayey SILT, slightly plastic	ND
6	10.0-12.0		4-6-6-7	Moist	brown, sandy clayey SILT, micaceous, nonplastic	ND
7	12.0-14.0	 1.3	5-5-4-7	 Dry to Moist	reddish-brown silty SAND, micaceous, nonplastic	ND
8	14.0-16.0	1.0	6-7-7-9	Dry	as above with some gravel, weathered mica SCHIST last .25'	ND
9	 18.0-20.0	 0.8	9-16-29-27		brownish-red, highly weathered micaceous SCHIST	ND
-	i	i i				25

* ND - Not detected above background level.

Boring No. SB-3A-5 Client: Black & Decker Time/Date Began:____0732/12-09-88 Time/Date Ended:___0839/12-09-88

Geologist:	Daya Bettadapura
Driller:	Pat Benson / Hardin-Huber
Drilling Method:	Hollow-stem Auger
Sampling Method:	Split Spoon

THE W

SAMPLE COLLECTION INFORMATION

_____ DESCRIPTION HNu * |Moisture | Sample Depth Recovery Blow SAMPLE reading Content | [Interval (ft.) | (ft.) Counts No. 0-2.0 0.8 9-5-5-7 Moist | light brown, sandy clayey SILT, trace gravel ND 1 slightly plastic as above ND 2 2.0-4.0 1.4 5-9-9-10 Moist | ND 3 4.0-6.0 1.2 4-4-4-9 Moist as above ND 6.0-8.0 0.8 1-3-9-4 Moist as above 4 8.0-10.0 2-5-14-12 ND 5 1.6 Moist as above ND 10.0-12.0 1.4 5-6-8-8 Moist as above 6 Dry to | 12.0-14.0 8-9-12-14 reddish-brown SILT, weathered mica SCHIST ND 7 1.0 Moist 14.0-16.0 7-14-14-15 reddish-brown micaceous SCHIST, weathered ND 8 1.0 Dry 9 18.0-20.0 0.5 | 14-17-20-15 as above ND

* ND - Not detected above background level.

 Boring No. SB-3A-6
 Geologist:______Daya Bettadapura

 Client: Black & Decker
 Driller:_____Pat Benson / Hardin-Huber

 Time/Date Began:____1100/12-10-88
 Drilling Method:______Hollow-stem Auger

 Time/Date Ended:
 1230/12-10-88

 Sampling Method:______Split Spoon

SAMPLE COLLECTION INFORMATION

ample No.	Depth Interval (ft.)	Recovery (ft.)		Moisture Content	SAMPLE DESCRIPTION	HNu * reading
NU.					1	
1	0-2.0	0	6-7-9-2			ND
2	 2.0-4.0	0.2	2-3-4-4	 Moist 	 light brown, clayey SILT, frozen 	ND
3	4.0-6.0		2-3-4-4	Moist	I clayey SILT, slightly plastic, micaceous 	 ND
4	 6.0-8.0 	0.6	3-6-2-3	Wet to Moist	 clayey SILT, trace gravel, highly plastic 	 ND
5	8.0-10.0		4-2-4-6	Moist	as above, fill?	1 ND
6	 10.0-12.0		 2-4-7-9 	Moist	 as above, fill? 	 ND
7	 12.0-14.0		 6-7-7-9 	Moist	 light reddish-brown weathered mica SCHIST 1	· 20
8	 14.0-16.0	1.2	 4-9-11-12 	Moist	as above	20
9	18.0-20.0	2.0	 3-7-7-9	Moist	 as above, with hydocarbon odor	20
	25.0-27.0		 8-12-12-51	 Wet	as above, with hydocarbon odor	2000
	1	I J	1	1 1	1	1

NEWSTEN

* ND - Not detected above background level.

* HNy_readings_in_units_above_background.

Boring No. SB-3A-7 Client: Black & Decker Time/Date Began:____1509/12-09-88 Time/Date Ended:____1738/12-09-88 Geologist:_____Daya Bettadapura
Driller:_____Pat Benson / Hardin-Huber
Drilling Method:_____Hollow-stem Auger
Sampling Method:_____Split Spoon

XIIII X

SAMPLE COLLECTION INFORMATION

Sample No.	Depth Interval (ft.) 	Recovery	Blow Counts	Moisture Content	SAMPLE DESCRIPTION	KNu * reading
1	0-2.0	0.5	2-2-3-3	Moist -Wet	brown, clayey SILT, slightly plastic	I ND
2	2.0-4.0	0.5	1-3-4-7	Moist	as above, with trace gravel	ND
3	4.0-6.0	0.7	3-5-7-7	Moist	as above	ND
4	6.0-8.0	1.0	2-4-5-5	Moist	light brown silty CLAY, medium plasticity	ND
5	8.0-10.0	0.6		Moist	light brown clayey SILT, high-medium plasticity	ND
6	10.0-12.0	1.2	4-4-5-5	Moist	light brown clayey SILT, highly plastic, micaceous	ND
7	12.0-14.0	0.5	2-2-6-9	Moist	light yellow sandy SILT, weathered mica SCHIST gasoline odor	500
8	14.0-16.0	1.2	3-4-7-7	Dry	as above	500
9	18.0-20.0	0.5	3-7-7-9		weathered mica SCHIST, oily with strong odor	20
	20.0-22.0				yellowish-grey mica SCHIST, weathered	200
	250-27.0			Wet	spoon rod oily from 15-27′ as above	2000

* ND - Not detected above background level.

Boring No. SB-3A-8 Client: Black & Decker Time/Date Began:____1107/12-09-88 Time/Date Ended:____1245/12-09-88 Geologist:_____Daya Bettadapura Driller:_____Pat Benson / Hardin-Huber Drilling Method:_____Hollow-stem Auger Sampling Method:_____Split Spoon

CENTRAL CONTRACTOR

Sample No. 		Recovery	Blow Counts	Moisture Content 	SAMPLE DESCRIPTION	HNu * reading	
1	0-2.0	0.5	4-5-5-5	Wet	light brown, sandy clayey SILT, trace gravel	ND	ļ
2	2.0-4.0	0.5	1-3-4-7	Wet	slightly plastic as above	ND	ļ
3	4.0-6.0	0.5		Wet	as above	ND	
4	6.0-8.0	0.4		Moist	light brown silty CLAY, trace gravel, medium to high	ND	
5	8.0-10.0	1.0		Moist	plasticity as above	ND	
6	. 10.0-12.0	1.6	2-3-2-3	Wet	light brown sandy SILT, nonplastic, micaceous	 ND	
7	12.0-14.0	1.4		Moist	brown sandy SILT, weathered mica SCHIST	ND	
8	14.0-16.0	1.0		Dry	reddish-brown micaceous SCHIST, weathered	 ND	
9	18.0-20.0	0.5	14-18-18-19		as above	ND	İ
						1	I

SAMPLE COLLECTION INFORMATION

* ND - Not detected above background level.

Boring No. SB-3A-9 Client: Black & Decker Time/Date Began:____1445/12-10-88 Time/Date Ended:____1540/12-10-88 Geologist:_____Daya Bettadapura Driller:_____Pat Benson / Hardin-Huber Drilling Method:_____Hollow-stem Auger Sampling Method:_____Split Spoon

i

SAMPLE	COLLECTION	INFORMATION
--------	------------	-------------

Sample No.	Depth Interval (ft.)	Recovery	Blow Counts	Moisture Content	SAMPLE DESCRIPTION	HNu * reading
1	0-2.0	1.0	4-5-4-5		light brown, clayey, sandy SILT, slightly plastic - fill?	ND
2	2.0-4.0	1.2	6-8-11-12	Moist	0-0.5: as above	ND
3	4.0-6.0	1.0	4-9-12-18	Dry	0.5-1.2: brown and white sandy SILT, trace gravel brown and white sandy SILT, nonplastic	ND
4	6.0-8.0	1.4	4-13-17-19	Dry	as above	ND
5	 8.0-10.0	2.0	9-12-13-10	Dry	as above, with trace of quartz gravel	ND
6	10.0-12.0	2.0	12-19-21-30	Dry	as above	ND
7	12.0-14.0	2.0	17-35-45-51	Dry to	as above	ND
8	14.0-16.0	0.8	17-45-51/0.5	Moist Moist	as above, auger and spoon refusal	ND

* ND - Not detected above background level.

Boring No. SB-3A-10 Client: Black & Decker Time/Date Began:____1600/12-12-88 Time/Date Ended:____1705/12-12-88 Geologist:_____Daya Bettadapura
Driller:_____Pat Benson / Hardin-Huber
Drilling Method:_____Hollow-stem Auger
Sampling Method:_____Split Spoon

SAMPLE COLLECTION INFORMATION

___________ Moisture | SAMPLE DESCRIPTION HNu * Blow Sample Depth Recovery reading No. Interval (ft.) | (ft.) Counts | Content | light brown, clayey SILT, slightly plastic ND 1 0-2.0 1.0 3-4-4-4 Moist | 3-5-8-8 Moist | 0-0.5: as above ND 2 2.0-4.0 1.2 0.5-1.2: brown, sandy SILT, nonplastic 5-7-11-13 light brown, sandy clayey SILT, nonplastic ND 4.0-6.0 1.4 3 Dry 13-14-16-17 6.0-8.0 2.0 Dry as above ND 4 5 8.0-10.0 1.6 8-14-13-14 Dry as above ND 10.0-12.0 1.8 9-12-15-21 Dry ND 6 as above 7 12.0-14.0 1.4 | 15-21-18-16 Dry light brown and white, mica SCHIST ND 8 14.0-16.0 1.4 7-10-20-26 Dry as above ND 18.0-20.0 1.6 | 15-29-41-46 ND 9 Dry as above

* ND - Not detected above background level.

Boring No. SB-3A-11 Client: Black & Decker Time/Date Began:____0815/12-13-88 Time/Date Ended:____0920/12-13-88 Geologist:______Daya Bettadapura Driller:______Pat Benson / Hardin-Huber Drilling Method:______Hollow-stem Auger Sampling Method:______Split Spoon

NEWSTAN

SAMPLE COLLECTION INFORMATION

Sample	Depth	Recovery	Blow	Moisture	SAMPLE DESCRIPTION	HNu *
No.	Interval (ft.)	(ft.)	Counts	Content		reading
	ł	1 I				
1	0-2.0	0.8	4-4-4-6	Moist	light brown, clayey SILT, slightly plastic	ND
2	2.0-4.0	1.2	4-11-21-34	Moist	0-0.5: as above	ND
3	4.0-6.0		16-14-11-16	Dry	0.5-1.2: light brown, sandy, clayey SILT, nonplastic light brown, sandy clayey SILT, nonplastic	ND
4	 6.0-8.0	1.0	14-17-20-18	Dry	weathered mica-SCHIST and SILT, nonplastic	ND
5	 8.0-10.0	0.8	8-9-12-15	Dry	as above	I ND
6	10.0-12.0	1.4	5-6-21-22	Dry	as above, trace quartz gravel	I ND
7	12.0-14.0	 1.0	 13-17-18-23	Dry	as above	ND
8	14.0-16.0	1.0	 9-12-20-24	Dry	as above	I ND
9	 18.0-20.0	0.6	 18-22-22-19	 Dry	as above.	I ND

* ND - Not detected above background level.

Boring No. SB-3A-12 Client: Black & Decker Time/Date Began:____0940/12-13-88 Time/Date Ended:____1100/12-13-88 Geologist:_____Daya Bettadapura
Driller:_____Pat Benson / Hardin-Huber
Drilling Method:_____Hollow-stem Auger
Sampling Method:_____Split Spoon

NEWSTAN

SAMPLE COLLECTION INFORMATION

ample	Depth	[Recovery]	Blow	Moisture	SAMPLE DESCRIPTION	HNU *
No.	Interval (ft.)	(ft.)	Counts	Content		readir
	1	1 1				
1	0-2.0	0.4	3-3-2-3		light brown, clayey SILT, frozen	ND
2	2.0-4.0	0.6	9-7-6-5	Moist	light brown, clayey SILT, trace gravel, slightly plastic	 ND
3	4.0-6.0		6-7-4-5	Moist	as above	 ND
4	6.0-8.0	0.3	3-4-5-6	 Moist	as above, with wooden pieces at end of spoon	I ND
5	 8.0-10.0		5-4-3-2	 Moist	light brown, sandy SILT, trace gravel, with weathered	I I ND
6	10.0-12.0	0.6	3-3-3-4	 Moist	mica SCHIST brown clayey SILT, slightly plastic	 ND
7	 12.0-14.0	1.2	3-4-7-11	 Dry	weathered mica-SCHIST	 ND
8	 14.0-16.0		3-4-7-5	 Dry	as above	 ND
9	 18.0-20.0	2.0	18-21-22-26	 Dry	as above, some quartz gravel	l I ND
	1	i i		1	1	1

* ND - Not detected above background level.

Boring No. SB-3A-13 Client: Black & Decker Time/Date Began:____1300/12-12-88 Time/Date Ended:____1400/12-12-88

Geologist:	Daya Bettadapura		
Driller:	Pat Benson / Hardin-Huber		
Drilling Method:	Hollow-stem Auger		
Sampling Method:	Split Spoon		

NEW

SAMPLE COLLECTION INFORMATION

Sample	Depth	Recovery	Blow	Moisture	SAMPLE DESCRIPTION	HNu *	I
No.	Interval (ft.)	(ft.)	Counts	Content		reading	9
1	0-2.0	0.5	20-22-17-9	Moist	Fill. sand and silt, gravel (quartz)	ND	ļ
2	2.0-4.0	1.0	4-7-5-3	Moist	l light brown, sandy, clayey SILT, slightly plastic	I ND	1
3	4.0-6.0	1.0	3-3-3-3	Dry	as above	ND	
4	 6.0-8.0	1.0	2-2-3-3	 Dry	as above	ND	ļ
5	 8.0-10.0	1.2	3-3-4-4	 Dry	as above	I ND	
6	 10.0-12.0	0.8	3-3-4-4	 Dry	 weathered mica SCHIST, some gravel, nonplastic	I ND	1
7	12.0-14.0	1.4	3-6-10-12	Dry	as above	ND	
8	14.0-16.0	1.4	12-14-25-31	 Dry	as above	I ND	
9	 18.0-20.0	2.0	 19-19-21-42	 Dry	as above	 ND	
	1				 	 	 ===

* ND - Not detected above background level.

Boring No. SB-3A-14	Geologist:	Daya Bettadapura		
Client: Black & Decker	Driller:	Pat Benson / Hardin-Huber		
Time/Date Began:1430/12-13-88	Drilling Method:	Hollow-stem Auger		
Time/Date Ended:1530/12-13-88	Sampling Method:	Split Spoon		

SAMPLE COLLECTION INFORMATION

_______ HNu * Depth Recovery Blow |Moisture | SAMPLE DESCRIPTION Sample reading Interval (ft.) | (ft.) Counts Content No. 0-2.0 0.4 14-9-10-6 Moist | clayey SILT, some gravel, frozen ND 1 2 2.0-4.0 0.5 3-4-4-4 Moist | brown clayey SILT, trace gravel, slightly plastic ND 0.5-1.2: light brown, sandy, clayey SILT, nonplastic 4.0-6.0 1.0 3-3-3-3 Dry brown, sandy SILT, slightly plastic ND 3 4 6.0-8.0 1.0 2-1-3-2 Dry as above ND 2-2-3-2 5 8.0-10.0 0.3 Dry light brown, clayey SILT, slightly plastic ND 10.0-12.0 0.5 3-2-2-2 brown, sandy SILT, slightly plastic to nonplastic 6 Dry ND 12.0-14.0 0.6 4-11-19-30 weathered mica SCHIST 7 Dry ND 14.0-16.0 16-24-31-45 8 1.0 Dry as above ND

as above

TPUCE

ND

26-26-31-37

Dry

* ND - Not detected above background level.

* HNu readings in units above background.

18.0-20.0

 Boring No. SB-3A-15
 Geologist:______Daya Bettadapura

 Client: Black & Decker
 Driller:______Pat Benson / Hardin-Huber

 Time/Date Began:____1625/12-13-88
 Drilling Method:______Hollow-stem Auger

 Time/Date Ended:____1723/12-13-88
 Sampling Method:______Split Spoon

SAMPLE COLLECTION INFORMATION

ample	Depth	[Recovery]	Blow	Moisture	SAMPLE DESCRIPTION	HNu *
No.	Interval (ft.)	(ft.)	Counts	Content		reading
				 		I
1	0-2.0	0.2	12-9-4-4	Moist	light brown, fine SAND, some gravel, frozen	ND
2	2.0-4.0	0.2	3-3-4-3	Moist	light brown, gravelly, clayey SILT	 ND
3	4.0-6.0	0.5	4-4-4-5	Moist	brown, sandy SILT and weathered mica SCHIST	 ND
4	6.0-8.0	0.5	4-4-3-5	Moist	brown gravelly, sandy SILT	ND
5	8.0-10.0	1.2	1-2-3-4		highly weathered mica SCHIST	ND
6	10.0-12.0	1.4	3-5-4-7	1	as above	ND
7	12.0-14.0	1.6	10-20-37-37		 gravelly, sandy SILT, slightly plastic 	. ND
8	 14.0-16.0		25-11-7-11		as above	ND
9	 18.0-20.0		13-22-25-28		weathered mica SCHIST	 ND
	1	1		1	1	1

NEW

* ND - Not detected above background level.

Boring No. SB-3A-16 Client: Black & Decker Time/Date Began:___0905/12-14-88 Time/Date Ended:___1000/12-14-88 Geologist:______Daya Bettadapura
Driller:______Pat Benson / Hardin-Huber
Drilling Method:______Hollow-stem Auger
Sampling Method:______Split Spoon

NERGEN

SAMPLE COLLECTION INFORMATION

Sample	Depth	Recovery	Blow	Moisture	SAMPLE DESCRIPTION	HNu *
No.	Interval (ft.)	(ft.)	Counts	Content		readin
	I					ļ
1	0-2.0	0.3	13-17-8-9	Moist	gravelly, fine SAND and frozen clayey SILT	ND
2	2.0-4.0	1 1.0	7-3-7-10	Moist	light brown, clayey SILT, slightly plastic	 ND
3	 4.0-6.0	1.0	2-2-4-3	Moist	0-0.5': as above	 ND
4	6.0-8.0	1.2	3-4-8-10	Moist	0.5-1.0': weathered mica SCHIST as above	ND
5	8.0-10.0	0.8	7-10-13-12		as above	 ND
6	 10.0-12.0	0.6	11-8-8-15		as above	ND
7	 12.0-14.0	0.8	21-31-37-31		as above	 ND
8	 14.0-16.0	1.0	9-11-12-18	 	as above	ND
9	 18.0-20.0	1.2	21-27-37-45	 	as above	 ND
	1	1		1	1	1

* ND - Not detected above background level.

Boring No. SB-3A-	17
Client: Black & D	ecker
Time/Date Began:	1015/12-14-88
Time/Date Ended:	1115/12-14-88

Geologist:	Daya Bettadapura
Driller:	Pat Benson / Hardin-Huber
Drilling Method:	Hollow-stem Auger
Sampling Method:	Split Spoon

NEW

SAMPLE COLLECTION INFORMATION

Sample	Depth	[Recovery]	Blow	Moisture	SAMPLE DESCRIPTION	HNu *
No.	Interval (ft.)	(ft.)	Counts	Content		reading
	0-2.0	0.6	15-7-6-6	 Moist	gravelly, fine SAND and frozen clayey SILT	' ND
2	2.0-4.0	0.5	7-7-8-8	 Moist	as above with weathered mica SCHIST	ND
3	 4.0-6.0		4-5-6-8		as above	 ND
4	6.0-8.0	1.0	8-9-9-8	Moist	weathered mica SCHIST	ND
5	 8.0-10.0	1.2	4-6-8-11		as above	ND
6	 10.0-12.0	 1 . 2	8-10-16-19		as above	ND
7	 12.0-14.0	0.8			as above	ND
8	 14.0-16.0	1.4	7-11-23-27		as above	ND
9	 18.0-20.0	1_4	20-25-35-40		as above	I ND

* ND - Not detected above background level.

۰.

REALEN

Boring No. SB-3A-18	Geologist:	Daya Bettadapura
Client: Black & Decker	Driller:	Pat Benson / Hardin-Huber
Time/Date Began:1250/12-14-88	Drilling Method:	Hollow-stem Auger
Time/Date Ended:1355/12-14-88	Sampling Method:	Split Spoon

SAMPLE COLLECTION INFORMATION

Sample	l Depth	[Recovery]	Blow	Moisture	SAMPLE DESCRIPTION	HNu *
No.	Interval (ft.)	(ft.)	Counts	Content		reading
	1					
1	0-2.0	0.6	9-5-4-4	Moist	brown, frozen clayey SILT, some fine sand, trace gravel	ND
2	2.0-4.0	0.8	1-2-3-5	Moist	as above	ND
3	4.0-6.0	0.9	2-2-4-4	Moist	as above	I ND
4	6.0-8.0	1.0	6-7-7-8	Moist	weathered mica SCHIST	I ND
5	 8.0-10.0	1.0	8-9-7-17	Dry	0-0.5': as above	I ND
6	 10.0-12.0	1.0	11-15-21-25		0.5–1.0': quartz gravel weathered mica SCHIST	ND
7	 12.0-14.0	0.8	 16-15-20-50/.5 		as above	 ND
8	 14.0-16.0		 16-45-45-39	1	as above	I I ND
9	 18.0-20.0		 8-2-51/.16′	1 1	as above	I I ND
9	18.0-20.0		 8-2-51/.16'	1	as above	I N

* ND - Not detected above background level.

WELL BOREHOLE LOGS

1

x

4178B

.

Well No. RFW-10
Client: Black & Decker
Time/Date Began:1045/12-08-88
Time/Date Ended:1642/12-08-88

.

Geologist:	J. Kimberly Harriz
Driller:	Dave Taylor
Subcontractor:	Hardin-Huber, Inc
Drilling Method:	Air-rotary

	Depth	1	Moisture	LITHOLOGIC LOG	HNu
Int	erval (ft.)	I	Content		reading
	0-46		Damp	reddish- to greyish brown clayey SILT, micaceous	ND
	46-50	1 	Moist	I weathered brown SCHIST 	ND
	50-51	 	Wet	 weathered micaceous SCHIST with QUARTZ at 50' water-bearing, yield 10 gpm	 ND
	51-61	 	Wet		ND

-

Well No. RFW-11A	Geologist:	J. Kimberly Harriz	
Client: Black & Decker	Driller:	Dave Taylor	
Time/Date Began:0800/12-14-88	Subcontractor:	Hardin-Huber, Inc	
Time/Date Ended: 1030/12-14-88	Drilling Method:	Air-rotary	

Comments:

Depth nterval (ft.	 (Moisture Content	LITHOLOGIC LOG 	HNu reading
0-50		Damp	reddish- to greyish brown clayey SILT, micaceous to weathered SCHIST 	ND
50-72		Wet	yellowish brown weathered SCHIST at 64-70′ water-bearing, yield 5 gpm	ND

ND - Not detected above background levels

WELL CONSTRUCTION DIAGRAMS

. .

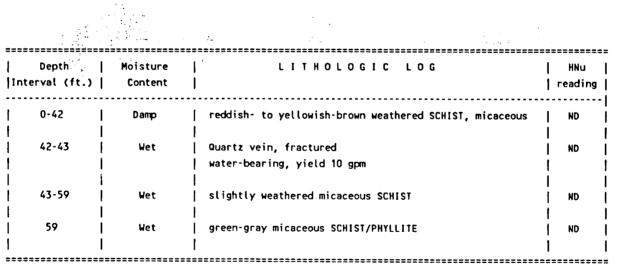
4178B

Well No. RFW-11B	Geologist:	J. Kimberly Harriz	
Client: Black & Decker	Driller:	Dave Taylor	
Time/Date Began:1330/12-09-88	Subcontractor:	Hardin-Huber, Inc.	
Time/Date Ended:1400/12-13-88	Drilling Method:	Air-rotary	

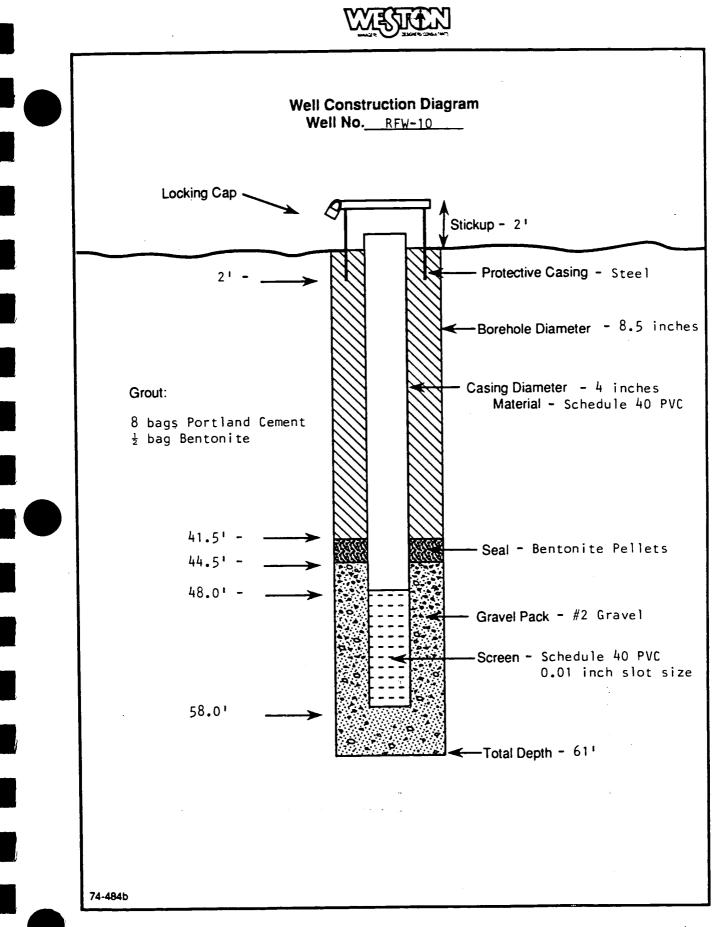
Depth	Moisture	LITHOLOGIC LOG	HNU
Interval (ft.)	Content	i -	reading
0-30	Damp	reddish- to yellowish brown clayey SILT, micaceous	ND
30-96	 Moist to	weathered brown SCHIST	I ND
	Wet	at 62-68' water-bearing zone, yield 10 gpm	1
96-110	 Wet	 slightly weathered micaceous SCHIST with QUARTZ	 ND
	Î.	possible fracture zone, water-bearing, yield 5 gpm	1
	1	1	I
110-120	Wet	green-grey SCHIST/PHYLLITE, micaceous	ND
	ł	at 114′ water-bearing zone, yield <1 gpm	I

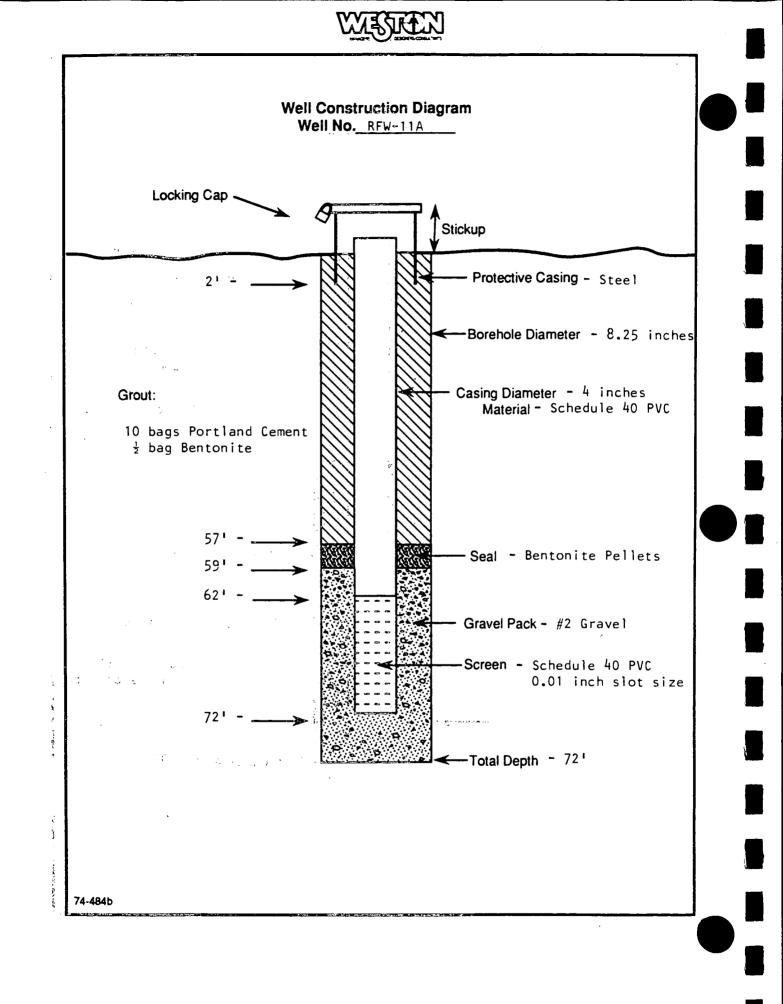
ND - Not detected above background levels

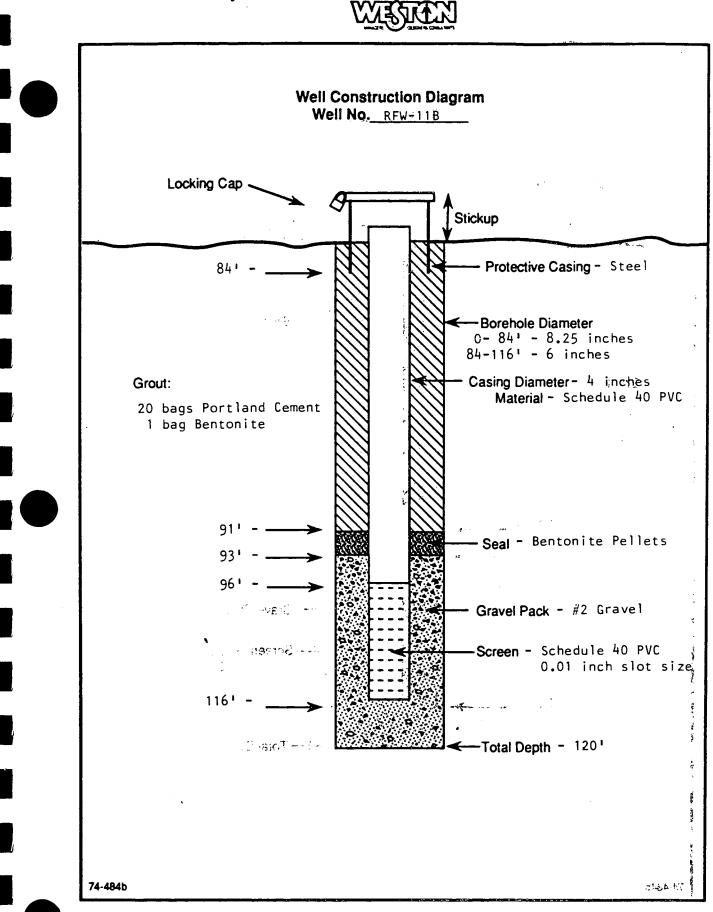
•

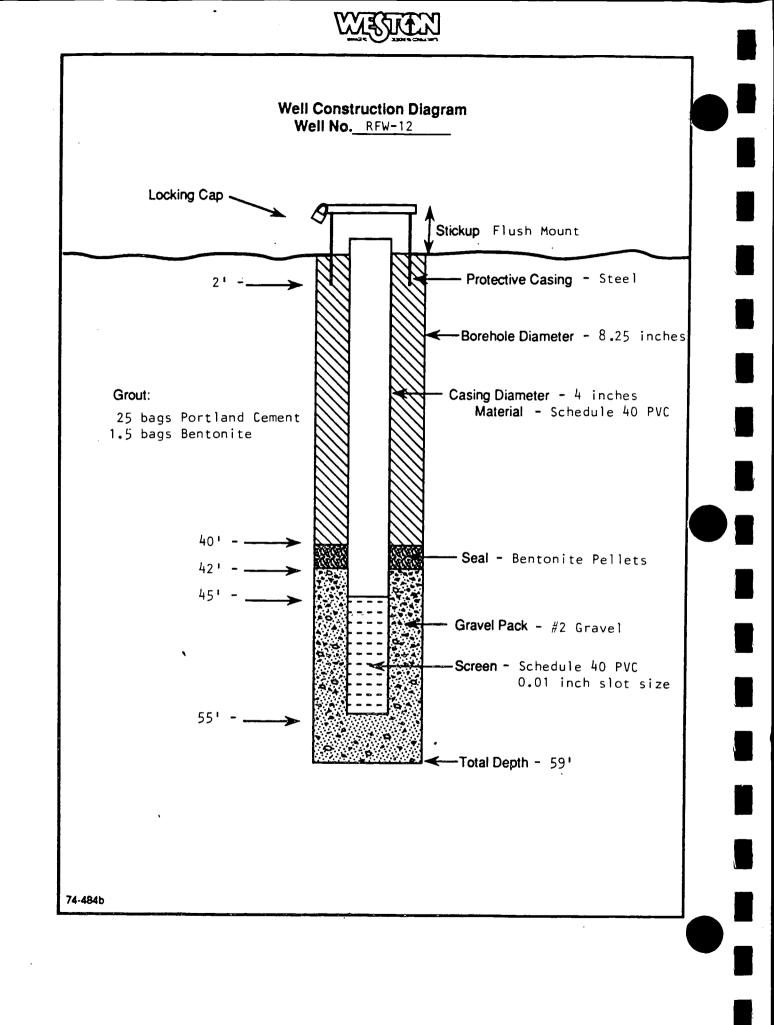


 Well No. RFW-12
 Geologist:______J. Kimberly Harriz


 Client: Black & Decker
 Driller:______Dave Taylor


 Time/Date Began:___1300/12-14-88
 Subcontractor:______Hardin-Huber, Inc


 Time/Date Ended:___1700/12-14-88
 Drilling Method:_____Air-rotary



ND - Not detected above background levels

