ANNUAL REPORT

Prepared for

STANLEY BLACK & DECKER (U.S.), INC. Hampstead, Maryland

July 2021

Prepared by

WESTON SOLUTIONS, INC.

West Chester, Pennsylvania 19380-1499

TABLE OF CONTENTS

Sect	ion		Page
1.	INT	RODUCTION	1-1
2.	SITI	E CHARACTERISTICS	2-1
	2.1	HYDRAULIC PROPERTIES	2-1
	2.2	EFFLUENT CHARACTERISTICS	2-1
	2.3	GROUNDWATER QUALITY DATA	2-1
3.	OPE	RATION AND MAINTENANCE OF THE TREATMENT SYSTEM	3-1
4.	TRE	ATMENT SYSTEM PERFORMANCE EVALUATION	4-1
5.	REC	OMMENDATIONS	5-1

LIST OF APPENDICES

APPENDIX A – WITHDRAWAL REPORTS

APPENDIX B – DISCHARGE MONITORING REPORTS

APPENDIX C – GROUNDWATER TREATMENT SYSTEM ANALYTICAL RESULTS

APPENDIX D - GROUNDWATER ANALYTICAL DATA PACKAGE (MAY 2021)

LIST OF FIGURES

Figure	Page

Figure 2-1 Groundwater Elevation Contour Map Under Pumping Conditions (June 2021)..... 2-6

LIST OF TABLES

Table		Page
Table 2-1	Treatment System Pumping Records (July 2020 through June 2021)	2-2
Table 2-2	Groundwater Elevation Data (July 2020 through June 2021)	2-3
Table 2-3	Effluent Characteristics Summary (July 2020 through June 2021)	2-7
Table 2-4	Summary of Groundwater Analytical Results – August 2020	. 2-10
Table 2-5	Summary of Groundwater Analytical Results – November 2020	. 2-13
Table 2-6	Summary of Groundwater Analytical Results – February 2021	. 2-16
Table 2-7	Summary of Groundwater Analytical Results – May 2021	. 2-19
Table 3-1	Treatment System Maintenance Activities (July 2020 through June 2021)	3-2

1. INTRODUCTION

This Annual Report has been prepared to meet the requirements of Condition IV.L of the Administrative Consent Order between the State of Maryland Department of the Environment (MDE) and Black & Decker (U.S.) Inc. (April 1995) (Consent Order) and the Addendum to Administrative Consent Order dated 29 June 1995. Specifically, Condition IV.L calls for preparation of an Annual Report containing a summary of the information contained in the Discharge Monitoring Reports (Table 2-3), a summary of all analyses of water samples (Tables 2-4 to 2-7), an explanation of all problems encountered and the manner in which they were resolved (Table 3-1), a performance evaluation of the treatment system (Section 4), and recommendations for continuation of, or changes to, the treatment system (Section 5). This document is one of several that are being prepared in response to the Consent Order; each of these documents are to be submitted to the MDE in accordance with the schedule outlined in the Consent Order. This document will become part of the Administrative Record for the site, which is maintained at the Hampstead Public Library.

2. SITE CHARACTERISTICS

2.1 HYDRAULIC PROPERTIES

In accordance with the Consent Order and the Water Appropriation Permit issued to the Black & Decker (U.S.) Inc. Hampstead, Maryland, facility, the following pumping and water level information is included for the period of July 2020 through June 2021.

Pumping records showing the total gallons pumped per month of treatment system operation are presented in Table 2-1. Copies of the Withdrawal Reports, for the periods of April through June 2021, are included in Appendix A.

Water levels (Water Level Monitoring Report) for wells included in the water level monitoring plan are presented in Table 2-2. Based on the June 2021 water levels, a representative groundwater elevation contour map under pumping conditions is presented in Figure 2-1. At the time the data were collected, the extraction wells were pumping at a combined rate of approximately 173 gpm.

2.2 EFFLUENT CHARACTERISTICS

Effluent characteristics of the NPDES discharge points are recorded monthly on Discharge Monitoring Reports (DMRs) and are submitted to MDE, Water Management Administration on a quarterly basis. A summary of the sample results from the DMRs is presented in Table 2-3. DMRs for the period of April 2021 through June 2021 are included in Appendix B.

2.3 GROUNDWATER QUALITY DATA

For the reporting period of July 2020 through June 2021, approximately 27.2 pounds (lbs) of total volatile organic compounds (VOCs) were removed from the groundwater by the extraction and treatment system. In general, the total VOCs were comprised of trichlororethene (TCE) (50.5%) and tetrachloroethene (PCE) (49.5%). Analytical results for the air stripper discharge for the period of April 2021 through June 2021 are included in Appendix C.

Table 2-1 Treatment System Pumping Records (July 2020 through June 2021)

Black & Decker Hampstead, Maryland

Date	Water Pumped (gallons)
July 2020	6,090,065
August 2020	5,595,249
September 2020	5,141,624
October 2020	4,941,149
November 2020	5,039,252
December 2020	5,894,387
January 2021	6,538,170
February 2021	5,773,353
March 2021	6,138,060
April 2021	6,772,419
May 2021	6,053,342
June 2021	5,064,379

Table 2-2 Groundwater Elevation Data (July 2020 through June 2021) Black & Decker Hampstead, Maryland

WELL	TOC	TOTAL	7/16	2020	8/2/	2020	9/3/	2020	10/22	2/2020
NO.	ELEV	DEPTH	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV
EW-1	847.21	55	_ DRY	NC	DRY	NC	DRY	NC	DRY	NC
EW-2	849.21	110	89.70	759.51	96.10	753.11	91.60	757.61	92.00	757.21
EW-3	846.64	118	94.50	752.14	94.50	752.14	94.50	752.14	94.50	752.14
EW-4	858.01	97.5	PC	NC	PC	NC	PC	NC	PC	NC
EW-5	864.17	98	92.25	771.92	93.00	771.17	93.00	771.17	92.50	771.67
EW-6	831.98	115	79.60	752.38	82.50	749.48	82.50	749.48	84.20	747.78
EW-7	818.38	78	73.24	745.14	78.10	740.28	77.70	740.68	77.70	740.68
EW-8	811.13	98	92.00	719.13	92.50	718.63	92.50	718.63	92.50	718.63
EW-9	811.35	141	102.00	709.35	102.00	709.35	102.00	709.35	102.00	709.35
EW-10	807.74	NA	59.63	748.11	60.94	746.80	62.01	745.73	64.74	743.00
RFW-1A	864.37	78	51.36	813.01	51.72	812.65	51.86	812.51	52.02	812.35
RFW-1B	864.23	200	51.39	812.84	51.75	812.48	51.90	812.33	52.07	812.16
RFW-2A	<u>85</u> 7.41	35	14.97	842.44	15.71	841.70	16.64	840.77	18.23	839.18
RFW-2B	857.73	75	15.60	842.13	16.40	841.33	17.31	840.42	18.87	838.86
RFW-3B	839.21	153	32.06	807.15	32.78	806.43	32.74	806.47	32.79	806.42
RFW-4A	830.37	62	36.26	794.11	36.66	793.71	37.61	792.76	38.17	792.20
RFW-4B	830.37	120	36.17	794.20	36.56	793.81	37.52	792.85	38.10	792.27
RFW-5A	817.50	30	DRY	NC	DRY	NC	DRY	NC	DRY	NC
RFW-6	785.04	120	2.26	782.78	2.43	782.61	4.71	780.33	5.20	779.84
RFW-7	805.14	29	7.87	797.27	6.83	798.31	7.08	798.06	7.83	797.31
RFW-8	860.07	53	DRY	NC	DRY	NC	DRY	NC	DRY	NC
RFW-9	862.02	49	26.09	835.93	26.53	835.49	26.73	835.29	28.09	833.93
RFW-10	852.06	58	DRY	NC	DRY	NC	DRY	NC	DRY	NC
RFW-11A	849.32	72	Damaged	NCNC	Damaged	NC	Damaged	NC	Damaged	NC
RFW-11B	849.62	116	65.21	784.41	64.56	785.06	66.12	783.50	67.33	782.29
RFW-12B	844.87	264	52.08	792.79	53.08	791.79	53.14	791.73	55.01	789.86
RFW-13	849.11	150	60.06	789.05	59.37	789.74	60.49	788.62	60.80	788.31
RFW-14B	812.39	281	51.26	761.13	51.98	760.41	52.10	760.29	53.41	758.98
RFW-16	856.14	41	DRY	NC	DRY	NC	DRY	NC	DRY	NC
RFW-17	834.66	60.5	26.29	808.37	27.12	807.54	26.85	807.81	27.14	807.52
RFW-20	842.29	142	34.47	807.82	34.02	808.27	34.71	807.58	35.08	807.21
RFW-21	832.65	102	21.86	810.79	21.80	810.85	22.08	810.57	22.23	810.42
PH-7	805.94	89	29.40	776.54	30.17	775.77	30.73	775.21	30.81	775.13
PH-9	814.94	98	39.16	775.78	40.01	774.93	40.26	774.68	40.61	774.33
PH-11	820.68	78	43.11	777.57	45.69	774.99	45.76	774.92	46.11	774.57
PH-12	828.35	87	39.94	788.41	30.77	797.58	30.83	797.52	31.09	797.26
B-3	803.02	83	NA	NC	NA	NC	NA	NC	NA	NC
Amoco	842.29	NA NA	NA	NC NC	NA 7.07	NC	NA	NC	NA	NC
Hamp. Town #22	804.96	NA NA	1.21	803.75	2.07	802.89	1.28	803.68	1.49	803.47
Pembroke #1	NA	NA	11.88	NC	10.96	NC	12.01	NC	12.20	NC
Pembroke #2	NA	NA	Damaged	NC	Damaged	NC	Damaged	NC	Damaged	NC
N. Houcks. Rd.	NA NA	NA	9.20	NC NG	9.41	NC	10.02	NC	10.71	NC
E. Century St. Lwr. Beckleys, Rd.	NA NA	NA NA	11.79	NC NC	11.63	NC	13.36	NC	10.71	NC
Lwr. beckleys. Ra.	NA	NA	59.77	NC	58,73	NC	55.75	NC	56.00	NC

NA - Not Available/Not Accessible

NC - Not Calculable

PC - Pump Cycles

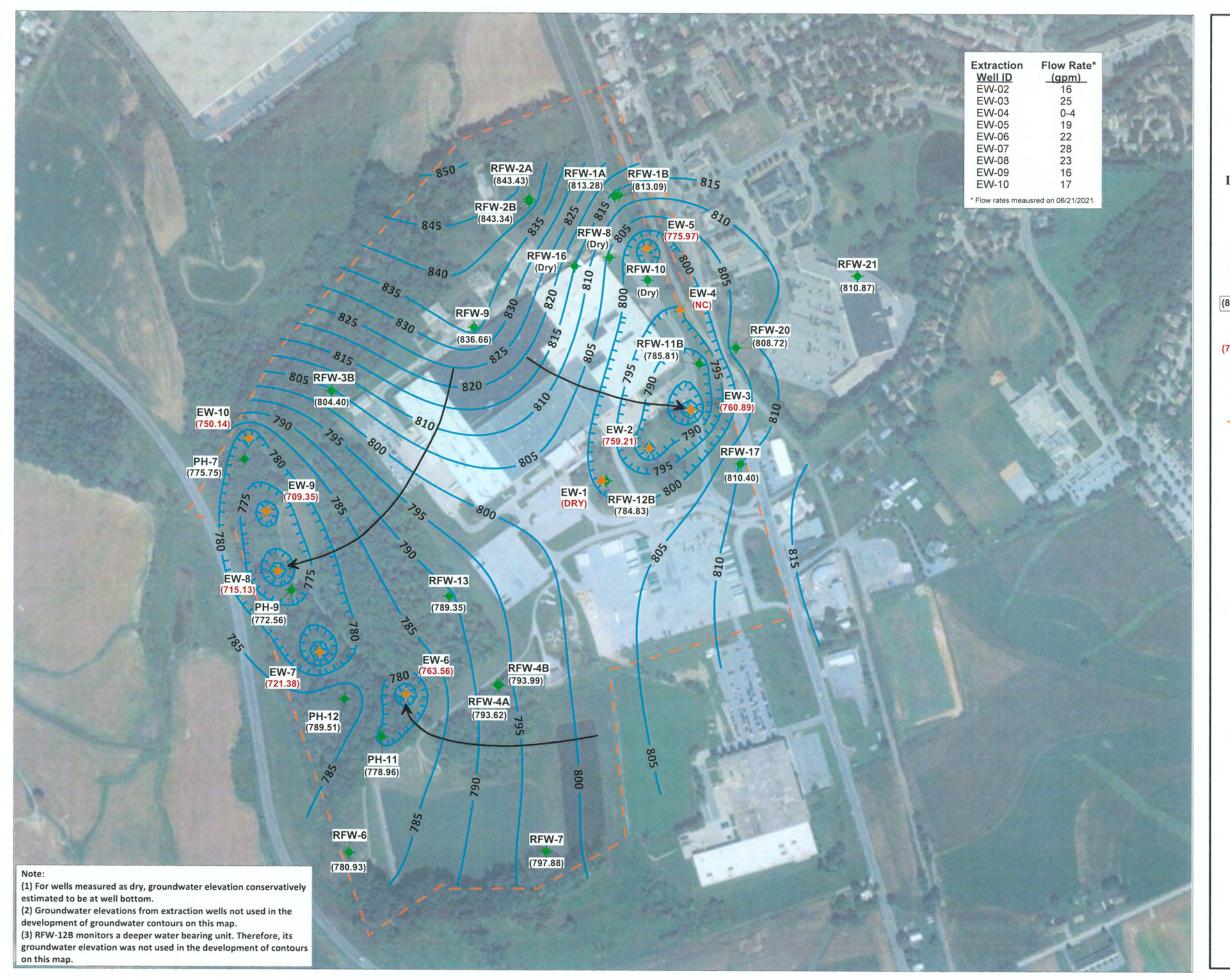
Table 2-2 Groundwater Elevation Data (July 2020 through June 2021) Black & Decker Hampstead, Maryland

WELL	TOC	TOTAL	11/10	/2020	12/23	/2020	1/23	/2021	2/9/	2021
NO.	ELEV	DEPTH	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV
EW-1	847.21	55	DRY	NC	DRY	NC	DRY	NC	DRY	NC
EW-2	849.21	110	89.31	759.90	90.50	758.71	90.50	758.71	90.50	758.71
EW-3	846.64	118	96.50	750.14	97.00	749.64	97.00	749.64	97.00	749.64
EW-4	858.01	97.5	PC	NC	PC	NC	PC	NC	PC	NC
EW-5	864.17	98	92.20	771.97	92.30	771.87	88.72	775.45	90.26	773.91
EW-6	831.98	115	90.60	741.38	89.94	742.04	89.88	742.10	90.60	741.38
EW-7	818.38	78	58.63	759.75	64.69	753.69	67.11	751.27	66.72	751.66
EW-8	811.13	98	93.50	717.63	93.25	717.88	94.00	717.13	94.00	717.13
EW-9	811.35	141	99.10	712.25	101.00	710.35	99.00	712.35	100.50	710.85
EW-10	807.74	NA	58.92	748.82	62.37	745.37	50.26	757.48	49.71	758.03
RFW-1A	864.37	78	51.87	812.50	52.21	812.16	52.63	811.74	52.79	811.58
RFW-1B	864.23	200	51.90	812.33	52.24	811.99	52.66	811.57	52.83	811.40
RFW-2A	857.41	35	19.11	838.30	18.98	838.43	15.93	841.48	15.15	842.26
RFW-2B	857.73	75	19.77	837.96	19.57	838.16	16.34	841.39	15.78	841.95
RFW-3B	839.21	153	33.36	805.85	33.40	805.81	34.38	804.83	35.47	803.74
RFW-4A	830.37	62	38.70	791.67	38.62	791.75	38.41	791.96	38.02	792.35
RFW-4B	830.37	120	38.63	791.74	38.56	791.81	38.30	792.07	37.88	792.49
RFW-5A	817.50	30	DRY	NC	DRY	NC	DRY	NC	DRY	NC
RFW-6	785.04	120	3.21	781.83	4.78	780.26	4.62	780.42	3.66	781.38
RFW-7	805.14	29	7.91	797.23	7.12	798.02	5.17	799.97	4.55	800.59
RFW-8	860.07	53	DRY	NC	DRY	NC	DRY	NC	DRY	NC
RFW-9	862.02	49	28.11	833.91	27.98	834.04	26.70	835.32	26.49	835.53
RFW-10	852.06	58	DRY	NC	DRY	NC	DRY	NC	DRY	NC
RFW-11A	849.32	72	Damaged	NC	Damaged	NC	Damaged	NC	Damaged	NC
RFW-11B	849.62	116	64.20	785.42	64.37	785.25	56.42	793.20	56.52	793.10
RFW-12B	844.87	264	55.84	789.03	54.97	789.90	48.84	796.03	48.72	796.15
RFW-13	849.11	150	62.62	786.49	61.89	787.22	64.20	784.91	64.13	784.98
RFW-14B	812.39	281	54.27	758.12	55.08	757.31	55.11	757.28	52.82	759.57
RFW-16	856.14	41	DRY	NC	DRY	NC	DRY	NC	DRY	NC
RFW-17	834.66	60.5	27.45	807.21	27.31	807.35	27.18	807.48	26.96	807.70
RFW-20	842.29	142	35.51	806.78	35.61	806.68	35.50	806.79	35.67	806.62
RFW-21	832.65	102	22.46	810.19	22.32	810.33	23.22	809.43	23.17	809.48
PH-7	805.94	89	32.39	773.55	33.68	772.26	32.57	773.37	30.98	774.96
PH-9	814.94	98	43.88	771.06	43.48	771.46	41.82	773.12	40.73	774.21
PH-11	820.68	78	46.70	773.98	47.22	773.46	47.03	773.65	46.24	774.44
PH-12	828.35	87	34.86	793.49	35.07	793.28	32.40	795.95	31.26	797.09
B-3	803.02	83	NA	NC	NA	NC	NA	NC	NA	NC
Amoco Hamp. Town #22	842.29	NA NA	NA 2.00	NC 902.97	NA 1.70	NC	NA 1.46	NC	NA 0.00	NC_
	804.96	NA NA	2.09	802.87	1.79	803.17	1.46	803.50	0.98	803.98
Pembroke #1	NA NA	NA NA	11.43	NC NC	10.36	NC NC	10.92	NC NC	11.94	NC NG
Pembroke #2	NA NA	NA NA	Damaged	NC NC	Damaged	NC NC	Damaged	NC NC	Damaged	NC
N. Houcks. Rd.	NA NA	NA NA	9.86	NC NC	9.57	NC NC	10.07	NC	10.41	NC
E. Century St. Lwr. Beckleys. Rd.	NA NA	NA NA	11.87	NC NC	12.41	NC NC	12.88	NC NC	14.02	NC NC
Lwr. Beckleys. Rd.	NA	NA	55.67	NC	54.70	NC	55.63	NC	55.82	NC

NA - Not Available/Not Accessible

NC - Not Calculable

PC - Pump Cycles


Table 2-2 Groundwater Elevation Data (July 2020 through June 2021) Black & Decker Hampstead, Maryland

WELL	TOC	TOTAL	3/20/	2021	4/8/	2021	5/4/	2021	6/1	8/21
NO.	ELEV	DEPTH	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV
EW-1	847.21	55	DRY	NC	DRY	NC	DRY	NC	DRY	NC
EW-2	849.21	110	92.00	757.21	88.25	760.96	89.50	759.71	90.00	759.21
EW-3	846.64	118	60.74	785.90	84.50	762.14	85.54	761.10	85.75	760.89
EW-4	858.01	97.5	PC	NC	PC	NC	PC	NC	PC	NC
EW-5	864.17	98	90.20	773.97	91.25	772.92	91.00	773.17	88.20	775.97
EW-6	831.98	115	91.15	740.83	86.42	745.56	87.15	744.83	68.42	763.56
EW-7	818.38	78	67.89	750.49	65.33	753.05	66.94	751.44	97.00	721.38
EW-8	811.13	98	94.00	717.13	96.00	715.13	96.50	714.63	96.00	715.13
EW-9	811.35	141	101.00	710.35	102.00	709.35	102.00	709.35	102.00	709.35
EW-10	807.74	NA	54.19	753.55	56.32	751.42	57.49	750.25	57.60	750.14
RFW-1A	864.37	78	52.51	811.86	51.33	813.04	51.27	813.10	51.09	813.28
RFW-1B	864.23	200	52.52	811.71	51.37	812.86	51.29	812.94	51.14	813.09
RFW-2A	857.41	35	15.26	842.15	14.34	843.07	14.12	843.29	13.98	843.43
RFW-2B	857.73	75	15.80	841.93	14.92	842.81	14.08	843.65	14.39	843.34
RFW-3B	839.21	153	34.73	804.48	34.76	804.45	32.83	806.38	34.81	804.40
RFW-4A	830.37	62	37.90	792.47	36.88	793.49	36.66	793.71	36.75	793.62
RFW-4B	830.37	120	37.67	792.70	36.50	793.87	36.56	793.81	36.38	793.99
RFW-5A	817.50	30	DRY	NC	DRY	NC	DRY	NC	DRY	NC
RFW-6	785.04	120	4.31	780.73	3.42	781.62	3.23	781.81	4.11	780.93
RFW-7	805.14	29	5.02	800.12	7.12	798.02	5.96	799.18	7.26	797.88
RFW-8	860.07	53	DRY	NC	DRY	NC	DRY	NC	DRY	NC
RFW-9	862.02	49	27.08	834.94	25.47	836.55	24.98	837.04	25.36	836.66
RFW-10	852.06	58	DRY	NC	DRY	NC	DRY	NC	DRY	NC
RFW-11A	849.32	72	Damaged	NC	Damaged	NC	Damaged	NC	Damaged	NC
RFW-11B	849.62	116	52.02	797.60	66.11	783.51	63.67	785.95	63.81	785.81
RFW-12B	844.87	264	49.41	795.46	60.40	784.47	59.80	785.07	60.04	784.83
RFW-13	849.11	150	64.60	784.51	59.26	789.85	63.82	785.29	59.76	789.35
RFW-14B	812.39	281	53.13	759.26	51.00	761.39	50.87	761.52	51.02	761.37
RFW-16	856.14	41	DRY	NC	DRY	NC	DRY	NC	DRY	NC
RFW-17	834.66	60.5	27.07	807.59	26.51	808.15	23.16	811.50	24.26	810.40
RFW-20	842.29	142	35.59	806.70	34.54	807.75	33.23	809.06	33.57	808.72
RFW-21	832.65	102	23.40	809.25	21.57	811.08	21.92	810.73	21.78	810.87
PH-7	805.94	89	31.27	774.67	30.39	775.55	30.26	775.68	30.19	775.75
PH-9	814.94	98	40.86	774.08	42.68	772.26	42.40	772.54	42.38	772.56
PH-11	820.68	78	46.21	774.47	41.89	778.79	41.83	778.85	41.72	778.96
PH-12	828.35	87	31.41	796.94	39.08	789.27	38.90	789.45	38.84	789.51
B-3	803.02	83	NA	NC	NA	NC	NA	NC	NA	NC
Amoco	842.29	NA	NA	NC	NA	NC	NA	NC	NA	NC
Hamp. Town #22	804.96	NA	1.26	803.70	2.28	802.68	1.94	803.02	3.10	801.86
Pembroke #1	NA	NA	11.36	NC	11.26	NC	10.43	NC	10.94	NC
Pembroke #2	NA	NA	Damaged	NC	Damaged	NC	Damaged	NC	Damaged	NC
N. Houcks. Rd.	NA	NA	9.88	NC	8.76	NC	9.17	NC	9.26	NC
E. Century St.	NA	NA	12.92	NC_	14.10	NC	13.94	NC	12.81	NC
Lwr. Beckleys. Rd.	NA	NA	55.87	NC	54.26	NC	55.01	NC	54.67	NC

NA - Not Available/Not Accessible

NC - Not Calculable

PC - Pump Cycles

Legend

- ♦ Extraction Well Location (EW)
- ♦ Monitoring Well (RFW) / Piezometer Location (PH)
- Groundwater Elevation Contour (contour interval: 5 ft)
- (813.09) Monitoring Well/Piezometer Groundwater Elevation (ft MSL)
- (759.21) Extraction Well Groundwater Elevation (ft MSL)
- Groundwater Flow Direction
- Site Property Boundary

Groundwater Elevation Contour Map June 2021

Former Black and Decker Facility Hampstead, Maryland

Effluent Characteristics Summary (July 2020 through June 2021) Hampstead, Maryland Black & Decker Table 2-3

Discharge	Parameter	Units	Permit			DMR	DMR DATE		
Number			Limits	July 2020	August 2020	September 2020	October 2020	November 2020	November December 2020
001	FLOW average	MGD	NA	0.116	0.101	0.062	0.075	0.091	0.156
	maximum	MGD	NA	0.504	0.315	0.396	0.345	0.586	1.099
	1,1,1-Trichloroethane	l/gn	5	NS	NS	SN	NS	NS	NS
	Tetrachloroethylene	ug/l	5	NS	NS	SN	SN	NS	SN
	Trichloroethylene	ug/l	5	NS	NS	SN	SN	SN	SN
	Total Residual Chlorine	mg/l	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Oil & Grease maximum	mg/l	15	< 2	< 2	< 2	< 2	< 2	< 2
	monthly average	mg/l	10	< 2	< 2	< 2	< 2	< 2	< 2
	mnminim Hq	STD	0.9	7.3	7.7	8.2	8.2	7.4	7.2
	maximum	STD	8.5	8.4	8.3	8.5	8.4	7.9	7.7
	BOD	mg/l	15	5.0	4.0	< 2	2.0	3.0	4.2
	TSS maximum	mg/l	30	17	13	< 5	8.0	7.0	< 5
	monthly average	mg/l	20	17	13	< 5	8.0	7.0	< 5
101	FLOW average	MGD	NA	Monitoria	G Doint #10.	Monitoring Daint #101 is no longer in use since the facility booked un	ouis est ui.	the facility	hoolood
(Monitoring	maximum	MGD	NA	INTOTITION	18 1 Ollit #10.	1 15 110 1011gCr	in use sine		moored up
Point)	Fecal Coliform	MPN/100ml	200	0	ine Town of	to the Town of Hampstead sanitary sewer in July 2019.	sanıtary sew	er in July 20	119.
201	FLOW average	MGD	NA	NR	NR	0.183	NR	NR	0.176
(Monitoring	maximum	MGD	NA	NR	NR	0.252	NR	NR	0.274
Point)	1,1,1-Trichloroethane	l/gn	NA	NR	NR	< 1	NR	NR	\ \ -1
	Tetrachloroethylene	l/gn	NA	NR	NR	< 1	NR	NR	\ \ -1
	Trichloroethylene	ug/l	NA	NR	NR	< 1	NR	NR	< 1

DMR - Discharge Monitoring Report NA - Not Applicable NR - Not Reported

Effluent Characteristics Summary (July 2020 through June 2021) Hampstead, Maryland Black & Decker Table 2-3

Discharge	Parameter	Units	Permit			DMR	DMR DATE		
Number			Limits	January 2021	February 2021	March 2021	April 2021	May 2021	June 2021
001	FLOW average	MGD	NA	0.103	0.125	0.071	0.064	0.079	0.120
	maximum	MGD	NA	899.0	0.322	0.471	0.222	0.368	0.468
	1,1,1-Trichloroethane	l/gn	5	NS	SN	NS	NS	NS	SN
	Tetrachloroethylene	ug/l	5	SN	NS	NS	NS	SN	NS
	Trichloroethylene	ug/l	5	NS	SN	SN	NS	NS	NS
	Total Residual Chlorine	mg/l	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Oil & Grease maximum	mg/1	15	< 2	< 2	< 2	< 2	< 2	< 2
	monthly average	mg/l	10	< 2	< 2	< 2	< 2	< 2	< 2
	pH minimum	STD	0.9	7.3	7.2	7.3	7.3	7.2	7.9
	maximum	STD	8.5	9.7	7.5	7.6	9.7	8.3	8.4
	BOD	mg/l	15	3.0	3.0	2.0	2.0	3.0	3.0
	TSS maximum	mg/l	30	7	< 5	< 5	0.0	0.6	8.0
	monthly average	mg/l	20	7	< 5	< 5	0.0	0.6	8.0
101	FLOW average	MGD	NA	Monitoring	Monitoring Daint #101 is no longer in money and footlits backed in	ic no longer	904:0	the feeility	hoolood
(Monitoring	maximum	MGD	NA	gmronmoral H = +	; roiii #101	Is no tongen I	iii use siiic	enie lacinty	nooked up
Point)	Fecal Coliform	MPN/100ml	200	rı 01	to the Lown of Hampstead sanitary sewer in July 2019.	ampstead .	sanitary sew	er in July 20	
201	FLOW average	MGD	NA	NR	NR	0.205	NR	NR	0.198
(Monitoring	maximum	MGD	NA	NR	NR	0.263	NR	NR	0.297
Point)	1,1,1-Trichloroethane	ug/l	NA	NR	NR	< 1	NR	NR	
	Tetrachloroethylene	ug/l	NA	NR	NR	<1	NR	NR	< <u>1</u>
	Trichloroethylene	ug/l	NA	NR	NR	< 1	NR	NR	< 1

DMR - Discharge Monitoring Report NA - Not Applicable NR - Not Reported

A summary of the analytical results of the groundwater samples collected from the monitor and extraction wells during the third and fourth quarters of 2020 and the first and second quarters of 2021 are included in Tables 2-4, 2-5, 2-6, and 2-7, respectively. As found in earlier sampling events at the Black & Decker facility, TCE and PCE were the primary VOCs detected at the highest concentrations in the groundwater samples. The highest concentrations of TCE were detected in the groundwater samples collected from wells EW-2 and RFW-12B. The highest concentrations of PCE were detected in the groundwater samples collected from wells EW-9 and RFW-4B. The remainder of the detected VOCs were detected at levels well below the Federal Maximum Concentration Levels (MCLs). The second quarter 2021 (May 2021) analytical data package is included in Appendix D. Analytical data packages for the remaining quarters are included in the respective Quarterly Groundwater Monitoring Reports.

Summary of Groundwater Analytical Results - August 2020 Stanley Black & Decker Hampstead, Maryland

PARAMETER	Units	EW-1	EW-2	EW-3	EW-4	EW-5	EW-6	EW-7	EW-8	EW-9	EW-9 (DUP)	EW-10
Chloromethanc	1 gn	SN	ΠI	1.0	ΩI	l U	l U	1 U	1 0	1 0	ΩI	ΩI
Bromomethane	J/Bn	SN	3.0	3.0	3 U	3.0	3 U	3 U	3.0	3 U	3.0	3 U
Vinyl Chloride	J/ßn	SN	1 N	1 U	1 U	1.0	1 U	n I	<u></u>	1 n	n I	1 U
Chloroethane	T/gn	SN	1 0	1 U	1 U	1 U	1 U	ΩI	1 U	1 O	n I	1 U
Methylene Chloride	ng/L	SN	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	ng/L	NS	10 O	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Carbon Disulfide	ng/L	NS	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
1,1-Dichloroethene	ng/L	NS	n i	U 1	1 U	1 U	ΩI	1 U	1 0	n I	1 U	1 U
1,1-Dichloroethane	ng.L	NS	ΩI	1 U	1.0	1 U	ΠI	0.4 J	0.6 J	1 N	U 1	U 1
1.2-Dichloroethene (total)	T/Bn	NS	1.9	1.7	1 U	1 U	n i	4.2	19	1.0	0.1	U I
Chloroform	ng/L	NS	0.43 J	2 U	2 U	0.4 J	2 U	2 U	2 U	2 U	2 U	2 U
1,2-Dichloroethane	ng/L	NS	1 U	1 U	1 U	l U	ΠI	1 U	1 N	n n	1 U	1 U
2-Butanone	ng/L	NS	S U	5 U	5 U	S U	กร	O S	5 U	N S	5 U	5 U
1,1,1-Frichloroethane	ng/L	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 0	ΩI	l U
Carbon Tetrachloride	ug'L	NS	1 U	1 U	I U	1 U	1 U	1 U	1 N	n i	ΩI	1 U
Bromodichloromethane	ug/L	NS	1.0	1 U	1 U	1 U	1 U	I U	1 U	ΩI	n ı	1 C
1,2-Dichloropropane	ng/L	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	ΠI	1.0	1 U
cis-1,3-Dichloropropene	ug/L	NS	1 U	1 U	Π	1 U	1 U	1 C	1 U	1 U	1 U	1 U
Trichloroethene	ng/L	NS	96	22	2.5	50	2.6	2.9	4.1	0.53	0.48 J	0.5 U
Dibromochloromethane	ng.T	NS	1 U	1 U	1 U	1.0	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	ng/L	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	U 1	1 U
Benzene	ng/L	NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Frans-1,3-Dichloropropene	ng/L	NS	1 U	l U	1 U	1 U	1 U	1 U	1 U	1 U	1.0	1.0
Bromoform	ng.T	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	n ı
4-Methyl-2-pentanone	ug/L	NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
2-Hexanone	ng:L	NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Fetrachloroethene	ng/L	NS	46	1.1	0.67 J	1.8	6	9.8	45	84	81	1.8
1,1,2,2-Tetrachloroethane	ng/L	NS	1 U	1 U	n 1	1 U	I U	1 n	1 U	1 U	1 U	1 U
Foluene	ng/L	NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	ng/L	NS	1 U	1 U	1 U	1 U	1 U	1 C	1 U	1.0	l U	l U
Ethylbenzene	ng:T	NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Styrene	ng/L	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0	l U	1 U
Xylene (total)	ng/L	NS	1 U	1 U	1 U	1 U	1 U	1 U	n n	1 U	1 U	1 U

Notes: U = Compound was analyzed for but not detected. Value shown is the method detection limit for quantification. J = Indicates an estimated value. NS = Not Sampled

Summary of Groundwater Analytical Results - August 2020 Stanley Black & Decker Hampstead, Maryland

		RFW-LA	RFW-LA RFW-1B RFW-2A RFW-2B RFW-3B RFW-4A RFW-4A RFW-4B RFW-5A	RFW-2A	RFW-2B	RFW-3B	RFW-4A	RFW-4A	RFW-4B	RFW-5A	RFW-6	RFW-7	RFW-8	RFW-9	RFW-10
PARAMETER	Units							(DUP)							
Chloromethane	ug L	1 U	n ı	U 1	1 U	n I	n 1	1 U	1 U	NS	1 U	n 1	SN	1 D	NS
Bromomethane	ug/L	3 U	ΩE	3 U	3 U	3.0	3 U	3.0	3.0	NS	3 U	3.0	NS	3.0	NS
Vinyl Chloride	ng/L	1 U	1.0	1 U	1.0	U 1	1 U	1.0	U 1	NS	1 U	1 U	NS	1.0	NS
Chloroethane	ng/L	1 U	U 1	1 U	1 U	1 U	1.0	กเ	ΩI	SN	1 U	0.1	NS	n I	NS
Methylene Chloride	ng/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	NS	5 U	5 U	SN	5 U	NS
Acetone	ng.L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	U 01	SN	10 U	10 U	NS	10 U	NS
Carbon Disulfide	ng. L	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	SN	2 U	n 7	SN	2 U	NS
1,1-Dichloroethene	ng/L	1 U	1 U	1 U	1.0	1 U	1 U	ΩI	1 U	SN	1.0	n i	SN	1 U	SN
1,1-Dichloroethane	ug/L	1 U	1 U	1 U	1 U	1 0	1 U	រា រ	ΩI	SN	1 N	ΩI	SN	1.0	SN
1,2-Dichloroethene (total)	1/gn	1 U	1 U	1 U	1 U	0.5 J	0.6 J	0.5 J	2.7	SN	1 U	1 U	NS	4.9	SN
Chloroform	ng/L	2 U	2 U	2 U	2 U	2 U	0.7 J	2 U	1.1 J	SN	2 U	2 U	NS	0.5 J	NS
1,2-Dichloroethane	ng/L	1 U	l U	1 U	1 U	1 U	1 U	1 U	1.0	NS	1 U	1 U	NS	1 U	NS
2-Butanone	ng/L	5 U	5 U	5.0	5 U	5 U	5 U	5 U	5 U	SN	5 U	n s	NS	5 U	SN
1,1,1-Trichloroethane	ng/L	1 O	1 C	1 U	1 U	1 U	1 U	1 U	ı u	NS	1 U	1 U	NS	1.0	NS
Carbon Tetrachloride	ug/L	1 U	1 U	1 O	1.0	1 U	1 U	1 U	1 U	SN	1 U	1 U	NS	1.0	NS
Bromodichloromethane	ug/L	1 U	1 C	1 U	1 U	1 U	1 U	1 U	1 U	SN	1 C	1 U	NS	1 U	NS
1,2-Dichloropropane	T/Sn	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	SN	1 U	1 U	NS	1 U	NS
cis-1,3-Dichloropropene	ng/L	n n	n I	1 U	1 U	1 U	1 U	1 U	1 U	NS	1 U	1 U	NS	1 U	NS
Trichloroethene	ug/L	0.5 U	0.5 U	0.5 U	0.2 J	0.5 U	20	19	51	NS	8.0	0.4	NS	2.7	NS
Dibromochloromethane	ng/L	1 U	n n	1 U	1 U	1 U	1 U	1 U	1.0	NS	1 U	1 U	NS	1 U	NS
1,1,2-Trichloroethane	ng/L	1 U	ח	D -	1 O	1 U	n n	1 U	1 U	NS	1 O	1 U	NS	1 C	NS
Benzene	ng/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NS	0.5 U	0.5 U	NS	0.5 U	NS
Trans-1,3-Dichloropropene	ng/L	1 U	1 U	1 U	1 U	1 U	1 U	n n	1 U	SN	1 U	1 U	SN	1 U	NS
Bromoform	ng/L	1 U	1 U	1 U	1 U	1.0	1 U	1 U	1 U	SN	1 U	1 O	NS	1.0	NS
4-Methyl-2-pentanone	ng/L	5 U	5 U	5 U	D 1	5 U	5 U	5 U	5 U	NS	5 U	5 U	NS	5 U	NS
2-Hexanone	ng/L	5 U	5 U	5 U	5 U	5 U	5 U	\$ U	5 U	NS	5 U	5 U	NS	5 U	NS
Tetrachloroethene	ng/L	1 U	1 U	1 U	1 U	1 U	16	15	70	NS		1.0	NS	1.9	NS
1,1,2,2-Tetrachloroethane	ng/L	1 C	U I	1 U	1 U	I U	1 U	1 U	1 U	NS	1 U	1.0	SN	1 U	NS
Toluene	ug/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NS	0.5 U	0.5 U	NS	0.5 U	NS
Chlorobenzene	ng/L	1 U	n n	n I	1 U	1 O	n n	1 U	1 U	NS	n I	D. I	NS	1 O	SN
Ethylbenzene	ng/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NS	0.5 U	0.5 U	NS	0.5 U	NS
Styrene	ng/L	n I	1 C	1 U	n n	n I	1.0	1 U	1 N	SN	1 U	1 U	NS	1 U	NS
Xylene (total)	ng.T	0.5 U	n n	n I	1 U	1 N	1 U	1 0	1 U	NS	1 U	1 U	NS	1 0	NS

Nores: DUP - Duplicate sample

NS ≈ Not sampled

cn - Possible lab contamination

U = Compound was analyzed for but not detected. Value shown is the method detection limit for quantification. J = Indicates an estimated value.

Summary of Groundwater Analytical Results - August 2020 Stanley Black & Decker Hampstead, Maryland

		RFW-11AR	RFW-11B	RFW-12B	FW-11BRFW-12B RFW-13	RFW-16	RFW-16 RFW-17	Leister	Leister	Leister	Trip	RFW-20	RFW-20 RFW-21		Town #22 Fown #23	dirT
PARAMETER	Units							Dairy	Res. #1	Res. #2	Blank					Blank
												1	SEPA drin	SEPA drinking water method	method 524,	4,2
Chloromethane	ng.L	SN	1 U	n ı	1.0	SN	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	ug/L	NS	3 U	3 U	3 U	NS	3 U	ABD	ABD	ABD	3 U	1 U	1 U	1 U	1 U	1 U
Vinyl Chloride	ug/L	SN	1 D	1 U	1 n	SN	l U	ABD	ABD	ABD	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	ng. L	NS	1 U	1 U	1 U	NS	1 U	ABD	ABD	ABD	1 U	1 U	1 U	1 U	1 U	1 U
Methylene Chloride	ug:L	NS	5.0	5 U	5 U	NS	5 U	ABD	ABD	ABD	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.3 J
Acetone	ug/L	NS	10 U	U 01	10 U	NS	10 U	ABD	ABD	ABD	10 U	10 U	10 U	10 U	10 U	10 U
Carbon Disulfide	ng/L	NS	2 U	2 U	2 U	NS	0 Z	ABD	ABD	ABD	2 U	NA	NA	NA	NA	ΑN
1,1-Dichloroethene	ng/L	SN	1 U	1 U	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	ug/L	NS	1 U	I U	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene (total)	ug/L	NS	1.0	1.8	5.2	NS	1.0	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	ng:L	NS	2 U	2 U	2 U	NS	2 U	ABD	ABD	ABD	2 U	0.5 U	0.5 U	0.26 J	0.5 U	0.5 U
1,2-Dichloroethane	ng.T	NS	1 U	1 U	1 U	SN	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Butanone	ug/L	NS	5 U	n s	5 U	NS	5 U	ABD	ABD	ABD	5 U	N 01	10 U	10 U	10 U	10 U
1,1,1-Trichloroethane	ug.T	SN	1 U	ñΙ	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon Tetrachloride	ng/L	NS	1 U	1 U	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	ug:T	NS	1 U	1 U	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	ng.T	NS	1 U	1 U	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	ng.T	NS	1 O	1 U	1 C	NS	l U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	ng/L	NS	9.0	64	1.5	NS	0.5 U	ABD	ABD	ABD	0.5 U	0.1 J	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	ng/L	NS	1 U	1 U	1 U	NS	1 U	ABD	ABD	ABD	U 1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1.1,2-Trichloroethane	ng/L	NS	1 U	1 U	1 U	NS	1.0	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Benzene	ng/L	NS	0.5 U	0.5 U	0.5 U	NS	0.5 U	ABD	ABD	ABD	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trans-1,3-Dichloropropene	ng.L	NS	1 U	1 U	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Вготобогт	ng.'L	SN	1 U	1 U	1 U	NS	n n	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
4-Methyl-2-pentanone	ng.L	NS	5 U	5 U	5 U	NS	5 U	ABD	ABD	ABD	5 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone	ng/L	NS	5 U	5 U	5 U	NS	5 U	ABD	ABD	ABD	5 U	10 U	10 U	10 U	10 U	10 U
Tetrachloroethene	ng.T	NS	1 U	5	4.9	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	2.6	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	ng.T	NS	1 n	1 U	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	U 2.0
Toluene	ug/L	NS	0.5 U	0.5 U	0.5 U	NS	0.5 U	ABD	ABD	ABD	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	U 2.0
Chlorobenzene	ng.F	NS	1 U	I U	1 U	NS	1 O	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	ng/L	SN	0.5 U	0.5 U	0.5 U	NS	0.5 U	ABD	ABD	ABD	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Styrene	ug.T	NS	1 U	1.0	1 U	NS	1 C	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylene (total)	ug.L	NS	1 U	1 U	ı U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

Notes: Samples from wells RFW-20 & 21, Town-22&23 are analyzed with the USEPA drinking water method 524.2 at the request of the MDE Source Protection and Appropriation Division.

Samples from all of the other wells are analyzed with USEPA Method 8260.

NS = Not sampled

U = Compound was analyzed but not detected.

ABD > Well has been abandoned

Summary of Groundwater Analytical Results - November 2020 Stanley Black & Decker Hampstead, Maryland

		EW-1	EW-2	EW-3	EW-4	EW-5	EW-6	EW-7	EW-8	EW-9	EW-9	EW-10
PARAMETER	Units										(DUP)	
Chloromethane	ng/L	NS	1 U	1 U	1 U	n ı	1 U	ı u	1 U	1 U	1 U	1 U
Bromomethane	ng/L	NS	3.0	3 U	ΩE	3 U	3.0	3 U	3 U	3 U	3 U	3.0
Vinyl Chloride	ug/L	NS	1 U	1 U	ΠI	1 U	1 U	1 U	n i	1 U	1 U	n 1
Chloroethane	ug/L	NS	ΩI	1 U	U 1	1 U	1 U	1 U	n I	1 U	1 U	л I
Methylene Chloride	ug/L	NS	n s	5 U	S U	5 U	5 U	5 U	s U	5 U	5 U	5 U
Acetone	ug/L	NS	U 01	10 U	3.1 J	U 01	10 U	10 U	D 01	10 U	U 01	U 01
Carbon Disulfide	ng/L	SN	7 U	2 U	Ω ζ	7 N	2 U	2 U	2 U	2 U	2 U	2 U
1.1-Dichloroethene	ng/L	NS	ΠI	1 U	ΠI	ΩI	1.0	1 U	1 U	1 N	1 U	1 C
1,1-Dichloroethane	ng L	NS	n i	1.0	ΩI	nι	1 U	0.6 J	0.7 J	1 U	1 U	1 U
1,2-Dichloroethene (total)	ng. L	NS	1.4	1.0	1 U	ΩI	1 U	5.4	22	1 U	1 U	1 N
Chloroform	ng/L	NS	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
1,2-Dichloroethane	ug/L	NS	1 U	1.0	1 U	n 1	1.0	1.0	1 U	ΠI	1 U	1 U
2-Butanone	ng/L	NS	5 U	5 U	5 U	S U	5 U	5 U	5 U	5 U	5 U	5 U
1,1,1-Trichloroethane	ug/L	NS	1 U	1 U	1 U	ΩI	1 U	1 U	1 U	1 U	1 U	1 U
Carbon Tetrachloride	ug/L	NS	1 U	1 U	1 U	n n	1 U	1.0	1 U	1 U	1 U	1 U
Bromodichloromethane	ng/L	NS	n n	1 U	1 U	n 1	1 0	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	ng.L	SN	1 U	1 U	l U	1 U	1 U	1 U	1 O	1 U	1 U	1 U
cis-1,3-Dichloropropene	ug/L	NS	1 U	1 U	1 U	1 U	1 U	U I	1 U	1 U	1.0	1 U
Trichloroethene	ug/L	NS	06	20	1.8	99	2.9	3.6	5	0.54	0.55	0.5 U
Dibromochloromethane	ng/L	NS	1 U	1 C	1 U	1 U	1.0	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	ug/L	NS	1 U	1 U	1 U	1 U	1 U	n ı	1 U	1.0	U 1	n i
Benzene	ng/L	NS	0.5 U									
Trans-1.3-Dichloropropene	ng.[NS	1 U	1 U	1 U	1.0	1 Ü	n n	1 U	1 U	1 U	1 U
Bromoform	ug.L	NS	1 U	n n	1 O	1 U	1 U	1 U	1 U	1 U	1.0	1 U
4-Methyl-2-pentanone	ug/L	NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
2-Hexanone	ug/L	NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	ug/L	SN	46	0.8 J	1 C	1.8	9.9	10	51	77	78	1.3
1,1,2,2-Tetrachloroethane	ng/L	NS	1 U	1 U	1 U	1 U	1 C	1 U	1 U	1 U	1.0	1 U
Toluene	ng/L	NS	0.5 U									
Chlorobenzene	ng.L	NS	1 U	1 U	1 C	1 U	1 U	1 U	1 U	1.0	1 U	1 U
Ethylbenzene	ug/L	NS	0.5 U									
Styrene	ug/L	NS	1 U	1 U	1 U	1 U	1 U	1 C	1 U	1 U	1.0	1.0
Xylene (total)	ng/L	NS	1 U	Ω I	1 U	1 U	1 U	1 U	1 U	I U	1 U	1.0

Notes: $U\sim Compound$ was analyzed for but not detected. Value shown is the method detection limit for quantification. $J\sim Indicates$ an estimated value. $NS=Not \ Sampled$

Summary of Groundwater Analytical Results - November 2020 Stanley Black & Decker Hampstead, Maryland

		RFW-1A	RFW-1B	RFW-1A RFW-1B RFW-2A RFW-2B RFW-4A RFW-4A RFW-4B RFW-5A	RFW-2B	RFW-3B	RFW-4A	RFW-4A	RFW-4B	RFW-5A	RFW-6	RFW-7	RFW-8	RFW-9	RFW-10
PARAMETER	Units							(DUP)							
Chloromethane	T/Bn	ΠI	1 U	ΩI	1 U	ΩI	1 U	1 U	I U	SN	1 U	1 U	NS	1 U	NS
Bromomethane	ng/L	3 U	3 U	3 U	3.0	3 U	3 U	3.0	3 U	SN	3 U	3 U	NS	3 U	NS
Vinyl Chloride	ug/L	1 U	1 U	J U	1 U	1 U	1 U	1 U	1 U	NS	1 U	1 U	NS	1 U	SN
Chloroethane	ug/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	SN	1.0	1.0	NS	1 U	NS
Methylene Chloride	ug/L	5 U	5 U	5 U	5 U	S U	5 U	5 U	5 U	SN	5 U	5.0	NS	5 U	NS
Acetone	ug/L	9.8 J	12	10 U	10 U	10 U	10 U	10 U	10 U	SN	10 U	10 U	NS	10 U	NS
Carbon Disulfide	ug/L	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	SN	2 U	2 U	NS	2 U	NS
1,1-Dichloroethene	ng/L	1 U	n n	1 U	1 U	1 U	1.0	U 1	1 U	SN	1 U	1 U	NS	1 U	NS
1,1-Dichloroethane	ng/L	1 U	U U	U 1	1 U	U I	1 U	1 U	1 U	SN	1 U	1 U	NS	1 U	SN
1,2-Dichloroethene (total)	ug/L	1 U	1 U	1 U	1 U	1 U	0.5 J	1 U	2.5	NS	0.5 J	1.0	SN	1 U	SN
С'hlorofòrm	ng.T	2 U	2 U	2 U	2 U	2 U	2 U_	0.5 J	1.1 J	NS	2 U	2 U	NS	2 U	NS
1.2-Dichloroethane	ug/L	1 U	1 C	1 C	1 11	1 D	1 U	1 U	1 U	NS	1 U	1.0	NS	1 U	NS
2-Butanone	ug/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	NS	5 U	5 U	NS	5 U	SN
1,1,1-Trichloroethane	ng.T	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0	NS	1 U	1 U	NS	1 U	SN
Carbon Tetrachloride	ug/L	1 D	1 C	D I	D	n n	1 O	1 C	1 U	NS	1 U	1 U	NS	1 U	NS
Bromodichloromethane	ng/L	1 U	1 U	1 U	1 U	1 U	1 C	1 U	1 U	NS	1 U	1 U	NS	1 U	NS
1,2-Dichloropropane	ug/L	1 U	1 U	1 O	n n	n n	1 U	1 C	ı n	NS	1.0	1.0	NS	1 U	NS
cis-1,3-Dichloropropene	ug. L	1 Ü	1 U	1 C	1 U	1 U	1 C	ב	1 U	NS	1 C	1 U	NS	1 U	NS
Trichloroethene	ug/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	20	21	49	NS	1.9	0.4 J	NS	3.6	NS
Dibromochloromethane	ng/L	1 U	1 U	1.0	1 O	1 O	1 U	1 U	1 U	NS	1 U	1 U	NS	1 U	NS
1.1,2-Trichloroethane	ug'L	1 U	1 U	1 C	1 O	1 O	1 U	1 U	1 U	NS	1 U	1 0	NS	1 U	NS
Benzene	ng/L	0.22 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NS	0.3 J	0.5 U	NS	0.5 U	NS
Trans-1,3-Dichloropropene	ng/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 O	NS	1.0	1 U	NS	1 U	NS
Bromoform	ng/L	1 O	1 U	1 O	1 C	1 U	1 O	1 U	1 U	NS	1.0	1.0	NS	1 U	NS
4-Methyl-2-pentanone	ng/L	5 U	5 U	5 U	1.0	5 U	5 U	5 U	5 U	NS	5 U	5 U	NS	5 U	NS
2-Hexanone	ug/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	NS	5 U	5 U	NS	5 U	NS
Tetrachloroethene	ng/L	1 N	1 U	1 C	1 U	n n	14	15	64	NS	1.3	1 n	NS	8.1	NS
1,1,2,2-Tetrachioroethane	ug/L	1 Ü	1 D	1 C	1 U	n n	n I	1 U	D	NS	1 U	1 U	NS	1 U	NS
Toluene	ng.T	0.93	0.75	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NS	-	0.5 U	NS	0.5 U	NS
Chlorobenzene	ug/L	D I	I U	1 n	1 D	1 C	n n	1 D	1 O	NS	1 U	1 U	NS	1 U	NS
Ethylbenzene	ug/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NS	0.5 U	0.5 U	NS	0.5 U	NS
Styrene	ng.L	n I	1 N	1 U	1 U	1 U	1 U	1 U	1 U	NS	1 O	1 n	NS	1 U	NS
Xylene (total)	ng/L	0.32 J	1 U	n n	1 U	1 U	1 U	1.0	1 U	NS	0.3 J	1.0	NS	1 U	NS

Notes: DUP = Duplicate sample

NS = Not sampled

cn = Possible lab contamination

U = Compound was analyzed for but not detected. Value shown is the method detection limit for quantification. J = Indicates an estimated value.

Summary of Groundwater Analytical Results - November 2020 Stanley Black & Decker Hampstead, Maryland Table 2-5

		RFW-IIAR		RFW-12B	FW-11B RFW-12B RFW-13 RFW-16 RFW-17	RFW-16	RFW-17	Leister	Leister	Leister	Trip	RFW-20	RFW-21	RFW-20 RFW-21 Town #22 Town #23	Town #23	Trip
PARAMETER	Units							Dairy	Res. #1	Res. #2	Blank					Blank
												n .	SEPA drin	drinking water method	method 524,	.2
Chloromethane	ug/L	NS	1 U	1 U	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	U 2.0	0.5 U	0.5 U
Bromomethane	ug:L	NS	3 U	3 U	3 U	NS	3 U	ABD	ABD	ABD	3 U	1 U	1 U	1.0	1 U	1 U
Vinyl Chloride	ug/L	NS	1 U	1 U	1 C	NS	1 U	ABD	ABD	ABD	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	ng.T	NS	1 U	1 U	1 C	SN	1 U	ABD	ABD	ABD	1 U	1 U	1 U	1 U	I U	1 U
Methylene Chloride	ng.L	NS	5 U	5 U	5 U	NS	5 U	ABD	ABD	ABD	5 U	0.5 U	0.5 U	U.S.U	0.5 U	0.3 J
Acetone	T. Sin	SN	10 U	10 U	U 01	SN	10 U	ABD	ABD	ABD	10 U	O 01	10 U	D 01	10 U	D 01
Carbon Disulfide	ng/L	NS	2 U	2 U	2 U	SN	2 U	ABD	ABD	ABD	2 U	NA	NA	ΝA	NA	NA
1,1-Dichloroethene	ng/L	NS	1 U	1 U	1 C	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	ng:L	NS	1 U	1 U	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene (total)	ug/L	NS	1 U	1.4	6.7	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	ug/L	NS	2 U	2 U	2 U	NS	2 U	ABD	ABD	ABD	2 U	0.5 U	0.5 U	0.23 J	0.5 U	0.5 U
1,2-Dichloroethane	ug/L	NS	1 U	1 O	n 1	NS	1 U	ABD	ABD	ABD	1.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Butanone	ng. L	NS	5 U	5 U	5 U	NS	5 U	ABD	ABD	ABD	5 U	10 U	10 U	10 U	10 U	10 U
1,1,1-Trichloroethane	ng/L	NS	1 O	n I	1 C	NS	1.0	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon Tetrachloride	ng/L	NS	1 U	1 C	n I	NS	1 O	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	ng/L	NS	1 U	1.0	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	ng/L	NS	1 U	1.0	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	ng.L	SN	l U	n n	I U	NS	ı n	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	ng, T	NS	0.4 J	49	1.9	NS	0.5 U	ABD	ABD	ABD	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	ng:T	SN	1 U	n n	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	ng:L	SN	1 U	1 U	1 U	SN	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Benzene	ng.(L	NS	0.5 U	0.5 U	0.5 U	NS	0.5 U	ABD	ABD	ABD	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trans-1,3-Dichloropropene	ng/L	NS	1 U	1 n	1 C	SN	1 C	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	ng/L	NS	n n	1 U	1 U	SN	1 N	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
4-Methyl-2-pentanone	ug/L	NS	5 U	5 U	5 U	NS	5 U	ABD	ABD	ABD	5 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone	ng.L	NS	5 U	5 U	S U	NS	5 U	ABD	ABD	ABD	5 U	10 U	10 U	10 U	10 U	10 U
Tetrachloroethene	ng/L	NS	1 U	2.4	6.1	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	1.3	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	ng/L	NS	1 U	1 U	1 U	NS	1.0	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	ng/L	NS	0.5 U	0.5 U	0.5 U	NS	0.5 U	ABD	ABD	ABD	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	ng/L	NS	1 N	1 C	n I	NS	1 Ü	ABD	ABD	ABD	l U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzenc	ng/L	NS	0.5 U	0.5 U	0.5 U	NS	0.5 U	ABD	ABD	ABD	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Styrene	ng.T	SN	D I	n I	1 U	NS	D I	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylene (total)	ug/L	NS	n I	1 O	n I	SN	1 n	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

Notes: Samples from wells RFW-20 & 21, Town-22&23 are analyzed with the USEPA drinking water method \$24.2 at the request of the MDE Source Protection and Appropriation Division.

Samples from all of the other wells are analyzed with USEPA Method \$260.

NS = Not sampled

U = Compound was analyzed but not detected.

ABD = Well has been abandoned

H:\Folders.A-F\B&D-Hampstead 2006-Present\07 Reports\2021\Annual 2021\Tables\AR21_1Q2112-6

Summary of Groundwater Analytical Results - February 2021 Stanley Black & Decker Hampstead, Maryland

		EW-1	EW-2	EW-3	EW-4	EW-5	EW-6	EW-7	EW-8	EW-9	EW-9	EW-10
PARAMETER	Units										(DUP)	
Chloromethane	ug/L	NS	n i	1 U	n ı	1 U	1.0	1 U	l U	1 U	1.0	1 U
Bromomethane	ug/L	SN	nε	3 U	nε	3 U	3 U	3 U	ΩE	3.0	3.0	3 U
Vinyl Chloride	ug/L	NS	ΩI	1 U	ÑΙ	1 U	1 U	1 U	1 U	1 U	1.0	1 U
Chloroethane	ug/L	NS	1 U	1 U	1 U	I U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene Chloride	ug/L	NS	ΩS	5 U	s u	5 U	5 U	5 U	S U	5 U	0.5	5 U
Acetone	ng/L	SN	O 01	10 U	U 01	10 U	10 U	10 U	2.8 J	2.5 J	10 U	10 U
Carbon Disulfide	ng/L	NS	n 7	2 U	2 U	2 U	2 U	2 U	2 U	n 7	2 U	2 U
1,1-Dichloroethene	ug/L	NS	ΩI	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	ng/L	NS	ΠI	1 U	1 U	1 U	1 U	n ı	1 U	n i	N 1	1 U
1,2-Dichloroethene (total)	ug/L	NS	1.3	1.8	1 U	1 U	1 U	3.7	0.7 J	1 U	ΩI	1 U
Chlorofonn	ug/L	NS	2 U	2 U	2 U	2 U	2 U	2 U	2 U	n z	Ωī	2 U
1,2-Dichloroethane	ug/L	NS	1 U	1 U	1.0	1 U	1 U	1 U	1 U	ΠI	ΩI	1 U
2-Butanone	J/Bn	NS	5 U	5 U	5 U	5 U	5 U	n s	S U	ΩS	5 U	s u
1,1,1-Trichloroethane	ng/L	NS	n I	1 U	1 U	1 O	1 U	1 U	1.0	ΠI	n I	1.0
Carbon Tetrachloride	ug/L	NS	1 O	1 U	1 U	1 D	1 U	1 U	1 U	1 U	1 U	1.0
Bromodichloromethane	ug/L	NS	1 U	1 U	1 Ü	1 U	1 U	1 U	1 U	1 U	1.0	1 U
1,2-Dichloropropane	ug/L	NS	1 U	1 U	1 U	n n	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	ug/L	NS	I U	1 N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	ug/L	NS	81	14	0.5 U	50	3.1	2.5	18	0.5 J	0.5 U	0.5 U
Dibromochloromethane	ng/L	NS	1 U	1 U	1 U	1 U	1 U	1.0	1 U	1 U	ΩI	1 U
1,1,2-Trichloroethane	ug/L	NS	1 U	1 U	1 U	1 U	1 U	ΩI	l U	1 U	1 U	1 U
Benzene	ug/L	NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trans-1,3-Dichloropropene	ng/L	NS	1 U	1 U	1 U	U I	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	ug/L	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	I U	1 U
4-Methyl-2-pentanone	ug/L	NS	5 U	5 U	5 U	5 U	5 U	5 U	s u	5 U	5 U	5 U
2-Hexanone	ug/L	NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	ng/L	NS	31	0.7 J	1 C	1.1	8.9	8.8	54	62	74	1 U
1,1,2,2-Tetrachloroethane	ug/L	NS	1 U	1 U	D I	1 U	1 U	I U	l U	1 U	1 U	1 U
Toluene	ug/L	NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	ug/L	SN	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	l U
Ethylbenzene	ug/L	NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Styrene	ug/L	SN	1 U	1 U	1 U	1 U	1 U	I U	1 U	1 U	I U	1 U
Xylene (total)	ng/L	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Notes: $U \neq Compound$ was analyzed for but not detected. Value shown is the method detection limit for quantification. J = Indicates an estimated value. NS \neq Not Sampled

H:/Folders.A-F/B&D-Hampstead 2006-Present/07 Reports/2021/Annual 2021/Tables/AR21_1Q21t2-6

Summary of Groundwater Analytical Results - February 2021
Stanley Black & Decker
Hampstead, Maryland

		REW-1A	RFW-1B	RFW-2A	RFW-2R	RFW-3R	RFW-44	RFW-4B	RFW-4R	A REW. 18 REW. 24 REW. 28 REW. 38 REW. 34 REW. 48 REW. 48 REW. 48 REW. 54 REW. 6	RFW-6	RFW-7	RFW.8	RFW.9	RFW-10
PARAMETER	Units					1			(DUP)						
Chloromethane	ng/L	1 U	1 U	1 U	1 U	n I	1 U	1 U	I U	NS	1 U	1 U	SN	1.0	SN
Bromomethane	ng/L	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	NS	3 U	3 U	NS	3 U	NS
Vinyl Chloride	ng/L	ΠI	ΩI	U 1	1 U	n i	1 U	1 U	1 U	NS	1.0	1.0	NS	1.0	NS
Chloroethane	J/ßn	1.0	1 U	1 U	I U	1 U	1 U	l U	1 U	NS	1 U	1 U	NS	1 U	NS
Methylene Chloride	T/Bn	5 U	2.3 J	5 U	5 U	5 U	5 U	5 U	5 U	NS	5 U	5 U	NS	5 U	NS
Acetone	ng/L	10	U 01	10 U	10 U	U 01	10 U	10 U	9.7 J	NS	7.2 J	34	NS	5.8 J	NS
Carbon Disulfide	ng/L	2 U	2 U	2 U	2 U	n z	2 U	2 U	2 U	SN	2 U	2 U	NS	2 U	NS
1,1-Dichloroethene	ng/L	ΠI	ΩI	n ı	U 1	ΠI	1 U	1.0	n ı	SN	ΩI	n i	SN	n I	NS
1,1-Dichloroethane	ng/L	1 U	ΩI	1 U	1 U	ŃΙ	1 U	1 U	1 U	SN	ΩI	1 U	NS	N 1	NS
1,2-Dichloroethene (total)	ng/L	1 U	N 1	1 U	1 U	nı	0.5 J	2.1	3	SN	1 U	1 U	NS	6.4	NS
Chloroform	ug/L	2 U	2 U	2 U	2 U	2 U	2 U	1 J	1.2 J	NS	2 U	2 U	NS	2 U	NS
1,2-Dichloroethane	ng/L	l U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	1 U	1 U	NS	1 U	NS
2-Butanone	ng/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	NS	5 U	5 U	NS	5 U	NS
1,1,1-Trichloroethane	7/3n	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	1 U	1 U	SN	1 0	SN
Carbon Tetrachloride	ng/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	1.0	1 0	NS	1 U	NS
Bromodichloromethane	J/ßn	1.0	1 U	1 U	1 U	1 U	1 U	U 1	1 U	NS	1 U	1 U	SN	n 1	NS
1,2-Dichloropropane	ng/L	1 U	1 U	1 U	1 U	1 U	1 U	U 1	1 U	SN	ΠI	1 U	SN	1 U	NS
cis-1,3-Dichloropropene	ng/L	1 U	l U	1 U	1 U	1 U	1 U	1 U	1 U	SN	l U	1 U	SN	I U	NS
Trichloroethene	ng/L	0.5 U	18	48	99	SN	1.8	0.2 J	NS	3.6	NS				
Dibromochloromethane	ng/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	1 U	1 U	NS	U 1	SN
1,1,2-Trichloroethane	ng/L	U I	1 U	1 U	1 U	1 U	1 U	1 U	1 U	SN	l U	n i	SN	n ı	SN
Benzene	ng/L	0.5 U	SN	0.5 U	0.5 U	SN	0.5 U	NS							
Trans-1,3-Dichloropropene	ng/L	1 U	I U	1 U	1 U	1 U	1 U	1 U	1 U	NS	1 U	1 U	NS	1 U	SN
Bromoform	ug/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	1 U	1 U	NS	1 U	NS
4-Methyl-2-pentanone	ug/L	5 U	5 U	5 U	δU	5 U	5 U	2 U	ΩS	SN	n s	S U	SN	ŝυ	NS
2-Hexanone	ug/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	SN	5 U	5 U	SN	n s	SN
Tetrachloroethene	ng/L	1 U	1 U	1 U	1 U	1 U	9.5	09	78	SN	1.1	ΠI	SN	7	SN
1,1,2,2-Tetrachloroethane	ug/L	1 C	1 U	n n	1 D	1 U	1 U	1 U	1 U	NS	1 U	1 U	NS	1 U	NS
Toluene	ug/L	0.5 U	NS	0.5 U	0.5 U	NS	0.5 U	NS							
Chlorobenzene	ug/L	n n	1 O	1 U	1 U	1 U	1 U	1.0	1 U	SN	1 U	1 U	SN	1 U	NS
Ethylbenzene	ng/L	0.5 U	SN	0.5 U	0.5 U	SN	0.5 U	NS							
Styrene	ug/L	ΩI	1 U	1 C	1 U	1 C	I U	1 U	1 U	SN	1 U	1 U	NS	1 U	NS
Xylene (total)	ng/L	1 U	1 U	ı u	1 U	1 U	1 U	1 U	1 U	SN	I U	l U	SN	1 U	SN

Notes: DUP = Duplicate sample NS = Not sampled

U = Compound was analyzed for but not detected. Value shown is the method detection limit for quantification. J = Indicates an estimated value.

inpled J =: Indicate

Summary of Groundwater Analytical Results - February 2021 Stanley Black & Decker Hampstead, Maryland Table 2-6

		RFW-11ARFW-1		RFW-12E	BRFW-12B RFW-13 RFW-16 RFW-17	RFW-16	RFW-17	Leister	Leister	Leister	Trip	RFW-20	RFW-21	Town #22	RFW-20 RFW-21 Town #22 Town #23	Trip
PARAMETER	Units							Dairy	Res. #1	Res. #2	Blank					Blank
												SO	EPA drinl	USEPA drinking water	method 524.	1.2
Chloromethane	ug/L	SN	1 U	1 U	1 U	NS	1 U	ABD	ABD	ABD	1.0	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Bromomethane	ug/L	NS	3 U	3 U	3 U	NS	3 U	ABD	ABD	ABD	3 U	1 U	5 U	1.0	1 U	1 U
Vinyl Chloride	ug/L	SN	n n	1 U	1 n	NS	1 O	ABD	ABD	ABD	1 U	0.5 U	5 U	0.5 U	U.S.U	0.5 U
Chloroethane	ug/L	NS	1 U	1 O	1 U	NS	D [ABD	ABD	ABD	1 U	1 U	10 U	1 U	n i	1 U
Methylene Chloride	ug/L	SN	5 U	ŝυ	5 U	NS	5 U	ABD	ABD	ABD	5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Acetone	ug/L	NS	5.2 J	4.9 J	3.3 J	NS	10 U	ABD	ABD	ABD	10 U	O 01	100 U	10 U	10 U	10 U
Carbon Disulfide	ug/L	NS	2 U	2 U	2 U	NS	2 U	ABD	ABD	ABD	2 U	NA	NA	NA	NA	NA
1,1-Dichloroethene	ug/L	SN	1 U	1 U	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	ng/L	NS	1 U	1 U	1 0	NS	1 U	ABD	ABD	ABD	I U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene (total)	ug/L	SN	1 U	1.2	7.8	NS	n 1	ABD	ABD	ABD	1 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Chloroform	ug/L	NS	2 U	2 U	2 U	NS	2 U	ABD	ABD	ABD	2 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	ug/L	SN	1 U	1 O	n 1	NS	1 C	ABD	ABD	ABD	1 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
2-Butanone	ug/L	SN	5 U	5 U	5 U	NS	5 U	ABD	ABD	ABD	5 U	10 U	5 U	10 U	10 U	10 U
1,1,1-Trichloroethane	ug/L	NS	1 U	1 D	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Carbon Tetrachloride	ug/L	NS	1 U	1 O	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	ug/L	SN	1 U	1 U	1 U	SN	1 U	ABD	ABD	ABD	1 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	ug/L	NS	1 U	1 U	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	ug/L	NS	1 U	1 O	1 O	NS	1 C	ABD	ABD	ABD	1 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	ug/L	SN	9.0	40	1.8	NS	0.5 U	ABD	ABD	ABD	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	ug/L	SN	1 U	1 U	1 C	NS	D 1	ABD	ABD	ABD	1 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	ug/L	SN	1 U	n I	D.	SN	1 O	ABD	ABD	ABD	1 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Benzene	ug/L	NS	0.5 U	0.5 U	0.5 U	SN	0.5 U	ABD	ABD	ABD	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Trans-1,3-Dichloropropene	ug/L	SN	1 O	1 U	n I	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Вготоботп	ng/L	NS	n I	n I	D I	NS	1.0	ABD	ABD	ABD	1 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
4-Methyl-2-pentanone	ng/L	SN	5 U	5 U	5 U	NS	5 U	ABD	ABD	ABD	5 U	10 U	5 U	10 U	10 U	10 U
2-Hexanone	ug/L	NS	5 U	5 U	5 U	NS	5 U	ABD	ABD	ABD	5 U	10 U	100 U	10 U	10 U	10 U
Tetrachloroethene	ug/L	SN	1 C	2.3	9	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	5 U	1.7	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	ng/L	NS	1 C	1 U	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Toluene	ug/L	NS	0.5 U	0.5 U	0.5 U	NS	0.5	ABD	ABD	ABD	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	ug/L	SN	n I	1 U	1 U	NS	I O	ABD	ABD	ABD	1 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	ng/L	NS	0.5 U	0.5 U	0.5 U	NS	0.5 U	ABD	ABD	ABD	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Styrene	ng/L	NS	n .	1 U	1 U	NS	1 n	ABD	ABD	ABD	1 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Xylene (total)	ng/L	NS	1 U	1 U	1.0	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	1.5 J	0.5 U	0.5 U	0.5 U

Notes: Samples from wells RFW-20 & 21, Town-22&23 are analyzed with the USEPA drinking water method 524.2 at the request of the MDE Source Protection and Appropriation Division. Samples from all of the other wells are analyzed with USEPA Method 8260.

NS = Not sampled

U = Compound was analyzed but not detected.

ABD = Well has been abandoned

 $H: NFolders, A-FNB \& D-Hampstead\ 2006-Present 07\ Reports | 2021 VAnnual\ 2021 VTables | AR21_2Q2112-7$

Summary of Groundwater Analytical Results May 2021
Stanley Black & Decker
Hampstead, Maryland Table 2-7

Control of the Control		EW-I	EW-2	EW-3	EW-4	EW-5	EW-6	EW-7	EW-8	EW-9	EW-9	EW-10
FAKAMETEK	Units										(DUP)	
Chloromethane	ug/L	SN	1 U	1.0	1 U	1 U	1 U	U I	1 U	1 U	1 U	n i
Bromomethane	ng/L	NS	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Vinyl Chloride	ng/L	SN	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	n ı
Chloroethane	ug/L	SN	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0	ΩI
Methylene Chloride	ng/L	SN	2 U	0 S	5 U	n s	s u	s u	n s	2 U	5 U	n s
Acetone	ng/L	SN	l 6.1	n 01	10 U	U 01	10 U	N 01				
Carbon Disulfide	7/Sn	SN	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
I, I-Dichloroethene	ng/L	SN	N 1	1 U	I U	1 U	1 U	1 U	ו ח	ΩI	1.0	n ı
I, I-Dichloroethane	ng/L	SN	n 1	1 U	1 U	1 0	1 U	1 U	0.7 J	n n	1 U	nΙ
,2-Dichloroethene (total)	ng/L	SN	1.5	1.5	1 U	1 U	1 U	3.8	26	1 U	1 U	1 U
Chloroform	ug/L	SN	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
,2-Dichloroethane	ug/L	NS	1 U	1.0	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Butanone	ng/L	SN	5 U	5 U	5 U	5 U	5.0	5 U	5 U	5 U	5 U	5 U
,1,1-Trichloroethane	ug/L	NS	1 U	1 U	1 U	1 U	1.0	1 U	1 U	1 U	1 U	1 U
Carbon Tetrachloride	ug/L	NS	1 O	1 C	1 U	1 U	1 U	1 U	1 C	1 U	1 U	n n
Bromodichloromethane	ug/L	SN	1 N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	n I	n I
,2-Dichloropropane	ng/L	SN	1 U	1.0	0.1	ΩI	1 U	1 U	ΩĪ	I U	1 U	n 1
cis-1,3-Dichloropropene	ug/L	NS	1 N	1 C	1 U	1 U	1 U	1 N	1 C	n n	1 U	n 1
[richloroethene	ug/L	NS	79	16	7.2	62	3	2.6	5.7	9.0	0.5	0.5 U
Dibromochloromethane	ug/L	NS	1 U	1 U	1 U	1 U	1.0	1 U	1 U	1 Ū	1 U	1 U
,1,2-Trichloroethane	ug/L	NS	n i	1 U	1 U	n 1	1 U	1 U	1 U	1 U	n 1	1 U
Benzene	ng/L	SN	0.5 U									
rans-1,3-Dichloropropene	ug/L	NS	1 U	1 U	1 U	1 U	1 U	1 U	n i	1 U	I U	1 U
Bromoform	ug/L	SN	1.0	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	ug/L	NS	5 U	5 U	ž U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
2-Hexanone	ug/L	SN	5 U	5 U	5 U	5 U	5 U	S U	5 U	5 U	5 U	5 U
etrachloroethene	ng/L	SN	33	0.7 J	3.7	1.7	5.7	8.9	58	67	69	1 U
,1,2,2-Tetrachloroethane	ng/L	SN	1 N	1 U	O I	1 U	1 U	1 U	1 U	I U	l U	1 U
oluene	ng/L	SN	0.5 U									
Chlorobenzene	ug/L	SN	1 U	1 C	1 U	1 U	1 C	1 U	1 U	1 U	n n	n I
Ethylbenzene	ug/L	SN	0.5 U									
Styrene	ug/L	SN	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	U U	1 U
Xylene (total)	ug/L	NS	1 U	10	1.0	1 U	1 U	1 U	l U	I U	1 U	1 n

Notes: U = Compound was analyzed for but not detected. Value shown is the method detection limit for quantification. J = Indicates an estimated value. NS = Not Sampled

Summary of Groundwater Analytical Results - May 2021 Stanley Black & Decker Hampstead, Maryland Table 2-7

		RFW-1A	RFW-1B	RFW-1A RFW-1B RFW-2A RFW-2B RFW-3B RFW-4A RFW-4B	RFW-2B	RFW-3B	RFW-4A	RFW-4B	RFW-4B	RFW-4B RFW-5A	RFW-6	RFW-7	RFW-8	RFW-9	RFW-10
PARAMETER	Units								(DUP)						
Chloromethane	ug/L	1 U	1 U	1 U	1 U	1 U	1.0	1.0	1 U	NS	1.0	1.0	SN	1.0	SN
Bromomethane	ng/L	3 U	3 U	3 U	3 U	3 U	Ω£	3 U	3 U	SN	3.0	3 U	SN	3.0	SN
Vinyl Chloride	ng/L	1 U	1 U	1 U	1 U	1 U	n ı	1 U	1 U	SN	n ı	1 U	SN	1.0	SN
Chloroethane	ug/L	1 U	1 U	1 U	1 U	1 U	ΩI	1 U	1 U	NS	1 U	1.0	SN	1 U	SN
Methylene Chloride	J/gn	s U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	NS	5 U	5 U	SN	5 U	SN
Acetone	ng/L	6.8 J	4.5 J	2.3 J	U 01	10 U	IO U	10 U	10 U	SN	10 U	4.1.3	SN	10 U	NS
arbon Disulfide	ug/L	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	NS	2 U	2 U	SN	2 U	SN
I, IDichloroethene	ng/L	1 U	1 0	1 U	1 U	1 U	1 U	1 U	1 U	NS	1 U	1.0	SN	1 U	NS
, 1-Dichloroethane	ug/L	I U	1 U	l U	1 U	1 U	1 U	1 U	1 U	NS	1 U	1 U	NS	1 U	NS
,2-Dichloroethene (total)	l ug/L	1 U	1 U	1 U	1 U	1 U	0.6 J	2.6	2.6	NS	0.6 J	1 U	NS	13	SN
hloroform	ug/L	2 U	2 U	2 U	2 U	2 U	0.5 J	1.1 J	1.1 J	NS	2 U	2 U	NS	2 U	SN
,2.Dichloroethane	ug/L	1 U	1 U	I U	1 U	1 U	1 U	1 U	1 U	NS	1 U	1 U	NS	1 U	SN
2-Butanone	ug/L	5 U	5 U	5 U	n s	5 U_	5 U	N 5	5 U	SN	5 U	5 U	NS	n s	SN
,1,1-Trichloroethane	ug/L	1 U	1 U	1.0	1 U	1 U	1 U	1 U	1 U	NS	1 U	1 U	NS	ΩI	SN
Carbon Tetrachloride	ng/L	1 U	1 U	1 U	1 U	n I	1 U	1 U	1 U	NS	1 U	1 U	NS	1 U	SN
Bromodichloromethane	ng/L	1 U	1 U	1 U	ΩI	1 U	1 U	ΩI	0.1	SN	n i	1.0	SN	1 U	SN
,2-Dichloropropane	ng/L	I U	1 N	1 0	l U	n I	1 0	n I	1 O	SN	1 U	1.0	SN	1 U	SN
cis-1,3-Dichloropropene	ug/L	I U	1 U	1 C	1 U	1 C	1 U	n I	1 C	NS	ם	n n	NS	1 U	SN
Lrichloroethene	ug/L	0.5 U	0.5 U	0.2 J	0.2 J	0.5 U	22	58	57	SN	2.3	0.4 J	SN	4.1	SN
Dibromochloromethane	ug/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	n ı	n 1	NS	1 U	SN
,1,2-Trichloroethane	ug/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	1 U	1 U	NS	1 U	SN
Benzene	ug/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NS	0.5 U	0.5 U	NS	0.5 U	SN
Frans-1,3-Dichloropropene	ug/L	1 U	1 U	1 U	n n	1 U	1 U	l U	1 U	SN	1 U	1 U	SN	1 U	SN
Bromoform	ug/L	1 U	1 U	1 C	1 C	1 C	1 U	n n	1 U	SN	1 U	1 U	NS	1 U	NS
4-Methyl-2-pentanone	ug/L	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	NS	5 U	5 U	NS	5 U	NS
2-Hexanone	ug/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	NS	5 U	5 U	NS	5 U	NS
Fetrachloroethene	ug/L	1 U	1 U	1 U	1 U	1 U	11	65	99	NS	1.2	1 U	NS	3	SN
1,1,2,2-Tetrachloroethane	ug/L	1 U	1 U	1 U	1 U	1 N	1 U	1 U	1 O	SN	1 U	1 U	NS	1 U	NS
Toluene	ug/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	SN	0.5 U	0.5 U	SN	0.5 U	NS
Chlorobenzene	ug/L	1 U	1 U	1 C	I U	1 U	1 U	l U	ΠI	SN	1 U	1 C	NS	1 U	NS
Ethylbenzene	ug/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NS	0.5 U	0.5 U	NS	0.5 U	NS
Styrene	ug/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	SN	1 U	1 U	SN	1 U	SN
Xylene (total)	ug/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	SN	1 U	1 U	NS	1 Ü	SN

Notes: DUP \Rightarrow Duplicate sample NS = Not sampled

U = Compound was analyzed for but not detected. Value shown is the method detection limit for quantification. J = Indicates an estimated value.

Summary of Groundwater Analytical Results -Stanley Black & Decker Hampstead, Maryland May 2021

		RFW-11ARFW		RFW-12E	-11BRFW-12B RFW-13 RFW-16 RFW-17	RFW-16	RFW-17	Leister	Leister	Leister	Trip	RFW-20	RFW-21	RFW-20 RFW-21 Town #22 Town #23	Town #23	Trip
PARAMETER	Units							Dairy	Res. #1	Res. #2	Blank					Blank
												n	SEPA drin	SEPA drinking water method	method 524.	1.2
Chloromethane	ug/L	NS	1 U	l U	1 U	SN	U 1	ABD	ABD	ABD	U 1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	ug/L	NS	3 U	3 U	3 U	NS	3 U	ABD	ABD	ABD	3 U	1 D	1 U	1 U	1 U	1 U
Vinyl Chloride	ug/L	NS	1 U	1 n	1 U	NS	1.0	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	ug/L	NS	1 U	1 U	1 U	NS	1 U	ABD	ABD	ABD	1 U	1.0	1 U	1.0	n I	1 U
Methylene Chloride	ug/L	NS	5 U	5 U	5 U	NS	3.0	ABD	ABD	ABD	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Acetone	ug/L	NS	10 U	2.8 J	10 U	SN	10 U	ABD	ABD	ABD	2.9 JB	10 U	10 U	10 U	10 U	10 U
Carbon Disulfide	ug/L	NS	2 U	2 U	1.2 J	NS	2 U	ABD	ABD	ABD	2 U	NA	VΝ	VV	VZ.	ΑN
1,1-Dichloroethenc	ug/L	NS	1 U	1 U	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	ug/L	NS	1 U	1 O	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene (total)	ug/L	NS	1 U	2.8	8.5	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	ug/L	NS	2 U	2 U	2 U	NS	2 U	ABD	ABD	ABD	2 U	0.5 U	0.5 U	0.22 J	0.5 U	0.5 U
1,2-Dichloroethane	ug/L	NS	1 U	1 U	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Butanone	ng/L	SN	5 U	5 U	5 U	SN	5 U	ABD	ABD	ABD	5 U	N 01	O 01	10 U	10 U	10 U
1,1,1-Trichloroethane	7/Sn	NS	1 U	n i	1 U	SN	1 U	ABD	ABD	ABD	ı n	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon Tetrachloride	ng/L	NS	1 U	1 U	1 U	NS	1 U	ABD	ABD	ABD	I U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	ng/L	NS	1 U	1 U	1 U	SN	1 O	ABD	ABD	ABD	n I	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	ng/L	NS	1 U	n n	1 U	SN	n n	ABD	ABD	ABD	0.1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	ug/L	NS	I U	1 U	1 U	NS	1 U	ABD	ABD	ABD	1.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	ng/L	NS	0.5	82	1.9	NS	0.5 U	ABD	ABD	ABD	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	ug/L	NS	1 U	1 U	1 N	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	ng/L	NS	1 U	1 U	l U	NS	1 0	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Benzenc	ug/L	NS	0.5 U	0.5 U	0.5 U	NS	0.5 U	ABD	ABD	ABD	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trans-1,3-Dichloropropene	ug/L	NS	1 U	1 U	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Вготобот	ug/L	NS	1 U	1 U	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
4-Methyl-2-pentanone	ng/L	NS	5 U	5 U	5 U	NS	5 U	ABD	ABD	ABD	5 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone	ug/L	SN	5 U	5 U	5 U	NS	5 U	ABD	ABD	ABD	5 U	10 U	10 U	10 U	10 U	10 U
Tetrachloroethene	ug/L	NS	1 U	9.1	5.4	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	1.9	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	ug/L	NS	1 C	1 U	1 U	NS	1 U	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	ug/L	NS	0.5 U	0.5 U	0.5 U	SN	0.5 U	ABD	ABD	ABD	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	ug/L	NS	1 N	1 U	n n	NS	D 1	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	ng/L	SN	0.5 U	0.5 U	0.5 U	SN	0.5 U	ABD	ABD	ABD	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Styrene	ug/L	NS	1 C	l U	n n	NS	n I	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylene (total)	ug/L	NS	1 U	1 U	1 U	NS	1.0	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

Notes: Samples from wells RFW-20 & 21, Town-22&23 are analyzed with the USEPA drinking water method \$24.2 at the request of the MDE Source Protection and Appropriation Division.

Samples from all of the other wells are analyzed with USEPA Method \$260.

NS = Not sampled

U = Compound was analyzed but not detected.

ABD = Well has been abandoned

3. OPERATION AND MAINTENANCE OF THE TREATMENT SYSTEM

A summary of the maintenance activities that were performed on the extraction and treatment system during the reporting period (July 2020 through June 2021) is provided in Table 3-1. This table is comprehensive in summarizing significant maintenance events or activities, while not including those activities considered unworthy of note (such as replacement of light bulbs, lubrication of moving parts, as appropriate, or other routine activities).

Table 3-1 Treatment System Maintenance Activities (July 2020 through June 2021) Black Decker Hampstead, Maryland

Date	Event/Corrective Action
Jul-20	Alarm at the stripper, due to a faulty timer relay in EW-2, the timer relay was replaced and the well is back online.
Sep-20	The air stripper system was shutdown for 2 hours. Electrical contractors were replacing the disconnect in the substation downstairs in the main facilty building. The disconnect controls the dumping valve up in the ceiling. The system is back online.
Dec-20	EW-5 went down, the breaker was tripped and could not be reset. It was found that the pump was not functioning. The pump assembly was replaced and the well is back online.
Dec-20	Alarm at the stripper, EW-2 tripped off. Replaced the relay, EW-2 is back online.
Jan 21	During routine O&M technician noticed that pump P11 was turning while in the off position. An inspection determined that the check valve downstream of pump had failed allowing water to back flow into pump P11. Replaced check value and returned pump P11 to service.
Mar 21	Alarm at the stripper, EW-3 went down. Turned off EW-3 and reset the system. EW-3 pump and motor removed from well and inspected. Determined that fitting connecting pump to poly line was highly corroded and pitted with holes. Replace pump and motor, fitting, and timing and cube relays. EW-3 return to service following repairs.
Jun-21	Very slow pipe fitting leak in the well house for EW-2. The well was shut off to repair the leak and then brought back online.
Jun-21	Alarm at the stripper due to High Column, the system was reset and is back online.

4. TREATMENT SYSTEM PERFORMANCE EVALUATION

During the reporting period of July 2020 to June 2021, depth-to-water measurements were collected in all site monitor wells on a monthly basis. A groundwater elevation contour map was constructed each month to verify that the groundwater extraction system was providing a hydraulic barrier to prevent any groundwater contamination from migrating off-site. Pumping rates were adjusted as necessary to ensure that hydraulic control was being maintained across the site. Significant drawdown has been observed in both shallow and deeper monitor wells throughout the long-term pumping of the extraction well system, indicating that considerable interconnection exists between the shallow and deeper groundwater.

The groundwater elevation data collected in June 2021 were contoured using KT3D (Tonkin and Larson, 2002), a software program designed to contour groundwater elevation data while taking into account one or more pumping centers. As discussed in *A Systematic Approach for Evaluation of Capture Zones at Pump and Treat System* (USEPA, 2009), KT3D uses a linear-log kriging method that accounts for more tightly spaced groundwater elevation contours around pumping centers. Traditional computer-contouring packages utilize linear kriging methods that can overestimate predicted capture zones around pumping centers.

As shown in Figure 2-1, the groundwater elevation contour map generated by KT3D using groundwater elevation and pumping rate data for June 2021 shows a large depression in the groundwater surface in the vicinity of the pumping well networks at the site. The groundwater path lines show that the direction of groundwater flow is toward the extraction wells and the pumping well network is establishing an effective hydraulic barrier along the site property boundaries. The predicted groundwater capture zones for the pumping wells extend across the site property.

The system as presently configured is successful in meeting the objective of capturing on-site groundwater, thereby reducing the potential off-site migration of contaminated groundwater. The system is also successful in treating the collected groundwater to remove the VOCs from the water. The laboratory analytical results of the treated discharge water indicate that no VOCs are present.

5. RECOMMENDATIONS

As discussed in Section 4, the treatment system has created a hydraulic boundary that prevents the off-site migration of groundwater. The extraction system will continue to operate as currently configured to pump and treat contaminated groundwater. Depth-to-water measurements will continue to be collected on a monthly basis in all site monitor wells to construct a groundwater elevation contour map for the site. The groundwater elevation contour map will be used to verify that the required area of groundwater capture is being maintained. If necessary, pumping rates will be adjusted to maintain groundwater capture due to seasonal fluctuations in groundwater elevations. The treatment system will also continue to operate as currently configured, as data collected have proven that the treatment system is fully effective in removing VOCs from the extracted groundwater.

APPENDIX A WITHDRAWAL REPORTS

ENT ADMINISTRATION, 1800 WASHINGTON BLVD, BALTIMORE, MD 21230

Operated By:

Month: April

Facility: BTR Capital Group (MD0001881.)
Address: 627 Hanover Pike, Hampstead Maryland
Address: 627 Hanover Pike, Hampstead Maryland
Additional Ops & cert # - Garett Scheller 2500, Chris Dallas 6202, Dorrance Jones 0763, Austin Phillips 11136

Operated by: Maryland Environmental Service	ironmental	Service		Address:	Address: 627 Hanover Pike, Hampstead Mar	Pike, Ham	ostead	Maryland	put					Superintendent: David Coale	nt: Day	id Coale	리	Certification # 1662	<u># 1662</u>			Year: 2021	<u>2021</u>
259 Najoles Koad, Millersville MD	oad, Millersy	ville MD		Additiona	Adottional Ops & cert # - Carrett Scheller 2500. Chris Dallas 6202. Dorrance Jones 9763. Austin Philips 1136 Final Effluent outfall 001	Carrett Schelle	r 2500,	Chins D	ilias 6.70	2. Доггат	ouce Joues	U/65. A	ustin Phillip	38 11136	ैं	Outfall 101				Outfa	Outfall 201		
Date Appearance	Appearance Discharge	e bH		Ferachloroethylene	Terachloroethylene, 1, 1-Trichloroethan	Trich		TSS			_	0&G	<u> </u>	Flow eColi		Basin Alum	E,			Terrachlomethylene 1.1.1-Trichlumethan	Trich	Discharge	Operator
- -	MIGD	4	l/gm	ī ān	1. an	1 100	ıı@ıı	ımg/ı	ıı ı/Sııı	mg/1	yı mg/ı	l/gin	or udu	ngm CDI	=		╬	+	l din	1. Zn	ı ifin	ngm	
-	0.03000									-	-		0:0	0.000000	5	+	+	+				0.218270	A.Phillips
-	0.01000									+			0:0	0.000000	D .	+	+	+				0.218488	A. Phillips
3 Clear	0.08000									+	-		0.0	0.000000.0	0	0.0	0.0	0:0				0.244069	C. Dallas
4 Clear	0.06800									\dashv	\dashv		0.0	0.000000	.0	0.0	0.0	0.0				0.226430	C. Dallas
5 Clear	0.09200	7.40	00.00										0.0	0.00000.0	-0	0.0	0.0	0.0				0.242476	G. Scheller
6 Clear	0.05400	7.33	0.00				2.20	\$		<0.1	-	<3.9	0.0	0,000000	.0	0.0	0.0	0.0	<0.5	<0.5	<0.5	0.162088	G. Scheller
7 Clear	0.10900												0.0	0.00000.0	-10	0.0	0.0	0.0				0.293374	G. Scheller
8 Clear	0.07900												0.0	0.000000	-10	0.0	0.0	0.0				0.231157	G. Scheller
9 Clear	0.07300									_			0.0	0.00000	.0	0.0	0.0	0.0				0.227382	G. Scheller
10 Clear	0.01100												0.0	0.00000.0	.0	0.0	0.0	0.0				0.164229	A.Phillips
11 Clear	0.01400										_		0.0	0.000000	.0	0.0	0.0	0.0				0.226801	A.Phillips
12 Clear	0.22200	7.47	0.00										0.0	0.000000	.0	0.0	0.0	0.0				0.290175	G. Scheller
13 Clear	0.17500	7.41	0.00										0:0	0.00000.0	.0	0.0	0.0	0.0				0.229587	G. Scheller
14 Clear	0.00600												0.0	0.000000	.0	0.0	0.0	0.0				0.157591	G. Scheller
15 Clear	0.01400												0.0	0.000000	.0	0.0	0.0	0.0				0.291278	G. Scheller
16 Clear	0.05500												0.0	0,000000	0	0.0	0.0	0.0				0.222667	G. Scheller
17 Clear	0.04900												0.0	0.000000	.0	0.0	0.0	0.0				0.214926	D.Jones
18 C'lear	0.04200												0.0	0.00000.0	.0	0.0	0.0	0.0				0.221907	D.Jones
19 Clear	0.06500	7.56	0.00										0.0	0.000000	.,0	0.0	0.0	0.0				0.258915	G. Scheller
20 Clear	0.05000	7.40	0.00										0.0	0.000000	.0	0.0	0.0	0.0				0.258915	G. Scheiler
21 Clear	0.03900												0.0	0.000000	.0	0.0	0.0	0.0				0.283502	G. Scheller
22 Clear	0.00500												0:0	0.000000	.0	0.0	0.0	0.0				0.192218	A.Phillips
23 Clear	0.00600												0.0	0.000000	.0	0.0	0.0	0.0				0.228836	A.Phillips
24 Clear	0.01400									+			0.0	0.000000.0	-0	0.0	0.0	0.0				0.197008	G. Scheller
25 Clear	0.09300									_			0.0	0.000000	-10	0.0	0.0	0.0				0.198679	G. Scheller
26 Clear	0.10500	7.39	00.00										0.0	0.000000	.0	0.0	0.0	0.0				0.297200	G. Scheller
27 Clear	0.03100	7.31	0.00										0.0	0.000000	.0	0.0	0.0	0.0				0,221554	G. Scheller
28 Clear	0.05600										_		0.0	0.000000	.0	0.0	0.0	0.0				0.222052	G. Scheller
29 Clear	0.07800												0.0	0.000000	.0	0.0	0.0	0.0				0.220293	G. Scheller
30 Clear	0.18600												0.0	0.000000	.0	0.0	0.0	0.0				0.221610	G. Scheller
31															_								
Total	1.91100								-	\dashv	_		0.0	0.00000.0	-	+	-					6.883677	
Average	0.06370		<0.10	#DIV/0!	#DIA/0i	#DIV/0!	2		#:	#	#	0	####	#	#		+	+	0.0	0.0	0.0	0.229456	
Minimum	0.00500	7.3	0.00	0	0	0	7	0	+	+	+	0	0.0	\rightarrow	+	+	+	+	0.0	0.0	0.0	0.157591	MOR
Maximum	0.22200	7.6	<0.10	0	0	0	7	0	0	0	0	0	0.00	0.0000000 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.297200	5/19/2021

ENT ADMINISTRATION, 1800 WASHINGTON BLVD, BALTIMORE, MD 21230 Operated By:

Month: May Year: 2021

Certification # 1662

Facility: BTR Capital Group (MD0001881)
Address: 627 Hanover Pike, Hampstead Maryland
Address: 627 Hanover Pike, Hampstead Maryland
Additional Op's & cert # - Garrett Scheller 2500. Chris Dallas 6202, Austin Phillips 11136. Domance Jones 0763 Maryland Environmental Service 259 Najoles Road, Millersville MD

259 Najoles Koad, Millersville MD	es Koau,	Millersviii	CIM D		Additional	Additional Ops & Cett #* Oaliett Sciente _ 200. Chib Dallas CCC. Absili Fillips 11130. Dutaire Jones 2003	Callell seneme	3	Children or	Alta Sac	10011	dimin	11170		00/02		101 1103+			F		100 11-34-100	100		
Dota	L.	expedonic	7	13	LI		Trail 001	BOD	Tec	TVN	T N+N	T T		Okalerali	-	ilo)	Bacin A1	Alum mamphan		Bust Cld Transm	Transchipment house	Outrain	Tricklementhman	Discharge	Onerator
Date App	Appearance Discharge MGD	MGD	Hd. ns		Lefrachioroemylene, I., i - i richioroetham ug l		i richiorochiche ug l	mg/l	1.33 I/gm	mg/l			/l mg/l	udur	MGD m							ug l	i rechonetaene ug l	mgd	Operator
-	Clear (0.19300	1-													╁	}—	0.0 0.0		0.0				0.163708	A.Phillips
2 C		0.04700												0	0.000000.0		00	0.0	0.0	0.0				0.267637	D. Jones
3 C	Clear	0.01800	7.60	0.00										0	0.000000		0,,	0.0 0.0		0.0				0.227094	G.Scheller
4 U	Clear	0.0550.0												0	0.00000.0		0	0.0 0.0		0.0				0.210794	C. Dallas
5 C	Clear	0.17500	7.52	0.00										0	0.000000			0.0 0.0	-	0.0				0.237308	G.Scheller
9	Clear	0.10100										\dashv		0	0.00000.0		0,,,	0.0 0.0	\dashv	0.0				0.219578	G.Scheller
7 C	Clear	0.05100										-		0	0.00000.0		00	0.0 0.0		0.0				0.219911	G.Scheller
8	Clear	0.181.0												0	0.000000.0		00	0.0 0.0		0.0				0.210406	C. Dallas
6	Clear	0.10200												0	0.00000.0		0,,,	0.0 0.0		0.0				0.216995	C. Dallas
J 01	Clear	0.07300	7.37	0.00										0.	0.00000.0		00	0.0 0.0	-	0.0				0.225467	G.Scheller
11 C	Clear	0.03700	7.22	0.00				3.10	00.6		3,	<0.1	<3.9		0.000000.0		0,,	0.0 0.0		0.0	<0.5	< 0.5	<0.5	0.175535	G.Scheller
12 C	Clear	0.04700												Ö	0.00000.0		0,,	0.0 0.0	-	0.0				0.261284	G.Scheller
13 C	Clear	0.03700												0	0.00000.0		00	0.0 0.0	+	0.0				0.185161	A.Phillips
14 C	Clear	0.03600												0.	0.00000.0		00	0.0 0.0	\dashv	0.0				0.204269	A.Phillips
15 C	Clear	0.03100												0	0.00000.0		00	0.0 0.0	-	0.0				0.184194	G.Scheller
16 C	Clear	0.02900										-		0.	0.00000.0	-	00	0.0 0.0		0.0			•	0.256886	G.Scheller
17 C	Clear	0.17100	7.42	0.00								-		0.	0.00000.0		0 ,,0	0.0 0.0	\dashv	0.0				0.199005	G.Scheller
18 C	Clear	0.06400	7.36	0.00										0.	0,000000		00	0.0 0.0	-	0.0				0.205685	G.Scheller
19 C	Clear	0.0550.0												2.0 0.	0.00000.0		00	0.0 0.0	\dashv	0.0				0.200778	G.Scheller
20 C	Clear 0	0.06000												Ö	0.000000.0		00	0.0 0.0		0.0				0.185824	G.Scheller
21 C	Clear 0	0.07800									-	\dashv		0	0.00000.0		00	0.0 0.0		0.0				0.180024	G.Scheller
22 C	Clear 0	0.04900												Ö	0.000000		0,,,0	0.0 0.0	-	0.0				0.165021	D. Jones
23 C	Clear	0.03900									-			Ö	0.000000		0,,0	0.0 0.0	-	0.0			the state of the s	0.186373	D. Jones
24 C	Clear	0.05400	8.12	0.00							\dashv			0.	0.000000		0,,	0.0 0.0	-+	0.0				0.191035	G.Scheller
25 C	Clear	0.05400	8.30	0.00							\dashv			o l	0.000000		0,,,	0.0 0.0		0:0				0.177293	G.Scheller
26 C	Clear	0.05900										-	-	0	0.000000.0	1	0,,,	0.0 0.0	0.0	0				0.171160	G.Scheller
27 C	Clear 0	0.02800								1		-	-	0	0.00000.0		00	0.0 0.0	+	0.0				0.171530	A.Phillips
28 C	Clear	0.00000									\dashv	-	-	0	0.000000		00	0.0 0.0		0.0				0.172483	A.Phillips
29 C	Clear	0.36800											-	0	0.000000		00	0.0 0.0	+	0.0				0.178023	G.Scheller
30 C	Clear	0.11500									\dashv	-	\prod	0	0.000000.0		00	0.0 0.0	0.0	0				0.021467	G.Scheller
31 C	Clear 0	0.01600	8.00	0.00										0	0.000000	-	00	0.0 0.0		0.0				0.181413	G.Scheller
Total	(7)	2.43200												Ö	0.00000.0	-								6.053341	
Average	1	0.07845	1	<0.10	#DIV/0!	#DIV/0!	#DIV/0!	3	6	#####	0 ####	#### 0	0 推	2 0.	0.000000 #NUM!		0 ######	0.0 0.0	+	0	0.0	0.0	0.0	0.195269	
Minimum				0.00	0	0	0	3	6	0	-+	-	+	Ö,	-	+	+		\dashv		0.0	0.0	0.0	0.021467	MOR
Maximum		0.36800	8.3	<0.10	0	0	0	3	6	0	0	0 0	0	0.	0.000000 0.	0.0	0.0	0.0 0.0	0.0	0	0.0	0.0	0.0	0.267637	6/23/2021

ENT ADMINISTRATION, 1800 WASHINGTON BLVD, BALTIMORE, MD 21230

Operated By:

Maryland Environmental Service

Address; 627 Hanover Pike, Hampstead Maryland
Address; 627 Hanover Pike, Hampstead Maryland
Addressille MD

Addrinoal Op's & cert # - Garrent Scheller 2500, Dorrance Jones 0763. Chris Dallas 6202 Operated By:
Maryland Environmental Service
259 Najoles Road, Millersville MD

Month: June Year: 2021

Certification # 1662

Superintendent: David Coale

r caroling of	Charle Control			ii ii	Einal Effluent outfall 001	tfall 001										Ourfall 101				100 (feltin)	201		
Date Appeara	Appearance Discharge		CIZ	Terrachloroetistend 1.1-Trichloroethan Trichloroethane	I.1-Trichloroethan		BOD,	TSS 1	TKN	N+N	TP TN	1 0&G	GeColi	Flow	eColi	Basin A	Alum Inspectionite	lorite Post CI2	12 Tetrachlonethylene	1.1.1-Trich	Trichkmethene	Discharge	Operator
	MGD	, as	mg/1	ng 1	1 80		mg/l						l mpn								ug l	pßu	
l Clear	0.01600	7.89	00'0						H	\vdash				0.000000		0	0.0 0.0	0.0				0.177687	G. Scheller
2 Clear	0.03800						2.70	8.00		0>	<0.1	> 4≻		0.00000.0		0	0.0 0.0	0.0	<0.5	<0.5	<0.5	0.128113	G. Scheller
3 Clear	0.07000										_		J	0.00000.0)	0.0 0.0	0.0				0.214768	G. Scheller
4 Clear	0.46800												J	0.00000.0		0	0.0 0.0	0.0				0.164485	G. Scheller
5 Clear	0.11700								1					0.00000.0		0	0.0 0.0	0.0				0.140455	G. Scheller
6 Clear	0.04800													0.000000		0,,	0.0 0.0	0.0				0.176310	G. Scheller
7 Clear	0.19700	8.13	0.00										3	0.00000.0		.0	0.0 0.0	0.0				0.180874	G. Scheller
8 Clear	0.25400	8.00	00:00								_		O O	0.00000.0)0	0.0 0.0	0.0				0.179960	G. Scheller
9 Clear	0.29100									-			3	0.000000.0		0	0.0 0.0	0.0				0.179297	G. Scheller
10 Clear	0.10900												J	0.000000		0	0.0 0.0	0.0				0.179234	G. Scheller
11 Clear	0.33000												3	0.000000		0	0.0 0.0	0.0				0.145930	G. Scheller
12 Clear	0.34100												٥	0.00000.0		Ъ	0.0 0.0	0.0				0.141140	D.Jones
13 Clear	0.11000												3	0.000000.0		0,,	0.0 0.0	0.0				0.204323	D.Jones
14 Clear	0.10800	8.29	00.00										ĵ.	0.000000		0	0.0 0.0	0.0				0.158630	G. Scheller
15 Clear	0.10800	8.36	0.00						-	\dashv	-		3	0.00000.0		.0	0.0 0.0	0.0				0.205787	G. Scheller
16 Clear	0.06100								-				9	0.00000.0		0,,	0.0 0.0	0.0				0.160173	C. Dallas
17 Clear	0.03800										_		2	0.000000		0,,	0.0 0.0	0.0				0.182695	C. Dallas
18 Clear	0.02700												0	0.00000.0		٥,,	0.0 0.0	0.0				0.168742	C. Dallas
19 Clear	0.05400						\neg			-	_		3	0.000000	1	0,,,	0.0 0.0	0.0				0.164236	D.Jones
20 Clear	0.06700												0	0.00000.0		0,,	0.0 0.0	0.0				0.174270	C. Dallas
21 Clear	0.05400	8.24	0.00										0	0.00000.0		00	0.0 0.0	0.0				0.180891	G. Scheller
22 Clear	0.35900	8.39	0.00								-		0	0.00000.0		0,,	0.0 0.0	0.0				0.166308	G. Scheller
23 Clear	0.15000							+					٥	0.00000.0		0	0.0 0.0	0.0				0.169699	G. Scheller
24 Clear	0.02300								-	\dashv			0	0.000000		0,,0	0.0 0.0	0.0				0.168105	G. Scheller
25 Clear	0.01500							+		-			0	0.000000		0	0.0 0.0	0.0				0.144256	G. Scheller
26 Clear	0.00000								+				0	0.000000.0			0.0 0.0	0.0				0.148330	D.Jones
27 Clear	0.03900												0	0.00000.0		- - - - -	0.0 0.0	0.0				0.138821	D.Jones
28 Clear	0.03300	8.40	0.00					+					0	0.000000		00	0.0 0.0	0.0	A design of the second			0.176289	G. Scheller
29 Clear	0.0090.0	8.21	0.00							-			0	0.000000.0		00	0.0 0.0	0.0				0.178213	G. Scheller
30 Clear	0.01760									\dashv			0	0.000000.0		-0	0.0 0.0	0.0				0.166358	G. Scheller
31							7																
Total	3.60260								+	+	+		0	0.000000				_				5.064379	
Average	0.12009		<0.10	#DIV/0i	#DIV/0i	#DIA/0i			∓t:	#	#		0 ####	\neg	1	#	+	\dashv	_	0.0	0.0	0.168813	
Minimum	0.00000		0.00	0	0	0	3	\dashv	-	+	-	0		_	+	-	+	1	_	0.0	0.0	0.128113	MOR
Maximum	0.46800	8.4	<0.10	0	0	0	3		0	0 0	0	0	0	0.000000	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.214768	7/14/2021

APPENDIX B DISCHARGE MONITORING REPORTS

Record
of O
Copy
Σ

Permit									
Permit #:	MD0001881	Permittee:		BTR HAMPSTEAD, LLC.		Facility:	BTR HAMPSTEAD, LLC.	TEAD, LLC.	
Major: No	٥	Permittee Address:	dress:	626 HANOVER PIKE CARROLL COUNTY HAMPSTEAD, MD 21074		Facility Location:	626 HANOVER PIKE HAMPSTEAD, MD 21074	R PIKE), MD 21074	
Permitted Feature: 00 Ex	001 External Outfall	Discharge:		001-A1 16-DP-0022					
Report Dates & Status									
Manitoring Períod: Fr	From 04/01/21 to 04/30/21	DMR Due Date:	÷	07/28/21		Status:	NetDMR Validated	dated	
Considerations for Form Completion									
Principal Executive Officer									
First Name:		Title:				Telephone:			
Last Name:									
No Data Indicator (NODI)									
Form NODI:									
Parameter Code Name	Monitoring Location Spason # Parani, NOD	VOOI Ouglifier 1	Quantity or Loading Value 1 Qualifier 2	ing Quality or Concer Value 2 Units Qualifier 1 Value 1 Qualifier 2 Value 2	Q. Value 1 - Qualifier	Quality or Concentration for 2 Value 2 Qualifier 3	Value 3 Units	≝ of Ex. Frequency of Analysis. Sample Type	Sample Type
							.0 19 - mg/L	01/30 - Monthly	GR - GRAB
00310 BOD, 5-day, 20 deg. C	1 - Effluent Gross 0	Permit Reg. Value NODI				n V	15.0 DAILY MX 19 - mg/L _ 0	01/30 - Monthly	GR - GRAB
		Sample		= 7.3			7.6 12 · SU	02/07 - Twice Every Week GR - GRAB	. GR - GRAB
00400 pH	1 - Effluent Gross 0	Permit Req.		15.8 15.8	6.5 MINIMUM	"	8.5 MAXIMUM 12 - SU 0	02/07 - Twice Every Week GR - GRAB	. GR - GRAB
		Sample				= 0.0	0.0 19 - mg/L	01/30 - Monthly	GR - GRAB
00530 Solids, total suspended	1 - Effluent Gross 0	Permit Req.			Ų	20.0 MX MO AV <=	30.0 DAILY MX 19 - mg/L 0	01/30 - Monthly	GR - GRAB
		Value NOD!							
		Sample				. 00	19 - mg/L	01/30 - Monthly	GR - GRAB
00556 Oil & Grease	1 - Effluent Gross 0	Value NOD!			;			Augusta accid	
						00	10 01	COLO MANAGEL	9 0000
00665 Phosphorus, total [as P]	1 - Effluent Gross 0	Sample Permit Req.			"	0.0 0.3 MX MO AV	19 - mg/L 19 - mg/L	01/30 - Monthly 01/30 - Monthly	08 - COMP-8
50050 Flow, in conduit or thru treatment plant 1 - Effluent Gross	plant 1 - Effluent Gross 0	Sample = 0.0 Permit Req Re	0.0637 = 0. Req Mon MO AVG R	0.222 03 - MGD Req Mon DAILY MX 03 - MGD			0	01/30 - Monthly 01/30 - Monthly	MS - MEASRD MS - MEASRD
								00000	0000
50060 Chlorine, total residual	1 - Effluent Gross 0	Sample Permit Reg. Value NQDI			" ♥	11.0 MX MO AV <=	19.0 DAILY MX 28 - ug/L 0	01/30 - Monthly 01/30 - Monthly	GR - GRAB
Submission Note					L				
If a parameter row does not contain any values for the Sample nor Efficient Trading, then none of the following helds will be submitted for that row. Units, Number of EXCL/Storbs, Frequency of Analysis, and sample Type. Fint Check France.	ilues for the Sample nor Effluent Trading, t	then none of the following ;	nelds will be submitted for	r that row: Units, Number of Excursion	ns, Frequency of	Analysis, and sample i	lype.		
No errors.									
Comments									
Attachments									
		Name				Туре		Size	
21BlackandDeckerWWTP04.pdf					pdí		1119393.0		

JAYJANNEY
Jay Janney
jjann@menv.com
2021-05-20 12:01 (Time Zone: -04:00)

Report Last Saved By
BTR HAMPSTEAD,LLC.
User:
Name:
E-Mail:
Date/Time:

.22
S
0
ده
a)
Recoi
ō
\circ
~
>
>
Λdo
>
Copy
R Copy
Λdo

Permit #-	MD0001881	Permittee	BTB HAM	BTR HAMPSTEAD.LLC.	Facility:	BTR HAN	BTR HAMPSTEAD, LLC.	
		Permittee Address:		626 HANOVER PIKE CARROLL COUNTY HAMPSTEAD, MD 21074	Facility Location:	626 HAN HAMPST	626 HANOVER PIKE HAMPSTEAD, MD 21074	
Permitted Feature:	001 External Outfall	Discharge:	001-A5 PROPOSED	ED				
Report Dates & Status					_			
Monitoring Period:	From 04/01/21 to 04/30/21	DMR Due Date:	05/28/21		Status:	NetDMR	NetDMR Validated	
Considerations for Form Completion								
Principal Executive Officer								
First Name:					Telephone:			
Last Name:								
No Data Indicator (NOD!)								
Form NODI:								
Parameter Code Name	Monitoring Location Season # Param. NODI	Qualifier 1 Value 1	Quantity or Loading Qualifier 2 Value 2 Units	Units. Qualifier 1 Value 1 Oxiz	Quality or Concentration Qualifier 2 Value 2 Qualities 3	Voltre 3 Units	# of Ex. Frequency of Analysis	Saurio lypi
00011 Temperature, water deg. fahrenheit	1 - Effluent Gross 0 7	Sample Permit Req Value NODI		Req Mon DAILY AV C - No Discharge	Req Mon WKLY AVG C - No Discharge	Req Mon DAILY MX 15 - deg F C - No Discharge	24/01 - Hourly	IT - Immersion Stabilization
50050 Flow, in conduit or thru treatment plant 1 - Effuent Gross 0	:	Sample Permit Req. Req Mon MO AVG Value NODI C - No Discharge	Req Mon DAILY MX 03 - MGD 9e C - No Discharge	Q			01/30 - Monthly	MS - MEASRD

Submission Note If a parameter row does not contain any values for the Sample nor Effluent Trading, then none of the following fields will be submitted for that row: Units, Number of Excursions, Frequency of Analysis, and Sample Type.

Size

1119393.0

Type

pq

Edit Check Errors

No errors.

Comments

Attachments

21BlackandDeckerWWTP04.pdf Report Last Saved By

Name

BTR HAMPSTEAD, LLC. User:

Name: E-Mailt Date/Time:

Jay Janney jjann@menv.com 2021-05-20 12:02 (Time Zone: -04:00)

JAYJANNEY

Report Last Signed By User

JAYJANNEY Jay Janney

User. Name: E-Mail: Date/Time:

јјапл@телv.com 2021-05-20 12:14 (Time Zone: -04:00)

2
0
့
ş
\simeq
ţ,
~
Ω
ŏ
ŏ
02
N. N.

Permit

Permit #:	MD0001881	1881	Permittee:		BTR HAMPSTEAD,LLC.	AD,LLC.	Facility:	BTR HAMPSTEAD, LLC.	EAD, LLC.	
Major:	No		Permittee Address:	ddress:	626 HANOVER PIKE CARROLL COUNTY HAMPSTEAD, MD 21074	PIKE NTY 1D 21074	Facility Location:	626 HANOVER PIKE HAMPSTEAD, MD 21074	R PIKE , MD 21074	
Permitted Feature:		101 External Outfall	Discharge:		101-A2 16-DP-0022					
Report Dates & Status				,					1	
Monitoring Period:		From 04/01/21 to 04/30/21	DMK Due Date:	ate:	0//28/21		status:	NetUMK Validated	lated	
Considerations for	Considerations for Form Completion									
Principal Executive Officer	e Officer									
First Name:			Title:				Telephone:			
Last Name:										
No Data Indicator (NODI)	(NODI)									
Form NODE:	1									
	Parameter	Monitoring Location Season # Param NODI		Quantity	Quantity or Loading		rent		# of Ex. Pregioning of Analysis. Sample light	5 Sample iyse
Code	Матре		Qualifier 1	Value 1	Qualifier 2 Value 2	Units Qualifier i Value 1 Qualifier 2	2 Value 2 Qualifier 3 Value 3	lue 3 Units		
50050 Flow in con	50050 Flow in conduit or thru treatment plant 1 - Effluent Gross	. 0	Sample Permit Reg. F	Req Mon MO AVG	Req Mon DAILY MX 07 - gal/d	07 - gal/d			01/07 - Weakly	MS - MEASRD
			Vatue NODI	C - No Discharge	C - No Discharge		:			
51040		1. Efflicat Gross 0	Sample Permit Req			U	126.0 MX WK AV	30 - MPN/100mL	01/07 - Weekly	GR - GRAB
		,	Value NOD!				C - No Discharge			

If a parameter row does not contain any values for the Sample nor Effluent Trading, then none of the following fields will be submitted for that row. Units, Number of Excursions, Frequency of Analysis, and Sample Type. Submission Note

Edit Check Errors

No errors.

Comments

Attachments

21BlackandDeckerWWTP04.pdf BTR HAMPSTEAD,LLC. Report Last Saved By

Name

Size

1119393.0

Туре

bq

jjann@menv.com 2021-05-20 12:02 (Time Zone: -04:00) JAYJANNEY Jay Janney

Date/Time:

E-Mail:

Name: User

JAYJANNEY Report Last Signed By

Jay Janney Name: E-Mail: Date/Time:

jjann@menv.com 2021-05-20 12:14 (Time Zone: -04:00)

Record
of
Copy
DMR

Permit									
Permit #:	MD0001881		Permittee:	BTR HAMPSTEAD, LLC.		Facility:	BTR HAMPSTEAD, LLC.	AD, LLC.	
Major:	°Z		Permittee Address:	628 HANOVER PIKE CARROLL COUNTY HAMPSTEAD, MD 21074	- F-	Facility Location:	626 HANOVER PIKE HAMPSTEAD, MD 21074	P!KE AD 21074	
Permitted Feature:	102 External Outfall		Discharge:	102-A4 16-DP-0022					
Report Dates & Status Monitoring Period:	From 04/01/21 to 04/30/21		DMR Due Date:	07/28/21	<u>S</u> t_	Status:	NetDMR Validated	Pej	
Considerations for Form Completion			_		-				
Principal Executive Officer									
First Name:			Title:		Te	Telephone:			
Last Name: No Data Indicator (NODI)									
Form NODI:	1								
Parameter Code Name	Monitoring Location Season # Param, NODI		Quantity or Loading Qualitier 1 Value 1 Qualifier 2	ading Value 2 Units Qualifier 1 Value 1	Qualifier 2	Quality or Concentration Value 2 Que'fier 3 Value 3	et:	# of Ex. Programmey of Analysis. Sample Type	ample Type
	ć	Sample Permit Red.		NI OS			19 - mo/	02/01 - Twice Per Day	CA - CALCTD
Occool Oxygen, alssalvea [DO]	1. Elinent Gross of	Value NODI			je Je				
	Ì	Sample							
00310 BOD, 5-day, 20 deg. C	1 - Effluent Gross 0	Value NODI	C - No Discharge	201,07	•	C - No Discharge	7/611 - 62	OZOJ - IMICE EVERY WYBER CA - CALCID	2010
		Sample							
00310 BOD, 5-day, 20 deg. C	EG - Effluent Gross 0	Permit Req <= Value NOD!	150.0 MX MO AV C - No Discharge	26 - Ib/d	30.0 My	30.0 MX MO AV C - No Discharge	19 - mg/L	0 1/30 - Monthly C/	CA - CALCTD
		Sample							
00400 рН	1 - Effluent Gross 0	Permit Req.		>= 6.5 MINIMUM C - No Discharge	9	<= 8.5 MAXIMUM C - No Discharge	12 - SU	02/01 - Twice Per Day C/	CA - CALCTD
		Sample							
00530 Solids, total suspended	1 - Effluent Gross 0	Permit Req. <=	113.0 MX WK AV	26 - 15/d	<= 23.0 MX	23.0 MX WK AV	19 - mg/L	02/07 - Twice Every Week CA - CALCTD	A - CALCTD
		Value NODI	C - No Discharge		C-N	C - No Discharge			
00530 Colide total enemanded	1. Efficient Gree	Sample Permit Req.		Req Mon MO TOTAL 76 - lb/mo				01/30 - Monthly CA	CA - CALCTD
	-	Value NOD!		C - No Discharge					
		Sample		22302 0 CHATOTE 60 Man				10000	
00530 Solids, total suspended	1 - Effluent Gross 2	Value NODI		C - No Discharge					
	1	Sample	25 DAY MO AV	P/HI GC	7E 0 14		0		
00530 Solids, total suspended	EG - Effluent Gross 0	Vafue NODI	C - No Discharge	361-04		C - No Discharge		Altallan - Dollo	CA - CALC ID
O0900 Mittages and Land Inc.	7 C 2000 C 1000	Sample Permit Reg.			Rea Mo	Reg Man MO AVG	19 - ma/	02/07 - Twice Every Week CA - CA CTO	A CALCTD
occoo initi ogen, total las inj	>	Value NOD!			N . O	C - No Discharge	n :		
00600 Nitrogen total [as N]	1. Efficient Greek	Sample Permit Req.	т.	Req Mon MO TOTAL 76 - Ib/mo				01/30 - Monthly CA	CA - CALCTD
Troping in Bound	-	Value NODI		C - No Discharge					
00600 Nitrogen total (as Ni	1 - Effluent Gross 2	Sample Permit Req		Req Mon CUM TOTL 50 - lb/yr				01/30 - Monthly CA	CA.CALCTD
L. call most insequence	,	Value NODI		C - No Discharge					
00605 Nitrogen, organic total [as N]	1 - Effluent Gross 0	Sample Permit Req Value NODI			Req Mor	Req Mon MO AVG C - No Discharge	19 - mg/L	02/07 - Twice Every Week CA - CALCTD	· · CALCTD
		Sample Permit Reg. <=	21.0 MX DA AV	26 - Ib/d	<=> 4.1 MX DA AV	DA AV	19 - ma/L	02/07 - Twice Every Week CA - CALCTD	CALCTD
00610 Nitrogen, ammonia total [as N]	1 - Effluent Gross 1								

				Value NOD!	C - No Discharge			C - No Discharge			
00610	Nitrogen, ammonia total [as N]	EG - Effluent Gross 0		Sampie Permit Req <= Value NODI	9.0 MX MO AV C - No Discharge	26 - Ib/d	ii v	1.8 MX MO AV C - No Discharge	7/6w - 61	01/30 - Monthly	CA - CALCTD
00630) Nitrite + Nitrate total [as N]	1 - Effluent Gross 0	- 0	Sample Permit Req Value NOD!				Req Mon MO AVG C - No Discharge	19 · mg/L	02/07 - Twice Ev	02/07 - Twice Every Week CA - CALCTD
00665	5 Phosphorus, total [as P]	1 - Effluent Gross 0	1	Sample Perrot Req. <= ∀alus NODI	2.3 MX WK AV C - No Discharge	26 - ib/d	17	0.45 MX WK AV C - No Discharge	19 - mg/L	02/07 - Twice Ev	02/07 - Twice Every Week CA - CALCTD
9900	00665 Phosphorus, total [as P]	1 - Effluent Gross 1	1	Sample Permit Req Value NODI		Req Mon MO TOTAL 76 - Ib/mo C - No Discharge				01/30 - Monthly	CA-CALCTD
000665	00665 Phosphorus, total [as P]	1 - Effluent Gross 2		Sample Permit Req Value NODi	H V	548.0 CUM TOT. 50 - lb/yr C - No Discharge				01/30 - Monthly	CA-CALCTD
00665	00665 Phosphorus, total [as P]	EG - Effluent Gross 0	1	Sample Permit Req. <= Value NOD!	1,5 MX MO AV C - No Discharge	26 - Ib/d	Ÿ.	0.3 MX MO AV C - No Discharge	19 - mg/L	01/30 - Manhy	CA - CALCTD
04175	04175 Phosphate, ortho [as P]	1 - Effluent Gross 0	,	Sample Permit Req. Value NODI				Reg Mon MO AVG C - No Discharge	7/6ω - 6!	02/07 - Twice Ev	0207 - Twice Every Week CA - CALCTD
50050	50050 Flow, in conduit or thru treatment plant	1 - Effluent Gross 0	,	Sample Permit Reg. Value NOD!	Req Mon MO AVG C - No Discharge	Req Man DAILY MX 03 - MGD C - No Discharge				99/99 - Continueus	s RF.RCDFLO
51040) E.coli	1 - Effluent Gross 0	,	Sample Permit Reg. Value NOD!			. "	60.0 MO MAX C - No Discharge	30 - MPN/100mL	Jr 01/07 - Weekly	GR - GRAB
82220	82220 Flow, total	1 - Effluent Gross 0	,	Sample Permit Req. Vatue NOD!		Req Mon MO TOTAL 80 - Mgalimo C - No Discharge	:			01/30 - Monthly	CA - CALCTD
Submission If a paramet Edit Check No errors. Comments	Submission Note If a parameter row does not contain any values fedit Check Errors No errors. Comments	for the Sample nor Efflu	ent Trading	g, then none of the follo	wing fields will be submitted	Submission Note If a parameter row does not contain any values for the Sample nor Effluent Trading, then none of the following fields will be submitted for that row: Units, Number of Excusions, Frequency of Analysis, and Sample Type. Edit Check Errors No errors. No errors. Comments	quency of Analysis.	and Sample Type.			
Attacl	Attachments			:				,		i	
21Blac	21BlackandDeckerWWTP04.pdf			au zu			Jpd	ad.	1119393.0	9215	
Repo	Report Last Saved By BTR HAMPSTFAD LLC										
User		YAC	JAYJANNEY								
Name:		Jay	Jay Janney								
E-Mail:		ijani	jjann@menv.com	шо							
Date/Time:	Date/Time: Report I ast Signed By	202	1-05-20 12	2021-05-20 12:02 (Time Zone: -04:00)	(00						
User:		YAL	JAYJANNEY								
Name:		Jay	Jay Janney								
E-Mail:	: ين	ijani	jjann@menv.com	mo	į						
Date/18me	ime:	202	7L 02-c0-1	ZUZT-U5-ZU 1Z:14 (Time Zone: -U4:UU)	UU)						

if Record	
Ö	
Λdo	
Ö	

10000						
Permit #: Major:	MD0001881 No	Permittee: Permittee Address:	BTR HAMPSTEAD,LLC. 626 HANOVER PIKE CARROLL COUNTY HAMPSTEAD, MD 21074	Facility: Facility Location:	BTR HAMPSTEAD, LLC. 626 HANOVER PIKE HAMPSTEAD, MD 21074	. L.С. РКЕ ID 21074
Permitted Feature:	001 External Outfall	Discharge:	001-A1 16-DP-0022			
Report Dates & Status Monitoring Period: Considerations for Form Completion	From 05/01/21 to 05/31/21	DMR Due Date:	07/28/21	Status:	NetDMR Validated	pa
Principal Executive Officer First Name: Last Name: No bast Indicator (NOD!) Form NOD!		Ţitle:		Telephone:		
Parameter Code Name 00310 BOD, 5-day, 20 deg. C	Monitoring Location Season # Param NODI 8: 8: 1. Effluent Gross 0 Perf Visit	Ouanity or Loading Sample Sample Value 1 Oualifer 2 Sample Pernit Ray.	Quality Value 2 Units Qualifier1 Value 1 Qualifier 2	y or Concentration Value 2 Quanfler 3	Faine 3 Units 19 - mg/L DAILY MX 19 - mg/L	# of Ex. Frequency of Analysis. Surper rynu. 01/20 - Monthly GR - GRAB 0 01/20 - Monthly GR - GRAB
00400 рН	Ss. 1 - Eiffluent Gross 0 Perr	Sample Permit Req. Value NOD:	= 7.2 >= 6.5 MINIMUM		0	ery Week ery Week
00530 Solids, total suspended	Si 1 - Effluent Gross 0 Perr	sample Permit Rac. Value NOD!	н V	9.0 = 9.0 20.0 MX MO AV <= 30	9.0 19-mg/L 0 30.0 DAILY MX 19-mg/L 0 0	01/30 - Monthly GR - GRAB 01/30 - Monthly GR - GRAB
00556 Dil & Grease	Ss. 1 - Effluent Gross 0 Perr	Sampte Permit Ren, Value NOD ^o	=>	0.0 = 10.0 MX MO AV <=	0.0 19 - mg/L 0 15.0 DAILY MX 19 - mg/L 0 0	
00665 Phosphorus, total [as P]	Ss 1- Effluent Gross 0 Perr	Sample Permit Req. Value NOD;	я V	0.0 0.3 MX MO AV	16 u.g/L 0 0	01/30 - Monthly 08 - COMP-8 01/30 - Monthly 08 - COMP-8
50050 Flow, in conduit or thru treatment plant 1 - Effluent Gross	- 0	Sample = 0.0785 = Perint Roy Req Mon MO AVG Value NOD!	0.368 0.364 Mon DAILY MX 03 - MGD		0 0	
50050 Chlorine, total residual	5s. 1 - Effluent Gross 0 Perr	Switpie Permit Req Value NOBJ	=>	0.0 ≈ 0.0 11.0 MX MO AV <= 19.0	28 - ng/L 29 - ng/L 0	01/30 - Monthly GR - GRAB 01/30 - Monthly GR - GRAB
Submission Note If a parameter row does not contain any Edit Check Errors No errors. Comments	Submission Note If a parameter row does not contain any values for the Sample nor Effluent Trading, then none of the following fields will be submitted for that row: Units, Number of Excursions, Frequency of Analysis, and Sample Type. Befit Check Errors No errors. Comments	e of the following fields will be submitted for	or that row: Units. Number of Excursions, Frequenc	y of Analysis, and Sample Type		
Attachments	Name			Туре		Size
21BlackandDeckerWWTP05.pdf Report Last Saved By BTR HAMPSTEAD.LLC. User.	JAYJANNEY Iav Janasa		βρά		1080009.0	
Famil: Date/Time:		9: -04:00)				

Record	3
į	,
700	2
NR N	•
Ē	1

refull #:	MD0001881	Permittee:	BTR HAMPSTEAD,LLC.	Facility:	BTR HA	BTR HAMPSTEAD, LLC.	
Major: N	No	Permittee Address:	626 HANOVER PIKE CARROLL COUNTY HAMPSTEAD, MD 21074	Facility Location:		626 HANOVER PIKE HAMPSTEAD, MD 21074	
Permitted Feature: 0	001 External Outfall	Discharge:	001.A5 Proposed				
Report Dates & Status							
Monitoring Period: F	From 05/01/21 to 05/31/21	DMR Due Date:	06/28/21	Status:	NetDMI	NetDMR Validated	
Considerations for Form Completion							
Princípal Executive Officer							
First Name:		Title:		Telephone:			
Last Name:							
No Data Indicator (NOD!)							
Form NODI:							
Parameter Lode Name	Monitoring Lostition Season # Parem. HOUI	Guantity or Loading Guantity or Loading	Value 2 Unit OuaFfret 1	Ouchiy or Concentration Vivos i Qualifies & Value 2 Quin	on Quolifers Value 3 Suchs	# of Ex. Frequency of Analysis	Sample 1454
00011 Temperature, water deg. fahrenheit	Sample 1-Effuent Gross 0 Permit Req		Req Mon	Req Mon DAILY AV Req Mon WKLY AVG	Req Mon DAILY MX 15 - deg F	24/01 - Hourly	IT - Immersion Stabilization
	Value NOD!	NODE	C - No	C - No Discharge C - No Discharge	C - No Discharge		
59850 Flow in conduit or thru treatment plant 1 - Effluent Gross 0	Sample Sample 1. Effluent Gross 0 Pormit Reg	Reg Mon MO AVG	Req Mon DAILY MX 03 - MGD			01/30 - Monthly N	MS - MEASRD
	Value NOD!	C - No Discharge	C - No Discharge				

If a parameter row does not contain any values for the Sample nor Effluent Trading, then none of the following fields will be submitted for that row. Units, Number of Excursions, Frequency of Analysis, and Sample Type Edit Check Errors Submission Note

Size

1080009.0

Туре

рđ

No errors.

Comments

Attachments

Name

JAYJANNEY 21BlackandDeckerWWTP05.pdf BTR HAMPSTEAD, LLC. Report Last Saved By User:

Report Last Signed By Date/Time:

Name: E-Mail:

Jay Janney jjann@menv.com 2021-06-24 10:51 (Time Zone: -04:00)

Name: E-Mail: Date/Time:

Jay Janney JAYJANNEY

jjann@menv.com 2021-06-24 11:20 (Time Zone: -04:00)

Record
of
Copy
SMR

Permit						
Permit #:	MD0001881	Permittee:	BTR HAMPSTEAD, LLC.	Facility:	BTR HAMPSTEAD, LLC.	
Major:	No	Permittee Address:	626 HANOVER PIKE CARROLL COUNTY HAWRSTEAD, MD 21074	Facility Location:	626 HANOVER PIKE HAMPSTEAD, MD 21074	
Permitted Feature:	101 External Outfall	Discharge:	101-A2 16-DP-0022			
Report Dates & Status						
Monitoring Period:	From 05/01/21 to 05/31/21	DMR Due Date:	07/28/21	Status:	NetDMR Validated	
Considerations for Form Completion	86					
Principal Executive Officer						
First Name:		Title:		Telephone:		
Last Name:						
No Data Indicator (NODI)						
Form NODI:	I					
Parameter	Montoring Location Season # Param. NODI	Quantity or Loading		Quanty or concentration	# of Ex. Frequency of Analysis. Sample 1, re-	or i, or
Cede		Qualifier 1 Value 1 Qualifier 2	er 2 Voice 2 Units Quantier 1 Vance 1 Quantier 2	and Value 2 Austrier 3 values	7.0 to	
50050 Flow in conduit or thou treatment plant 1. Filluent Gross	nent plant 1. Effluent Gross 0	Sample Permit Reg. Reg Mon MO AVG	Req Mon DAILY MX 07 - gal/d		01/07 - Weekly MS - ME	MS - MEASRD
		Value NOD! C - No Discharge	C - No Discharge			
51040 F roll	1 - Effuent Gross D	Santpie Pormit Reg.	=>	126.0 MX WK AV 30.	30 - MPN/100mL 01/07 - Weekly GR - GRAB	SRAB
		Value NOBI		C - No Discharge		

If a parameter row does not contain any values for the Sample nor Effluent Trading, then none of the following fields will be submitted for that row: Units, Number of Excursions, Frequency of Analysis, and Sample Type. Edit Check Errors Submission Note

Size

1080009.0

Type

pdf

No errors.

No errors. Comments Attachments

2!BlackandDeckerWWTP05.pdf

Report Last Saved By
BTR HAMPSTEAD.LLC.
User:
User:
Janue:
Janue:
Janney
E-Mail:
Date/Time:
2021-06-24 10:52 (Time Zone: -04:00)

Jay Janney jjann@menv.com 2021-06-24 11:20 (Time Zone:-04:00)

JAYJANNEY

Report Last Signed By

User:

Name: E-Mail: Date/Time:

	MD0001881		Permittee:	ittee:	BTR HAMPSTEAD, LLC.	Facility:	BTR HAMPSTEAD, LLC.	AD, LLC.	
	N _O		Perm	Permittee Address:	626 HANOVER PIKE CARROLL COUNTY HAMPSTEAD, MD 21074	Facility Location:	626 HANOVER PIKE HAMPSTEAD, MD 21074	PIKE AD 21074	
	102 External Outfall		Discharge	arge:	102-A4 16-DP-0022				
Report Dates & Status Monitoring Period: Considerations for Form Completion	From 05/01/21 to 05/31/21		DWR	DMR Due Date:	07/28/21	Status:	NetDMR Validated	per	
Principal Executive Officer First Name: Last Name:			Title:			Telephone:			er er er
Form NOD!: Parameter Code Name	 Montoring Location	Sesson Param. # N∩UI	Qualifier	Quantity or Loading frer Vatue 1 Guantier	ng Value? Units Qualifor Value i	Obalify or Concentration Obalify Value? Quadities	Value 3 Brits	# of Frequency of Analyses Sample Typo	sample Type
00300 Oxygen, dissolved [DO]	1 - Effluent Gross	1	Sample Permit Reg. Value NOD:		>= S.0 INST MIN C - No Discharge		19 - mg/L	02/01 - Twice Per Day	CA-CALCTD
00310 BOD, 5-day, 20 deg. C	1 - Effuent Gross		Sample Permit c= Req. Value NOD:	225.0 MX WK AV C - No Discharge	26 - Ib/d	<= 45.0 MX WK AV C - No Discharge	19 - mg/L	02/07 - Twice Every Week	CA - CALCTD
00310 BOD, 5-day, 20 deg. C	EG - Effluent Gross	1	Sample Permit <= Req. Value NOD ^a	150.0 MX MO AV C - No Discharge	78 - Ibrd	c = 300 MX MO AV C - No Discharge	19 - mg/L	01/30 - Monthiy	CA - CALCTD
	1 - Effluent Gross	1	Sample Purmit Req. Value NOD:		>= 6.5 MINIMUM C. No Discharge	4.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	8.5 MAXIMUM 12 - SU C - No Discharge	02/01 - Twice Per Day	CA - CALCTD
00530 Solids, total suspended	1 - Effluent Gross	- 0	Sampir- Pernil <= Keq Value MODi	1130 MX WK AV C - No Discharge	26 - Ibrid	c= 230 MX WK AV C - No Discharge	19 - ng/L	02/07 - Twice Every Week	CA-CALCTD
00530 Solids, total suspended	1 - Effluent Gross		Sampte Permit Req. Velue NODs	e võ	Reg Mon MO TOTAL 75 - Ibimo C - No Discharge			01/30 - Monthly	CA - CALCTD
00550 Solids, total suspended	1 - Effluent Gross		Sample Permit Req. Value NOD:	<= 273 C C D	27397.0 CUM TOTL 50 - lbýr C - No Dscharge			01/30 - Manthiy	CA - CALGTD
00530 Solids, total suspended	EG - Effuent Gross	. 0	Sample Permit c= Req Value NOD:	75.0 MX MO AV C - No Discharge	26 - Ibid	<= 150 MX MO AV C - No Discharge	19 - mg/L	01/30 - Monthly	CA-CALCTD
00600 Nitrogen, total [as N]	1 - Effluent Gross	;	Saniple Permit Req.			Req Mon MO AVG	19 - mg/L	02/07 - Twice Every Week	CA-CALCTD

DIMR Copy of Record

COCKOO Mitrogen, total se M	Req Mon MO TOTAL 76 - Ibmo	01/30 - Monthly CA	
Viller NOD			CA-CALCTD
1 - Effuent Gross 2 -	Discharge		
1 - Eifluent Gross	Req Mon CLM TOTL S0 - lblyr C - No Dscharge	01/3 0 - Mon thly CA	CA-CALGTD
The Fifthert Gross	Req Mon MO AVG 19 - mg/L C - No Discharge	02/07 - Twice Every C.A. Week	CA-CALCTD
The Fifthent Adjusted	28-lbid <= 4.4 MX DA AV 19- mg/L C · No Discharge	02.07 - Twice Every CA Week	CA - CALCTD
1 - Effluent Grass	26 - Ibid <= 1.3 MX MO AV 19 - mg/L C - No Discharge	01/30 - Monthly CA	CA - CALCTD
1 - Effuent Grass 0	Req Mon MO AVG 19 - mg/L C - No Discharge	02/07 - Twice Every CA Week	CA-CALCTD
Sinnoir Sinnoir	28 - Ibid <= 0.45 MX WK AV (9 - mg/L C - No Discharge	02/07 - Twice Every CA Week	CA - CALCTD
1 - Effuent Gross 2	Req Man MO TOTAL 78 - Ibimo C - No Discharge	01/30 - Monthly CA	CA-CALCTD
EG - Effluent Gross 0 – Req Req Value NOD! Sample Red Sample Red Sample Red Sample Red Sample Red Sample Perfect Perfect Perfect Red Sample Sample Perfect Red Sample Sam	548.0 CUM TOTL SO lbyr C · No Discharge	01/30 - Monthly CA	CA - CALCTD
1 - Effluent Gross 0	28-loid <= 0.3 MX MO AV (9-mg/L C-No Discharige	01/30 - Monthly CA	CA - CALCTD
	Red Mon MO AVG 19 - mg/L C - No Discharge	02/07 - Twice Every CA Week	CA-CALCTD
Req Mon MO AVG C · No Discharge	DDW - 00 - MGD	99/99 - Conlinuous RC	RF.
Sample Permt Permt 1-Effluent Grass 0 Req	C - NO DISCHARGE DISCHARGE	01/07 - Weekly GR	GR - GRAB
Sample	- 08		

Record
οţ
Copy
JWIR

Permit										
Permit #:	MD0001881		Permittee:	.ee:	BTR HAMPSTEAD, LLC.		Facility:	BTR HAMPSTEAD, LLC.	TEAD, LLC.	
Major:	No		Permit	Permittee Address:	626 HANOVER PIKE CARROLL COUNTY HAMPSTEAD, MD 21074		Facility Location:	626 HANOVER PIKE HAMPSTEAD, MD 21074	ER PIKE 0, MD 21074	
Permitted Feature:	001 External Outfall		Discharge:	rge:	001.A1 16-DP-0022					
Report Dates & Status										
Monitoring Period:	From 06/01/21 to 06/30/21	23	DMRD	DMR Due Date:	07/28/21		Status:	NetDMR Validated	dated	
Considerations for Form Completion										
Principal Executive Officer										
First Name:			Title:				Telephone:			
Last Name:										
No Data Indicator (NODI)			-							
Form NODI:	1									
Paren	Monitoring Locati	Monitoring Location Season # Param. NODI		1	ling		ity or Concentra	:	\$ of En. Frequency of Analysis Sample Type	s Sanple Type
Code Name 00310 BOD, 5-day, 20 deq. C	1 - Effluent Gross	0	Sample Sermit Req.	Qualifier 1 Value 1 Qua	Quainter & Value & Units Grishmer i Value i	Value 1 Quanter 2	erz vaniez dualmerz = <=	er 2 Value 3 Juntes 3.0 19 mg/L 15.0 DAILY MX 19 - mg/L ₀	01/30 - Monthly 01/30 - Monthly	GR - GRAB GR - GRAB
			Value NODI					- 1		
00400 PH	1 - Effluent Gross	- 0 9	Sample Permit Reg. Value NODI		5 K	7.9 6.5 MINIMUM	N V	8.4 12 - SU 8.5 MAXIMUM 12 - SU ₀	02/07 - Twice Every Week GR - GRAB 02/07 - Twice Every Week GR - GRAB	K GR - GRAB
			Samole				8.0	8 G 19 - mail	01/30 - Monthly	GR . GRAB
00530 Solids, total suspended	1 - Effluent Gross	1 0 9	Value NOOI			, »	MX MO AV	DAILY MX	01/30 - Monthly	GR - GRAB
00556 Oil & Grease	1 - Effluent Gross	. 0	Sampre Permit Req Value NODI			и ў	0.0 10.0 MX MO AV <=	0.0 15.0 DAILY MX 19 - mg/L 0	01/30 - Monthly 01/30 - Monthly	GR - GRAB GR - GRAB
00665 Phosphorus, total [as P]	1 - Effuent Gross	0	Sample Permit Req Value NOD:			H V	0,0 0.3 MX MO AV	19 - mg/L 19 - mg/L ₀	01/30 - Monthiy 01/30 - Monthiy	08 - COMP-8 08 - COMP-8
			Samuel	0.1203	0.46R 03 - MGD				01/30 - Monthly	MS - MEASED
50050 Flow, in conduit or thru treatment plant 1 - Effluent Gross	nt plant 1 - Effluent Gros	- 0	Permit Req	Req Mon MO AVG	Req Mon DAILY MX 03 - MGD	:		0	01/30 - Monthly	MS - MEASRD
50060 Chlorine, total residual	1 - Effluent Gross	- 0 :	Sample Permit Req. Value NODI			# ^K	0.0 11.0 MX MO AV <=	0,0 28 - ug/L 19,0 DAILY MX 28 - ug/L ₀	01/30 - Monthly 01/30 - Monthly	GR - GRAB GR - GRAB
Submission Note									P WINDOW	
If a parameter row does not contain any values for the Sample nor Effluent Trading, then none of the following fields will be submitted for that row: Units, Number of Excursions, Frequency of Analysis, and Sample Type.	values for the Sample no	Effluent Trading	, then none of the fol	owing fields will be submit	ted for that row: Units, Number of Excu	rsions, Frequency o	f Analysis, and Sample	Туре.		
No errors.										
Comments										
Attachments										
			Name				Турс		Size	
21BlackandDeckerWWTP06.pdf						Jpd		1118909.0		
Report Last Saved By										
BTR HAMPSTEAD,LLC.										
User:	JAY	JAYJANNEY								
Name:	Jay	Jay Janney								
E-Mail:	Jjanr	jjann@menv.com	i							
Date/Time:	707	-07-19 11:58 (2021-07-19 11:58 (Time Zone: -04:00)							

Record
ō
Copy
200

Permit #: MD						
	MD0001881	Permittee:	BTR HAMPSTEAD, LLC.	Facility:	BTR HAMPSTEAD, LLC.	
Major: No		Permittee Address:	626 HANOVER PIKE CARROLL COUNTY HAMPSTEAD, MD 21074	Facility Location:	626 HANOVER PIKE HAMPSTEAD, MD 21074	
Permitted Feature: 001 Exte	001 External Outfall	Discharge:	001-A5 PROPOSED			
Report Dates & Status						
Monitoring Period: Fro	From 06/01/21 to 06/30/21	DMR Due Date:	07/28/21	Status:	NetDMR Validated	
Considerations for Form Completion						
Principal Executive Officer						
First Name:		Title:		Telephone:		
Last Name:						
No Data Indicator (NODI)						
Form NODI:						
Parameter	Monitoring Location Season # Param. NOD!	Quantity or Loading	Count	Guality or Concentration	# of Ex Frequency of Anniysis	adiki i idine 5
Code Name		Qualifier 1 Value 1 Qualifier 2	Value 2 Units Qualifier 1 Value 1 Qualifier 2	Varue 2 Qualifier 3 Value 3	Unite	
	<i>S</i>	Sample				
00011 Temperature, water deg. fahrenheit	1 - Effluent Gross 0 Per	Pernit Reg	Req Mon DAILY AV Re	Req Mon WKLY AVG Req Mon DALLY MX 15 - deg F	15 - deg F 24/01 - Hourly	IT - Immersion Stabilization
	lr V	Varie NOD!	C - No Discharge	C - No Discharge C - No Discharge		
50050 Flow, in conduit or thru treatment plant 1 - Effluent Gross 0	1	Permit Req Req Mon MO AVG Req Mon	Req Mon DAILY MX 03 - MGD		01/30 - Manthly	MS - MEASRD
		Value NOD! C - No Discharge C - No	C - No Discharge			

If a parameter row does not contain any values for the Sample nor Effluent Trading, then none of the following fields will be submitted for that row. Units, Number of Excursions, Frequency of Analysis, and Sample Type. Submission Note

Size

1118909.0

Type

jpd

No errors.

Comments

Attachments

JAYJANNEY 21BlackandDeckerWWTP06.pdf BTR HAMPSTEAD,LLC. Report Last Saved By User:

Name

JAYJANNEY

Jay Janney jjann@menv.com 2021-07-19 11:58 (Time Zone: -04:00)

Report Last Signed By User:

Date/Time: E-Mail: Name:

Name: E-Mail: Date/Time:

Jay Janney jjann@menv.com 2021-07-19 13:22 (Time Zone: -04:00)

Docord	2
10	5
300	5
OWE	2

Permit								
Permit #:	MD0001881	Permittee:	BTR HAMPSTEAD,LLC.	AD,LLC.	Facility:	BTR HAMPSTEAD, LLC.	LLC.	
Major:	No.	Permittee Address:	: 626 HANOVER PIKE CARROLL COUNTY HAMPSTEAD, MD 21074	PIKE JNTY MD 21074	Facility Location:	626 HANOVER PIKE HAMPSTEAD, MD 21074	E 21074	
Permitted Feature:	101 External Ouffall	Discharge:	101-A2 16-DP-0022					
Report Dates & Status		-						
Monitoring Period:	From 06/01/21 to 06/30/21	DMR Due Date:	07/28/21		Status:	NetDMR Validated		
Considerations for Form Completion	stion							
Principal Executive Officer								
First Name:		Title:			Telephone:			
Last Name:								
No Data Indicator (NODI)								
Form NODI:	1							
Parameter	Monitoring Location Season # Phram, NODi		Quantity or Loading		Quality or Concentration	# 5 (5x fr	# of Ex. Frequency of Analysis Sample Ty; 3	Sample Typics
Code		Qualifier	Value 1 Qualifier 2 Value 2	Units Cualifier 1 Value 1 Ouzilfior 2	Value 2 Gualdini a Value a	unds.		
	ć	Sample Pernit Red. Red Mon	Reg Mon MO AVG Reg Mon DAILY MX 07 - 93/d	b//so - 70		10	01/07 - Weekly	MS - MEASRD
SUUSU FIOW, IN CONDUIT OF THE TREATMENT PLANT 1 - EMILIENT GROSS	1		an.	,				
		Sample Permit Ren		n	126 0 MX WK AV	30 - MPN/100ml	01/07 - Weekly	GR - GRAB
51040 E. coli	1 - Effluent Gross 0 v	V HUE NOO!			9			
					of in the second of			

If a parameter row does not contain any values for the Sample nor Effluent Tading, then none of the following fields will be submitted for that row. Units, Number of Excursions, Frequency of Analysis, and Sample Type. Submission Note

Edit Check Errors

No errors.

Comments

Attachments

Name JAYJANNEY 21BlackandDeckerWWTP06.pdf BTR HAMPSTEAD,LLC. Report Last Saved By User:

Size

1118909.0

Туре

фd

JAYJANNEY Report Last Signed By

Date/Time:

Name: E-Mail:

jjann@menv.com 2021-07-19 11:58 (Time Zone: -04:00)

Jay Janney

Jay Janney Name: E-Mail: Date/Time;

jjann@menv.com 2021-07-19 13:22 (Time Zone: -04:00)

Record
of O
Copy
OWR

Permit Permit #: Major:	M D0001881 No	Permittee: Permitee Address:	BTR HAMPSTEAD,LLC. 626 HANOVER PIKE CARROLL COUNTY HAMPSTEAD, MD 71074	Facility: Facility Location:	BTR HAMPSTEAD, LLC. 626 HANOVER PIKE HAMPSTEAD, MD 21074
Permitted Feature:	102 External Ouffall	Discharge:	1 02.A4 16-DP-0022	-	
Report Dates & Status Wonitoring Period: Considerations for Form Completion	From 06/01/21 to 06/30/21	DMR Due Date:	07/28/21	Status:	NetDMR Validated
Principal Executive Officer First Name: Last Name: No Data Indicator (NOD!) Form NOT!	,	Title:		Telephone:	
Parameter Code Namo	Moutoring Location Season Param	Gualifer Value 1 Quarter Vi	iding Vatue 2 Units Quarifier Vuitte 1 1	Guality of Concentration Gualities Value 2 Suichler Value 3 2	# of Frequency of Analysis Scripes sites.
00300 Oxygen, dissolved [DO]	1 - Effluent Gross 0	Sampe Permi Red Vaive NOD!	>= S.O. INST MIN C. No Discharge		19 - mg/L 0201 - Twice Per Day CA - CALCTD
00310 BOD, 5-day, 20 deg. C	1 - Effluent Gross 0	Sample Parmt <= 225.0 MX WK AV Req <- C-No Value NOD' Discharge	26 - Ipdd	450 MX WK AV C. No Discharge	19 - mg/L (2007 - Twine Every C.ACALCTD Week
00310 BOD, 5-day, 20 deg. C	EG - Effuent Gross 0	Sample Permit = 150.0 WX MO AV Rec. C. NO Value NOU Discharge	26 - Ibid	c= 300 MX MO AV C. No Discharge	19 - mg/L 01/30 - Monthity CA - CALCTD
Hd 00F00	1 - Effluent Gross 0	Sample Permit Req. Yalue NOD?	>= 6.5 MINIMUM C. No Discharge	c= 8.5 MAXIMUM C - No Discharge	12 - SU 0201 - Twice Per Day CA - CALCTD
00530 Solids, total suspended	1 - Effluent Gross 0	Sample Petral <= 1130 MX WK AV Keq C-No Value NOP Oscharge	26 - Ib/d	23.0 MX WK AV C. No Discharge	19 - mg/L C2007 - Twice Every CA - CALCTD Week
00530 Solids, total suspended	1 - Effluent Gross 1		Rag Mon MO TOTAL 76 - Ibrno C - No Discharge		01/39 - Mortiniy CA - CALCTD
00530 Solids, total suspended	1 - Effluent Gross 2	Sampo Permu Req. Value NUE	27397.0 CUM TOTL 50 - lbyr C - No Discharge		01/30 - Montely CA - CALCTD
00530 Solids, total suspended	EG - Effuent Gross 0	Sumple Parint <= 75.0 MX MO AV Keq. C-No Value NOP! Discharge	26 - lbid	15 0 MX MO AV C - No Discharge	19 - mg/L 01/30 - Monthly CA - CALCTD
00600 Nitrogen, total [as N]	1 - Effuent Gross 0	Sampue Permit Req		Req Mon MO AVG	19 - mg/L 0207 - Twice Every CA - CALCTD Week

			Value NOG:			C - No Discharge			
00800 Nitrogen, total [as N]	1 - Effluent Gross	1	Sample Permit Req		Req Mon MO TOTAL 76 - lb/mo			01/30 - Monthly	CA - CALCTD
To any transfer to the state of					C - No Discharge				
00600 Nitropen total (as N)	1 - Effluent Gross	,	Sømpre Pormit Reg.	C	Req Mon CUM TOTL 50 - Ib/yr			01/30 - Monthly	CA-CALCTD
			Value NOD!		C - No Discharge				
			Sample Permit Rep.			Req Mon MO AVG	19 - mg/L	02/07 - Twice Every Week	CA-CALCTD
ococo Nitrogen, organic total jas NJ	2000		Value NOD!			C - No Discharge			
111 04500	4 C.		Sample Permit <= Req.	22.0 MX DA AV	28 - Ib/d	<= 44 MX DA AV	19 - mg/L	02/07 - Twice Every Week	CA-CALCTD
00010 Nitrogen, ammonia total (as Nj	2000		Value NOD:	C - No Discharge		C - No Discharge			
14	EA - Effluent Adjusted		Sample Permit <= Req.		26 - Ib/d	<=> 1.3 MX MO AV	19 - mg/L	01/30 - Monthly	CA - CALCTD
oco io nitrogen, ammonia total jas ivj	Value)	Value NODI	C - No Discharge		C - No Discharge			
ODS30 Mirrita a Mitrata total fac MI	1 - Effluent Groce		Sample Permit Req.			Req Mon MD AVG	19 - mg/L	02/07 - Twice Every Week	CA-CALCTD
ממסס אוונגופ רואוומוב ומאו (מס א)			Value NOD!			C - No Discharge			
0000 Bhasan ann hann 10001	T. C.		Saniple Permit <= Req	2.3 MX WK AV	26 · Ib/d	<= 0.45 MX WK AV	19 - ing/L	02/07 - Twice Every Week	CA-CALCTD
occess rituspitetts, total jas ri			Value NODI	C - No Discharge		C - No Discharge			
00268 absorberus total fre Bi	± 200 € 1		Sample Permit Req.		Req Mon MO TOTAL 76 - Ibmo	And I repair to the second sec		01/30 - Monthly	CA-CALCTD
ooooo rnaspiorus, total (as F)	Section Cooper	-	Value NOD		C - No Discharge				
10665 Phoenhorus total [as D]	1 - Effuent Gross		Sample Permit Req.	. "	548.0 CUM TOTL S0 - Ibyr			01/30 - Monthly	CA-CALCTD
			Jaine NOD'		C - No Discharge				
14	95		Sample Permit <= Req	1.5 MX MO AV	26 - Ibid	<= 0.3 MX MO AV	19 - mg/L	01/30 - Monthly	CA - CALCTD
UDGGS Priosphorus, total [as P])	Value NODI	C - No Discharge		C - No Discharge			
04175 Phoenhate ortho (as P)	1 - Effluent Gross	- c	Sample Permit Req.			Req Mon MO AVG	19 - mg/L	02/07 - Twice Every Week	CA.CALCTD
Con John Con			Value NOD!			C - No Discharge			
50050 Flow, in conduit or thru treatment	1. Effluent Gross	- I	Sample Permit Reg.	Req Mon MO AVG	Req Mon DAILY MX 03 - MGD			99/99 - Continuous	RF.
plant			Value VODI	C - No Discharge	C - No Discharge				
51040 E. coli	1 - Effluent Gross	0	Sample Permit Req			<= 60.0 MO MAX	30 - MPN/100mL	01/07 - Weekly	GR - GRAB
			Value NOD			C - No Discharge			
- - -			Sample Permit		- 08				

82220 Flow, total	1 - Effluent Gross	0 - Req	Reg Mon MO TOTAL Mgalimo C - No Discharge			01/30 - Monthly GA - CALCTD	
Submission Note If a parameter row does not contain any Edit Check Errors No errors. Comments	y values for the Sample nor Effluent	Submission Note If a parameter row does not contain any values for the Sample nor Effluent Trading, then none of the following fields will Edit Check Errors No errors. Comments	s will be submitted for that row. Units, Number of Excu	be submitted for that row. Units, Number of Excursions, Frequency of Analysis, and Sample Type.			3-33:04.0 [
Attachments							uğu, etilik ili Türkleriyi
		Name		Туре		Sizt	give De
21BlackandDeckerWWTP06.pdf Report Last Saved By				bd	1118909.0		1 24
BTR HAMPSTEAD, LLC.							
User:	JAYJANNEY	∠NE√					(\$ \).
Name:	Jay Janney	Jay Janney					2.7.
L-vyan. Date/Time:	202107.	2021-07-19 11:58 (Time Zone: -04:00)					17 5 6 14 7 5 5 144 7 13
Report Last Signed By							e e en Lastité
User:	JAYJANNEY	«NEY					egy). Bears
Name: F-Mail:	Јау Јаппеу јјапп@телу	Jay Janney liann@menv.com					, see the
Date/Time:	2021-07	2021-07-19 13:22 (Time Zone: -04:00)					y ye ta H = sh

Permit												
Permit #:		MD0001881		Permittee:		BTR HAMPSTEAD,LLC.	TEAD, LLC.	Facility:	BT	BTR HAMPSTEAD, LLC.	o, LLC.	
Major:		S.		Permittee Address:	ió	626 HANOV CARROLL C HAMPSTEA	626 HANOVER PIKE CARROLL COUNTY HAMPSTEAD, MD 21074	Facility Location:	626 HA	626 HANOVER PIKE HAMPSTEAD, MD 21074	KE • 21074	
Permitt	Permitted Feature:	201 External Outfall		Discharge:		201-A3 16-DP-0022						
Report	Report Dates & Status											
Monitor	Monitoring Period:	From 04/01/21 to 06/30/21		DMR Due Date:		07/28/21		Status:	e X	NetDMR Validated		
Consid	Considerations for Form Completion											
Princip	Principal Executive Officer											
First Name:	ame:			Title:				Telephone:				
Last Name:	ıme:											
No Data	No Data Indicator (NODI)											
Form NODI:		ı										
	Parameter	Monitoring Lecation Season # Param, NODI	# Param, NODI		ð			50			# of Ex. Frequency of Analysis Sample Type	Sample Type
Code	Name			Samule Qualifier 1	Value 1 Qualifier 2	r 2 Value 2	Units Qualifier 1 Value 1 Qualifier 2 Vittle 2 = 0.0		Ocardist3 Value3 ≈ 00	Jr.:ts 28 - uo/l 01	01/90 - Ouaderly	8785.
34506	34506 1,1,1-Trichloroethane	1 - Effluent Gross 0	,	P.rmit Reg				Mon MO AVG	DAILY MX	0	01/90 - Quarterly	GR - GRAB
			1	Value NOD!								
						0.2972	03 - MGD			10	01/90 - Quarterly	MS - MEASRD
74076 Flow	Flow	1 - Effluent Gross 0	1	Permit Reg. Reg N	Req Mon MO AVG	Req Mon DAILY MX 03 - MGD	4X 03 - MGD			66 0	99/99 - Continuous	MS - MEASRD
	Application of the state of the			Tool look								
75030	75030 Organics tot numashlas (Mathod 524) 1. Efficient Grees	M 6341 1. Efficient Gross 0	L.	Sample Permit Req.			13	0.0 Reg Mon MO AVG <=	0:0 28 - ug/L 100:0 DAILY MX 28 - ug/L		01/90 - Quarterly 01/90 - Quarterly	GR - GRAB GR - GRAB
				Value NODI						-		
				Sample	!			0.0			01/90 - Quarterly	GR - GRAB
78389	78389 Tetrachloroethene	1 - Effluent Grass 0	1	Permit Req. Value NOD!				Req Mon MO AVG <=	5.0 DAILY MX 28	28 - ug/L 0 01.	01/30 - Monthly	GR - GRAB
				Sample				0.0	0.0	28 - ug/L 01.		GR - GRAB
78391	78391 Trichloroethene	1 - Effluent Gross 0		Permit Req.				Req Mon MO AVG <=	5.0 DAILY MX 28	28 - ug/L 0 01,	01/90 - Quarterly	GR - GRAB
			,	Value NOD!								
Submis	Submission Note											

If a parameter row does not contain any values for the Sample nor Effluent Trading, then none of the following fields will be submitted for that row. Units, Number of Excursions, Frequency of Analysis, and Sample Type.

Edit Check Errors

No errors.

Comments

Attachments

Name 21BlackandDeckerWWTP06.pdf 21BlackandDeckerWWTP05.pdf 21BlackandDeckerWWTP04.pdf Report Last Saved By

Size

Type

1118909.0 1080009.0 1119393.0

pdf pdf

BTR HAMPSTEAD, LLC.

User:

Date/Time: Name: E-Mail:

Jay Janney jjann@menv.com 2021-07-19 11:58 (Time Zone: -04:00)

JAYJANNEY

Report Last Signed By

JAYJANNEY Jay Janney

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax:717-944-1430 - mw.alsgobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DOD ELAP: PJ LA 74618 State Certifications: FL E871113, WA C999, MD 128, VA 460157, WV DW 9961-C, WV 343

April 16, 2027

Manyland Environmental Services-LF Data Maryland Environmental Services 259 Najoles Road Millersville, MD 21108

Certificate of Analysis

 Project Name:
 BTR HAMPSTEAD WWTP
 Workorder:
 3167745

 Purchase Order:
 W/WW
 Workorder ID:
 BTR HAMPSTEAD WWTP

Dear Maryland Services-LF Data:

Enclosed are the analytical results for samples received by the laboratory on Tuesday, April 6, 2021.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact George J Methlie (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in fuil, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

CC: Mr. William Herpel , Maryland Environmental Services-WWW Data , Ms. Amy Kline , Ms. Cheryl Griffin

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

George - Amethine

Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington - Calgary - Centre of Excelence - Edmonton - Fort NetMuray - Fort Sc. John - Grande Praine - London - Mississauga - Retinioned Hill - Saskatoon - Finunder Ray Vancouver Waterloo - Winnipsg - Yellowkinfe - United States. Curcimati - Everett - Fort Collins - Holland - Houston - Middletown - Salt Lake City - Spring City - York - Mexico: Monitoriey

Report ID: 3167745 - 4/16/2021

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax:717-944-1430 - www.alsgobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3167745 BTR HAMPSTEAD WWTP

Collected By	Collected by Client
Date Received	4/6/2021 19:30
Date Collected	4/6/2021 09:39
Matrix	Waste Water
Sample ID	BTR 001
Lab ID	3167745001

Page 2 of 8

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax:717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FLE 871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3167745 BTR HAMPSTEAD WWTP

Vater		Cntr
Waste Water		By
Matrix:		Prepared By Analyzed By Cntr
39	30	By
4/6/2021 09:	4/6/2021 19:	Prepared
Date Collected: 4/6/2021 09:39	Date Received: 4/6/2021 19:30	RDL Method
		RDL
		Units
		Flag
		Results Flag Units
3167745001	BTR 001	
Lab ID:	Sample ID: BTR 001	Parameters

Parameters	Results	Flag	Results Flag Units	RDL	RDL Method	Prepared By Analyzed By Cntr	Analyzed	By	Cntr
WET CHEMISTRY									
Biochemical Oxygen Demand	2.2	O	mg/L	2.0	S5210B-11		4/7/21 11:25 JXK A	ž	∢
Oil/Grease Hexane Extractable	Q Q	O	mg/L	3.9	EPA 1664B		4/8/21 06:25 MPP C	МРР	O
Phosphorus, Total	Q	O	mg/L	0.10	EPA 365.1	4/13/2116:06 ELD 4/14/2118:34 ELD	4/14/21 18:34	ELD	m
Total Suspended Solids	Q Z	O	√l/gm	5	S2540D-11		4/13/21 10:02 ZXW	ZXW	⋖

Deary Andthi George J Methlie

Project Coordinator

Report ID: 3167745 - 4/16/2021

Page 5 of 8

301 Fulling Will Road - Middletow n, PA 17057 - Phone 717-944-5541 - Fax;717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYSIS - PREP METHOD CROSS REFERENCE TABLE

Workorder: 3167745 BTR HAMPSTEAD WWTP

Lab ID	Sample ID	Analysis Method	Prep Method	Leachate Method
3167745001	BTR 001	EPA 1664B		
3167745001 BTR 001	BTR 001	EPA 365.1	EPA 365.1	
3167745001	BTR 001	S2540D-11		
3167745001	BTR 001	S5210B-11		

ALS Environmental Laboratory Locations Across North America

Canada: Busington - Calgary - Centre of Excellence - Edmonton - Fort McMuray - Fort St. John - Grande Prare - London - Mississauga - Richmont Hill - Saskationn - Fhunder Bay
Vancouver Waterloo - Winnipcg - Yelfowkinfe United States, Ciricmnati - Everett - Fort Callin - Holland - Houston - Middletown - Salit Lake City - Spring City - York - Mexico: Monitoney

Page 6 of 8

Report ID: 3167745 - 4/16/2021

ALS

	CH Maryland E	AIN C	F CUSTODY / S tal Service • 529 Najoles Rd.	AMPL • Millersville	E INI	FORN 08 • (410)	//ATIC	ON FORV 0 · FAX (410) 72
Lab#	AL	Client C			1	• •		Schele / 3167745
Citent N	ame/Phone/FAX Maryland Envi	ronmental	Service		Project	Name	BTR WV	VTP (Monthly)
Client A	ddress				Project	Number	593-938	4-1700
Invoice /	Address				Sample	e Turnaroi	und Time	KF 10/2017
Station No./ Sample ID	Station Location	Grab or Composite	Container Description/ Preservation Status	Matrix	# of Containers	Date	Time	Analyses Required/Comments
BTR1	BTR 001	Monthly Grab	1 Liter Plastic Unpreserved	ww	1	4/6/21	0939	BOD,TSS
BTR2		Monthly 8 hr Comp	250 ml Plastic H2S04	ώw	1	4/6/21	0939	ТР
BTR3		Monthly Grab	250 ml Glass H2S04	ww	1	તીલમ	C939	Oil and Grease
Transfer Transfer	red by:	Receive	I tret	Date 4-62/	Time / /0.40		ice? - Yes	
Transfer	1 fant	Receive	y Som 1 125	Date	Time /530			pres'd? - Yes/No — If No, explain nt/intact? - Yes/No
Sorry	ALI 71930	Receive	MAG.	Date 4/6/21	Time 1930	Initials:		Date:

301 Filling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax:717-944-1450 - www.alsgobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: PJ LA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

April 8, 2027

Maryland Environmental Services-LF Data Maryland Environmental Services 259 Najoles Road Millersville, MD 21108

Certificate of Analysis

Project Name: BTR HAMPSTEAD WWTP Workorder: 3167746
Purchase Order: W/WW Workorder ID: BTR HAMPSTEAD WWTP

Dear Maryland Services-LF Data:

Enclosed are the analytical results for samples received by the laboratory on Tuesday, April 6, 2021.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact George J Methlie (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

CC: Mr. William Herpel , Maryland Environmental Services-WWW Data , Ms. Cheryl Griffin

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Beorge J Methlie
Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington - Calgary - Centre of Excellence - Edmonton - Fort McMurray - Fort St. John - Grande Prairie - London - Mississauga - Richmond Hill - Saskatoon - Ehuader Bay Varx ouver Waterloo - Winnipey - Yellookinfe - United States: Cincinnati - Feerett - Fort Colfins - Holland - Houston - Middletown - Salt Lake City - Spring City - York - Moxico: Monterrey

Report ID: 3167746 - 4/8/2021

301 Fulling Mill Road - Middletown, PA 17057 - Phone 717-944-5541 - Fax 717-944-1430 - www.alsgobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3167746 BTR HAMPSTEAD WWTP

Collected By	Collected by Client	Collected by Client
Date Received Collec	6/2021 19:30 Collec	4/6/2021 19:30 Collec
Date Collected Date	/6/2021 09:34 4/6/2	1/6/2021 09:34 4/6/2
Matríx Dat	Water 4/6	Water 4/6
Sample ID	3TR201 Monthly Grab	3TR201 Quarterly Grab
Lab ID Sar	3167746001 BTI	3167746002 BTI

ALS Environmental Laboratory Locations Across North America
Canada: Bulington - Caigary - Centre of Excellence - Idmension - Forther Achturay - Forther Plane - Canado Plane - London - Mesteranga - Richmond Hill - Saskatoon - Fhunder Bay Vancouver Visterloos - Winnipeg - Yellookinle - United States: Canturate - Everett - Fort Collins - Holland - Houston - Middletown - Sait Lake City - Spring City - York Mexico: Monitorey

Report ID: 3167746 - 4/8/2021

Page 2 of 10

301 Fulling Will Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax:717-944-1430 - www.alsgobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3167746 BTR HAMPSTEAD WWTP

		Cntr
Water		By
Matrix:		Prepared By Analyzed By Cntr
34	30	By
4/6/2021 09::	4/6/2021 19:3	Prepared
Date Collected: 4/6/2021 09:34	Date Received: 4/6/2021 19:30	Method
		RDL N
		Units
		Flag
3167746001	BTR201 Monthly Grab	Results Flag Units
Lab (D:	Sample ID:	Parameters

							-				ŧ.
VOLATILE ORGANICS											
Tetrachloroethene	9	O	ng/L	0.50	EPA 624.1			4/8/21 00:08	VLM A	4	
1,1,1-Trichloroethane	Q	O	ng/L	0.50	EPA 624.1			4/8/21 00:08	ΛLM	4	
Trichloroethene	Q	O	ng/L	0.50	EPA 624.1			4/8/21 00:08	N V∟M	¥	
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	By	Analyzed	Ву	Cntr	
1,2-Dichloroethane-d4 (S)	112	O	%	72 - 142	EPA 624.1			4/8/21 00:08 VLM A	M]/	A	1
4-Bromofluorobenzene (S)	87.9	O	%	73 - 119	EPA 624.1			4/8/21 00:08	NΓM	∢	
Dibromofluoromethane (S)	96.1	O	%	74 - 132	EPA 624.1			4/8/21 00:08	Ν/	4	
Toluene-d8 (S)	83.3	O	%	75 - 133	EPA 624.1			4/8/21 00:08	N٦٨	4	

Wedner method Project Coordinator George J Methlie

Report ID: 3167746 - 4/8/2021

Page 5 of 10

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717.944-5541 - Fax:717-944-1430 - www.alsgobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DOD ELAP: PJLA 74618 State Certifications: FL E 871113, WA C999, MD 128, VA 460157, WV DW 9961-C, WV 343

ANALYTICAL RESULTS

Workorder: 3167746 BTR HAMPSTEAD WWTP

Lab ID:	3167746002				Date Collected: 4/6/2021 09:34	4/6/2021 09:3	4	Matrix:	Water	
Sample ID:	BTR201 Quarterly Grab				Date Received: 4/6/2021 19:30	4/6/2021 19:3	0			
Parameters	Results Flag Units	Flag	Units	RDL	RDL Method	Prepared	By	By Analyzed By Cntr	By	Cntr

Parameters	Results	Flag	Onits	RDL	Method	Prepared	<u></u>	Analyzed	â	Catr
VOLATILE ORGANICS										
Benzene	P	O	√Pn	0.50	EPA 624.1			4/8/21 00:32	NLM	Ą
Bromodichloromethane	9	ပ	ng/L	0.50	EPA 624.1			4/8/21 00:32	NLM	A
Bromoform	9	O	ng/L	0.50	EPA 624.1			4/8/21 00:32	NΓM	¥
Bromomethane	9	O	ng/L	1.0	EPA 624.1			4/8/21 00:32	NΓM	¥
Carbon Tetrachłoride	9	ပ	ug/L	1.0	EPA 624.1			4/8/21 00:32	NΓN	¥
Chlorobenzene	ᄝ	ပ	ng/L	0.50	EPA 624.1			4/8/21 00:32	NLM	٧
Chlorodibromomethane	R	ပ	ng/L	0.50	EPA 624.1			4/8/21 00:32	NΓM	∢
Chloroethane	용	ပ	ng/L	1.0	EPA 624.1			4/8/21 00:32	Ν.	A
Chloromethane	2	O	ng/L	1.0	EPA 624.1			4/8/21 00:32	NΓM	٧
1,2-Dichlorobenzene	9	ပ	ng/L	1.0	EPA 624.1			4/8/21 00:32	NΓM	٧
1,3-Dichlorobenzene	9	ပ	ng/L	1.0	EPA 624.1			4/8/21 00:32	NΓM	¥
1,4-Dichlorobenzene	9	ပ	ng/L	1.0	EPA 624.1			4/8/21 00:32	NΓ	A
1,1-Dichloroethane	Q	ပ	ug/L	0.50	EPA 624.1			4/8/21 00:32	NΓ	¥
1,2-Dichloroethane	R	ပ	ng/L	0.50	EPA 624.1			4/8/21 00:32	NΓM	A
1,1-Dichloroethene	Q	O	ug/L	0.50	EPA 624.1			4/8/21 00:32	NΠ	A
trans-1,2-Dichloroethene	9	ပ	ng/L	0.50	EPA 624.1			4/8/21 00:32	MΓM	A
1,2-Dichloropropane	9	O	ng/L	0.50	EPA 624.1			4/8/21 00:32	NΓM	A
cis-1,3-Dichloropropene	9	O	ug/L	0.50	EPA 624.1			4/8/21 00:32	ΛLM	¥
trans-1,3-Dichloropropene	9	O	ng/L	0.50	EPA 624.1			4/8/21 00:32	NΓΝ	¥
Ethylbenzene	9	ပ	ng/L	0.50	EPA 624.1			4/8/21 00:32	Μ7	¥
Methylene Chloride	9	O	ng/L	1.0	EPA 624.1			4/8/21 00:32	Ν_/	∢
1,1,2,2-Tetrachloroethane	9	ပ	ng/L	0.50	EPA 624.1			4/8/21 00:32	NΓM	Ą
Tetrachloroethene	9	ပ	ng/L	0.50	EPA 624.1			4/8/21 00:32	∀ \	¥
Toluene	9	ပ	ng/L	0.50	EPA 624.1			4/8/21 00:32	NΓM	∢
1,1,1-Trichloroethane	9	O	ng/L	0.50	EPA 624.1			4/8/21 00:32	NΓM	Ą
1,1,2-Trichloroethane	9	O	ng/L	0.50	EPA 624.1			4/8/21 00:32	VΓM	¥
Trichloroethene	9	O	ng/L	0.50	EPA 624.1			4/8/21 00:32	NΓM	A
Trichlorofluoromethane	9	O	ng/L	0.50	EPA 624.1			4/8/21 00:32	NΓM	A
Vinyf Chloride	9	ပ	ng/L	0.50	EPA 624.1			4/8/21 00:32	W\\	∢
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	By	Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	111	O	%	72 - 142	EPA 624.1			4/8/21 00:32	۸LM	A
4-Bromofluorobenzene (S)	85.9	O	%	73 - 119	EPA 624.1			4/8/21 00:32	MΊ	∀
Dibromofluoromethane (S)	94.3	O	%	74 - 132	EPA 624.1			4/8/21 00:32	N N	∀
Toluene-d8 (S)	84.8	O	%	75 - 133	EPA 624.1			4/8/21 00:32	Mγ	∢

ALS Environmental Laboratory Locations Across North America

Canada: Builington - Calgary - Centre of Excellence - Formation - For McMurray - Fort Sc. John - Grande Prairie - London - Mississauga - Rethmend till - Saskatoon - Thunder Ray
Vancouver Waterloos - Winnipeg - Yellowkinke - United States: Circumati - Everett - Fort Collins - Holland - Houston - Middlerowin - Salt Lake City - Spring City - York - Mexico: Monitoriny

Page 6 of 10

Report ID: 3167746 - 4/8/2021

ALS

			F CUSTODY / Stal Service • 259 Najoles Rd.					
Laboratory _	ALS				Sampler			Schelle 3167746
Client Name	/Phone/FAX_Maryland Environm	ental Servi	ce		Project N	lame		BTR Hah
Client Addre	ss 259 Najoles Rd., Millersville,	MD 21108	410-729-8200		Business	Unit		593-9384-1700
Invoice Addr	ess				Sample 7	Turnaround	Time	Routine
Sample #	Sample /D	Grab or Composite	Container Description/ Preservation Status	Marrix	# c/ Containers	Date	lime	Analyses Required/Comments
BTR4	BTR201	Monthly Grab	40 ml Glass VOA Vial, HCL	ww	3	4/6/21	0934	1,1,1-Trichtorethane, PCE, TCE by 624 (Profite 653888, Line 7)
BTR5	BTR201	Quarterly Grab	40 ml Glass VOA Vial, HCL	ww	3	4/6/21	09361	Total Purgeable Organics by 624 (Profile 653888, Line 8)
<u></u>								
Transferred	by Dogwo & dw	Received	.) Kentre	9621	Time /	Sufficient ic	e? - Yes/N	
Transferred	J Pentr	Received Received	2 Dunt 10	Date Date	Time	Sample cor	ntainers pr	operly pres'd? - Yes/No If No, explain So Date: 5M

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax 717-944-1430 - ww.alsgobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJ LA 74618 State Certifications: FL E871113, WA C999, MD 128, VA 460157, WV DW 9961-C, WV 343

May 27, 2021

Mr. William Herpel Maryland Environmental Service 259 Najoles Road Millersville, MD 21108

Certificate of Analysis

Project Name: BTR HAMPSTEAD WWTP Workorder: 3175140
Purchase Order: W/WW Workorder ID: BTR HAMPSTEAD WWTP

Dear Mr. Herpel:

Enclosed are the analytical results for samples received by the laboratory on Tuesday, May 11, 2021.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact George J Methlie (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

CC: Maryland Environmental Services-WWW Data , Maryland Environmental Services-LF Data , Ms. Amy Kline , Ms. Cheryl Griffin

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

George J Methlie Project Coordinator

Wedner (notted

ALS Environmental Laboratory Locations Across North America

Canada: Burlington - Calgary - Centre of Excellence - Edmonton - Fort McMurray - Fort St., John - Grande Planne - Lendon - Shesissauga - Rchmond Hill - Saskatoon - Ehunder Ray Varrouver Waterloo - Winnipeg - Yellookinfe - United States: Curcimate - Tverett - Fort Collins - Holland - Houston - Middletown - Salt Lake City - Spring City - York - Moxico: Monterrey

Report ID: 3175140 - 5/27/2021

Page 1 of 10

AND ACCORDANGE OF THE STATE OF

301 Fulling Mill Road - Middletown, PA 17057 - Phone 717-941-5541 - Fax 717-944-1430 - www.akglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3175140 BTR HAMPSTEAD WWTP

Lab ID	Sample ID	Matrix	Date Collected	Date Received	Collected By
3175140001	BTR 001	Waste Water	5/11/2021 08:51	5/11/2021 17:10	Collected by Client
3175140002	BTR 001 Grab	Waste Water	5/11/2021 08:51	5/11/2021 17:10	Collected by Client

ALS Environmental Laboratory Locations Across North America
Canada: Burlington - Calgary - Centre of Excellence - Lonnonton - Fort McAurizy - Fort St. John - Grande Praire - London - Mississauga - Richmond Hill - Saskatoon - Thunder Bay Vancouver Warehoo - Winnipeg - Yellowkinle - United States: Circinnati - Everett - Fort Collins - Holland - Houson - Enddletown - Sait Lake City - Spring City - York Mexico: Monterrey

Report ID: 3175140 - 5/27/2021

Page 2 of 10

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsgobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DOD ELAP: PJLA 74618 State Certifications: FL E871113, WA C999, MD 128, VA 460157, WV DW 9961-C, WV 343

ANALYTICAL RESULTS

Workorder: 3175140 BTR HAMPSTEAD WWTP

Matrix: Waste Water	Prepared By Analyzed By Cntr	5/12/21 12:35 MXO A	
Date Collected: 5/11/2021 08:51 Date Received: 5/11/2021 17:10	Prepared By		
Date Collecte	RDL Method	S5210B-11	1
		/L 2.0	
	lag Un	C,1 mg/L	:
	Results Flag Units	3.1	
Lab ID: 3175140001 Sample ID: BTR 001	Parameters	WET CHEMISTRY Biochemical Oxygen	Demand

Deay - Another Project Coordinator George J Methlie

5/19/21 22:58 ELD 5/25/21 19:44 ELD B 5/17/21 14:33 ZXW A

EPA 365.1 S2540D-11

0.10

mg/L mg/L

00

Ω 6

Total Suspended Solids

ALS Environmental Laboratory Locations Across North America
Canada: Burlington - Calgary - Centre of Excellence - Lohnston - Fort McMurray - Fort St. John - Grande Praire - London - Mississauga - Brehmend Hill - Saskatoon - Thunder Bay
Vaircouver Waterloon - Winnipey - Yellovenide - United States, Circumatt - Everett - Fort Lodins - Hodand - Houston - Middletown - Salt Lake City - Spring City - York - Mexico: Moniteney

Report ID: 3175140 - 5/27/2021

Page 5 of 10

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax:717-944-1430 - www.alsgobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: PJLA 74618 State Certifications: FL E 871113 , WA C 999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3175140 BTR HAMPSTEAD WWTP

Lab ID: Sample ID:	3175140002 BTR 001 Grab					Date Collected: 5/11/2021 08:51 Date Received: 5/11/2021 17:10	5/11/2021 08:	:51	Matrix:	Waste Water	
arameters		Results Flag Units	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Analyzed By Cntr	

mg/L O 2 Oil/Grease Hexane Extractable WET CHEMISTRY

5/17/21 07:20 MPP A

EPA 1664B

3.9

Project Coordinator George J Methlie

Weary mother

ALS Environmental Laboratory Locations Across North America
Canada: Burlington - Calgary - Centre of Excellence - Edmonton - Fort McMurray - Fort Scande Praine - London - Mississauga - Berlimond Hill - Saskatoon - Flunder Hay
Vancouver Waterloo - Winnipeg - Yellowkinfe - United States, Circ matt - Everett - Fort Collins - Holland - Houston - Bult Lake City - Spring City - York - Mexico: Moniterroy

Page 6 of 10

Report ID: 3175140 - 5/27/2021

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax:717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3175140 BTR HAMPSTEAD WWTP

PARAMETER QUALIFIERS	ALIFIER	S		
Lab ID	#	Sample ID	Analytical Method	Analyte
3175140001		1 BTR 001	S5210B-11	Biochemical Oxygen Demand
The blank associat	ted with	The blank associated with this sample exceeded the 0.20 mg/L criteria from SM 5210B.	iteria from SM 5210B.	

ALS Environmental Laboratory Locations Across North America

Canada: Burlington - Calgary - Centre of Excellence - Lemonton - Fort NetMurray - Lord's, John - Grande Praire - London - Mississauga - Richmond Hill - Saskatoon - Fhunder Bay
Vancouver Waterloo - Winnipeg - Yellowkine - United States, Cuncinnati - Everett - Fort Collins - Holland - Houston - Meddletown - Salt Lake City - Spring City - York - Mexico. Monterrey

Page 7 of 10

Report ID: 3175140 - 5/27/2021

	þ	>
ſ	,	•
(Į	ì

Lab#_	AIG	Client C	ode		Sample	er Gar	re# <u> </u>	0.FAX (410) 3175140
Client Na	/ ame/Phone/FAX Maryland Er	vironmental	Service		Project	Name	BTR WV	VTP (Month),,
Client Ad	ddress				Project	Number	593-938	4-1700
Invoice /	Nddress				Sample	e Turnarou	und Time	KF 10/2017
Station No./ Sample ID	Station Location	Grab or Composite	Container Description/ Preservation Status	Matrix	# of Containers	Date	Time	Analyses Recuired/Comments
BTR1	BTR 001	Monthly Grab	1 Liter Plastic Unpreserved	ww	1	5/11/21	0821	BOD,TSS
BTR2		Monthly 8 hr Comp	250 ml Plastic H2S04	ww	1	5/11/21	0851	TP
BTR3		Monthly Grab	250 ml Glass H2S04	ww	1	5/11/21	0821	Oil and Grease
····								
Transfer	red by:	Receive	ed by: 10 f.	Date _ /	Time.		Coole	er Receipt Information (LAB USE ONLY)
Transfer	Sany today	Rezeive	d by Durt As	5-11-21 Date 5-11-31	1/60 Time 1450	Sample of Custody		s/No If No, temp.= pres'd? - Yes/No If No, explain ent/intact? - Yes/No
Transfer	rred by: As Sill 31 no	Receive		Date	Time 1710	Initials:	,	Date:

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax:717-944-1430 - ww.alsgobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJ LA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

May 13, 2021

Maryland Environmental Services-LF Data Maryland Environmental Services 259 Najoles Road Millersville, MD 21108

Certificate of Analysis

Project Name: BTR HAMPSTEAD WWTP Workorder: 3175141
Purchase Order: W/WW Workorder ID: BTR HAMPSTEAD WWTP

Dear Maryland Services-LF Data:

Enclosed are the analytical results for samples received by the laboratory on Tuesday, May 11, 2021.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact George J Methlie (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

CC: Mr. William Herpel , Maryland Environmental Services-WWWV Data , Ms. Amy Kline , Ms. Cheryl Griffin

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Beonge - Amethia

Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burington - Calgary - Centre of Excellence - Edmonton - Fort McMuray - Fort Sc. John - Grande Plaine - London - Mississauga - Refinond Hill - Saskatron - Thunder Bay Vancouver Waterloo - Winnipeg - Yellowkinfe - United States, Cincinnate - Levert - Fort Collins - Holland - Houston - Mattletosan - Salt Lake City - Spring City - York - Moxico Monterrey

Report ID: 3175141 - 5/13/2021

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax:717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: PJLA 74618 State Certifications: FL E 871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3175141 BTR HAMPSTEAD WWTP

		Cntr
Water		Ву
Matrix:		By Analyzed By Cntr
3:43	:10	By
5/11/2021 08	5/11/2021 17	Prepared
Date Collected: 5/11/2021 08:43	Date Received: 5/11/2021 17:10	RDL. Method
		RDI.
		Units
		Flag
		Results Flag Units
3175141001	BTR201	
Lab ID:	Sample ID:	Parameters

Parameters	Kesuits	Flag	Onits	RDL	Results Flag Units RDL Method	Prepared By	ρģ	Analyzed by Cntr	g	Cuit	
VOLATILE ORGANICS							<u>.</u>				
Tetrachloroethene	Ð	O	T/Bn	0.50	EPA 624.1			5/13/21 00:44 VLM A	۸LM	٧	
1,1,1-Trichtoroethane	Q.	O	ng/L	0.50	EPA 624.1			5/13/21 00:44 VLM	M_V	4	
Trichloroethene	9	O	ng/L	0.50	EPA 624.1			5/13/21 00:44 VLM	N V∟M	∢	
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	By	Analyzed By Cntr	By	Cntr	
1,2-Dichloroethane-d4 (S)	103	O	%	72 - 142	EPA 624.1			5/13/21 00:44 VLM A	۸LM	A	
4-Bromofluorobenzene (S)	101	O	%	73 - 119	EPA 624.1			5/13/21 00:44 VLM	NLM	∢	
Dibromofluoromethane (S)	101	O	%	74 - 132	EPA 624.1			5/13/21 00:44 VLM	N	∢	
Toluene-d8 (S)	100	C	%	75 - 133	EPA 624.1			5/13/21 00:44 VLM	NLM	∢	

Boay mother

Project Coordinator George J Methlie

ALS Environmental Laboratory Locations Across North America

Canada: Bullington Calgary - Centre of Excellence - Edmonton - Fort Nethuray - Fort St. John Grande Praire - London - Mississauga - Retimond Hill - Saskatoon - Thunder Bay Varrouver Waterloo - Winnepeg - Yellowkinfe - United States: Curcimate - Everett - Fort Collins - Hollstin - Houston - Middelcown - Suit Lake City - Spring City - York - Mexico: Moniterey

Page 5 of 8

Report ID: 3175141 - 5/13/2021

	CH	IAIN C	F CUSTODY / S	AMPI	E INF	ORM	ATIO	N FORM
	Maryland E	nvironmen	tal Service • 259 Najoles Rd. •	Millersvil.	e, MD 211	08 • (410) 7	29-8200	· FAX (410) 729
Laboratory	ALS				Sampler	Name (zanet	- Scheler 3175141
Clent Name/F	Phone/FAX Maryland Environm	ental Servi	ice		Project N	ame		BTR Hai
Client Address	s 259 Najoles Rd., Millersville,	MD 21108	410-729-8200		Business	Unit		593-9384-1700
Invoice Addre	ss				Sample 1	urnaround	Time	Routine
Sample #	Sample ID	Grabio: Composite	Container Description/ Preservation Status	Matrix	# of Containers	Date	Tithë	Analyses Required/Comments
BTR4	BTR201	Monthly Grab	40 ml Glass VOA Vial, HCL	ww	3	5/11/21	0843	1,1,1-Trichlorethane, PCE, TCE by 624 (Profile 653888, Line 7)
DTR6	STREE+	Crostally Orbit	48 1 SIDOO LOT VIDINTOL	***	•			
-								
Transferred by	9 Dangto ym	Received	J fush	Date 12	Time ///205	Sufficient is		r Receipt Information (LAB USE ONLY) lo Temp.=
Transferred by	1 Kigh	Regeived		Date 5-11-11	Time 1450	Sample co	ntainers pr	operly presid? - Yes/No If No. explain
Viny Dv-	y: Ms/ SIMI	Receive	Tby:	Dajie 571/24	Time (7)()	Init als:		Date:
/ _				1 15	, , , ,			

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax:717-944-1450 - www.alsgobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: PJLA 74618 State Certifications: FL E 871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

June 30, 2021

Maryland Environmental Services-LF Data Maryland Environmental Services 259 Najoles Road Millersville, MD 21108

Certificate of Analysis

 Project Name:
 BTR HAMPSTEAD WWTP
 Workorder:
 3179641

 Purchase Order:
 W/WW
 Workorder ID:
 BTR HAMPSTEAD WWTP

Dear Maryland Services-LF Data:

Enclosed are the analytical results for samples received by the laboratory on Wednesday, June 2, 2021.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact George J Methile (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

CC: Maryland Environmental Services-WWW Data , Ms. Amy Kline , Ms. Cheryl Griffin

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Bean Arthur George J Methlie

Project Coordinator

ALS Environmental Laboratory Locations Across North America

Vancouver Waterloo - Winnipeg - Yellowknife - United States, Cucimato - Everett - Fort Collins - Holland - Houston - Muddetown - Saft Lake Cuty - Spring City - York - Moxico, Monterrey Canada: Burlington - Calyary - Centre of Excellence - Edmonton - Fort McMurray - Fort St. John - Grande Prainc - London - Mississauga - Richmond Hill - Saskatoon - Thunder Ray

301 Fulling Mill Road - Middletown, PA 17057 - Phone 717-944-5541 - Fax:717-944-1430 - www.alsgobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113, WA C999, MD 128, VA 460157, WV DW 9961-C, WV 343

SAMPLE SUMMARY

Workorder: 3179641 BTR HAMPSTEAD WWTP

Collected By	Collected by Client
Date Received	6/2/2021 17:00
Date Collected	6/2/2021 09:12
Matrix	Waste Water
Sample ID	BTR 001
Lab ID	3179641001

Report ID: 3179641 - 6/30/2021

Page 2 of 9

301 Fulling Mill Road - Middletown, PA 17057 - Phone 717-944-5541 - Fax:717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3179641 BTR HAMPSTEAD WWTP

Lab ID:	3179641001				Date Collected: 6/2/2021 09:12	6/2/2021 09:1	2	Matrix:	Waste Water	/ater	
Sample ID:	BTR 001				Date Received: 6/2/2021 17:00	6/2/2021 17:0	0				
											ſ
Parameters	Result	Results Flag Units	Units	RDL	RDL Method	Prepared	B	Analyzed By Cntr	æ	Cntr	

Parameters	Results Flag Units	Flag	Units	RDL	RDL Method	Prepared By Analyzed By Cntr	Analyzed	By Cntr	
WET CHEMISTRY									
Biochemical Oxygen Demand	2.7	C,1	C,1 mg/L	2.0	S5210B-11		6/3/21 13:00 MXO A	MXO A	
Oil/Grease Hexane Extractable	Q	O	mg/L	4.0	EPA 1664B		6/7/21 06:50 MPP C	MPP C	
Phosphorus, Total	Q	ပ	mg/L	0.10	EPA 365.1	6/22/21 13:52 ELD	6/29/21 07:10 ELD	ELD B	
Total Suspended Solids	&	O	mg/L	2	S2540D-11		6/8/21 12:23	ZXW A	

Project Coordinator George J Methlie

Wedy - methin

ALS Environmental Laboratory Locations Across North America

Canada: Burlington - Calgary - Centre of Excellence - Edmonton - Fort McMurray - Fort Sc. John - Grande Prairie - London - Mississauga - Rethmond Hill - Saskatoon - Thunder Ray
Vancouver Waterloo - Winnipeg - Yellowkinfe United States: Cincinnati - Everett - Fort Collins - Holland - Houston - Middletown - Salt Lake Crty - Spring City - York Moxico: Monterery

Page 5 of 9

Report ID: 3179641 - 6/30/2021

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax:717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FLE 871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3179641 BTR HAMPSTEAD WWTP

PARAMETER QUALIFIERS	IALIFIER	SS		
Lab ID	#:	Sample ID	Analytical Method	Analyte
3179641001	-	BTR 001	S5210B-11	Biochemical Oxygen Demand
The blank associa	ated with	The blank associated with this sample exceeded the 0.20 mg/L criteria from SM 5210B.	riteria from SM 5210B.	

Report ID: 3179641 - 6/30/2021

Page 6 of 9

ALS

				OF CUSTODY / S tal Service • 529 Najoles Rd.					
Lab#_	A15		Client C			Sample			Scheller 1
Client N	ame/Phone/FA	X Maryland Env	ironmental	Service		Project	Name	BTR WV	VTP (Monthly)
Client A	ddress					Project	Number	593-938	4-1700
Invoice	Address					Sample	e Turnaroi	und Time	KF 10/2017
Station No./ Sample IQ		on Location	Grab or Composite	Centainer Description/ Preservation Status	Matrix	# of Containers	Date	Time	Analyses Required/Comments
BTR1	BTR 001		Monthly Grab	1 Liter Plastic Unpreserved	ww	1	9421	0912	BOD,TSS
BTR2			Monthly 8 hr Comp	250 ml Plastic H2S04	ww	1	लभग	0912	ТР
BTR3			Monthly Grab	250 ml Glass H2S04	ww	1	लुभग	419	Oil and Grease
Transfei	rred by:	+ Sdw.	Receive	ed by: I Pluster -	Date 6-2-2/	Time 10:45	Sufficient	Coole	er Receipt Information (LAB USE ONLY) s/No If No, temp.=
Transfei	rred by:	Pour	Receive	ed by: Harrison 6	Date	Time	Sample of	ontainers	pres'd? - Yes/No If No, explain
Transfe	rred by:	many)	Receive	ed by MGR Car	Date 2/27	Time	Initials:		Date. Q H 573

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax:717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DOD ELAP: PJLA 74618 State Certifications: FLE871113, WA C999, MD 128, VA 460157, WV DW 9961-C, WV 343

June 7, 2027

Maryland Environmental Services-LF Data Maryland Environmental Services 259 Najoles Road Millersville, MD 21108

Certificate of Analysis

Project Name: BTR HAMPSTEAD WWTP Workorder: 3179639
Purchase Order: W/WW Workorder ID: BTR HAMPSTEAD WWTP

Dear Maryland Services-LF Data:

Enclosed are the analytical results for samples received by the laboratory on Wednesday, June 2, 2021.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact George J Methile (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

CC: Mr. William Herpel , Maryland Environmental Services-WWW Data , Ms. Amy Kline , Ms. Cheryl Griffin

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Beary Anthre

Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington - Calgary - Centre of Excellence - Edmonton - Fort McMurray - Fort St. John - Grande Paine - London - Mississauga - Richmond Hill - Saskatson - Thunder Bay Vancouver Waterloo - Winnipeg - Yellowkinle - United States, Cintimate - Everett - Fort Collins - Holland - Houston - Middletown - Salt Lake City - Spring City - York - Moxico. Monitoney

Report ID: 3179639 - 6/7/2021

Pad

301 Fulling Mill Road - Middletown, PA 17057 - Phone 717-944-5541 - Fax:717-944-1430 - www.alsgobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DOD ELAP: PJLA 74618 State Certifications: FL E 871113, WA C999, MD 128, VA 460157, WV DW 9961-C, WV 343

SAMPLE SUMMARY

Workorder: 3179639 BTR HAMPSTEAD WWTP

Collected By	Collected by Client
Date Received	6/2/2021 17:00
Date Collected	6/2/2021 09:00
Matrix	Water
Sample ID	BTR201
Lab ID	3179639001

ALS Environmental Laboratory Locations Across North America
Canada: Burlington - Calgary - Centre of Excellence - Edmonton - Fort NetAurray - Fort St. John - Grande Plance - London - Mississauga - Richmond Hill - Saskatoon - Hunder Ray
Varicouver Wantpey - Yellowkinfe - United States, Cincinnat - Everett - Fort Collins - Holland - Houston - Middletown - Salt Lake City - Spring City - York - Mexico: Monteney

Report ID: 3179639 - 6/7/2021

Page 2 of 8

301 Fulling Mill Road - Middletown, PA 17057 - Phone 717-944-5541 - Fax: 717-944-1430 - www.alsgobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3179639 BTR HAMPSTEAD WWTP

Lab ID: Sample ID:	3179639001 BTR201					Date Collected: 6/2/2021 09:00 Date Received: 6/2/2021 17:00	6/2/2021 09:(8 8	Matrix: W	Water	
Parameters		Results Flag Units	Flag	Units	RDL	Method	Prepared By	Ву	Analyzed By Cntr	By	Cntr
VOLATILE ORGANICS	RGANICS										
Tetrachloroethene	ene	Q	O	ng/L	0.50	EPA 624.1			6/4/21 12:44	VLM	4
1,1,1-Trichloroethane	ethane	Q	O	ng/L	0.50	EPA 624.1			6/4/21 12:44	VLM	∢
Trichloroethene	Ф	Q	O	⊓/gn	0.50	EPA 624.1			6/4/21 12:44	M √ M	¥
Surrogate Recoveries	coveries	Results	Flag	Units	Limits	Method	Prepared	By	Analyzed	By Cntr	Cntr
1,2-Dichloroethane-d4 (S)	hane-d4 (S)	97.6	O	%	72 - 142	EPA 624.1			6/4/21 12:44 VLM	N_V	A
4-Bromofluorobenzene (S)	benzene (S)	93.7	O	%	73 - 119	EPA 624.1			6/4/21 12:44	M√ VLM	∢
Dibromofluoromethane (S)	methane (S)	92.3	O	%	74 - 132	EPA 624.1			6/4/21 12:44	VΓM	4
Toluene-d8 (S)		94.5	O	%	75 - 133	EPA 624.1			6/4/21 12:44	NΓM	٧

Deay- Another George J Methlie

Project Coordinator

ALS Environmental Laboratory Locations Across North America

Canada: Burlington - Calgary - Centre of Excellence - Edmonton - Fort McMurray - Fort St. John - Grande Praire - London - Mississauga - Richmond Hill - Saskattonn - Thunder Bay
Vancouver Waterloo - Winnipeg - Yellowkinle - United States, Circumatt - Everet - Fort Collins - Holland - Houston - Endellewen - Salt Lake City - Spring City - York Mexico: Monterrey

Report ID: 3179639 - 6/7/2021

Page 5 of 8

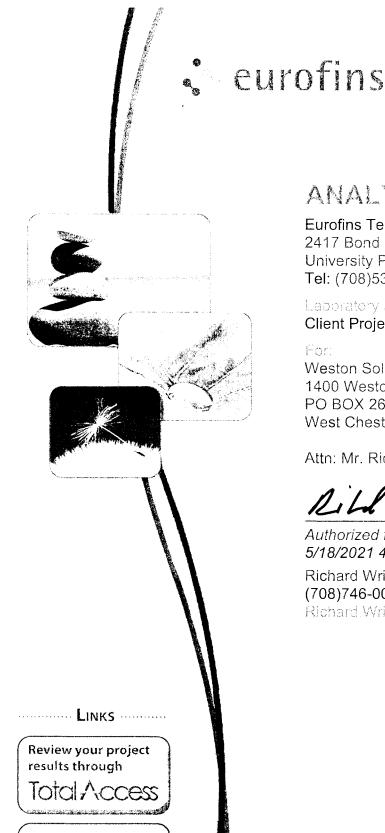
301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax:717-944-1430 - www.ahgobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DOD ELAP: PJLA 74618 State Certifications: FL E871113, WA C999, MD 128, VA 460157, WV DW 9961-C, WV 343

ANALYSIS - PREP METHOD CROSS REFERENCE TABLE

D WWTP	Analysis Method Prep Method Leachate Method	EPA 624.1
3179639 BTR HAMPSTEAD W	Sample ID	BTR201
Workorder: 31	Lab ID	3179639001

ALS Environmental Laboratory Locations Across North America


Canada: Burlington - Calgary - Centre of Excellence - Edmonton - Fort NetMunay - Fort St. John - Grande Praire - London - Mississauga - Richmond Hill - Saskatoon - Thunder Bay
Vancouver Waterloo - Winnipeg - Yellowkinle - United States: Circinnate - Everett - Fort Collins - Holland - Houston - Middetown - Salt Lake City - Spring City - York - Mexico: Monitorey

Page 6 of 8

Report ID: 3179639 - 6/7/2021

			OF CUSTODY / Stal Service • 259 Najoles Rd. •					
Laboratory					Sampler			# 5 Shells 3179639
Client Name/	Phone/FAX Maryland Environr	nental Serv	ice		Project N	lame		BTR Har
Client Addres	s 259 Najoles Rd., Millersville.	MD 21108	410-729-8200		Business	Unit		593-9384-1700
Invoice Addre	ess.				Sample 1	Turnaround	Time	Routine
Sample #	Sample (D	Grab or Composite	Container Description/ Preservation Status	Matrix	# of Containers	Date	Virre	Analyses Required/Comments
BTR4	BTR201	Monthly Grab	40 ml Glass VOA Viəl, HCL	ww	3	6/2/21	0900	1,1,1-Trichlorethane, PCE, TCE by 624 (Profile 653888, Line 7)
							İ	
Transferred b	Sommets and	Received	by J Rufin	Date 1022	Time 10:45	Sufficient is	ce? - Yes/N	
Transferred b	J. Prushy	Received	by: Haran	1 K/z	fime	Sample co	ntainers pr	operly presid? - Yes/No If No, explain
Transferred b	* Hokaro	Received	Mee 6	Date Li	Time	Initia's:		Date: 2 HS13

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job (O: 500-198719-1 Client Project/Site: Black and Decker

For:

Weston Solutions, Inc. 1400 Weston Way PO BOX 2653 West Chester, Pennsylvania 19380

Attn: Mr. Richard Merhar

RILL Why

Authorized for release by: 5/18/2021 4:12:07 PM

Richard Wright, Senior Project Manager (708)746-0045

Richard Wright@Eurofinset.com

Have a Question?

Ask-The

Visit us at:

<u>www.eurofinsus.com/Env</u>

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	7
Sample Summary	8
	9
	61
QC Association	62
Surrogate Summary	63
QC Sample Results	64
Chronicle	74
Certification Summary	78
Chain of Custody	79
Receipt Checklists	82

Case Narrative

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Job ID: 500-198719-1

Job ID: 500-198719-1

Laboratory: Eurofins TestAmerica, Chicago

Narrative

Job Narrative 500-198719-1

Receipt

The samples were received on 5/6/2021 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.9° C.

GC/MS VOA

Method 8260B: Acetone was detected in the following samples: RFW-1A (500-198719-1), RFW-1B (500-198719-2), RFW-2A (500-198719-3), RFW-7 (500-198719-10), RFW-12B (500-198719-13) and EW-2 (500-198719-16). The method blank associated with these samples was below the reporting limit for Acetone. Acetone is a known lab contaminant; therefore all low level detects for this compound could be suspected as lab contamination.

Method 8260B: The laboratory control sample (LCS) for 599042 recovered outside control limits for 2-Hexanone. This analyte was biased low in the LCS and was not detected in the associated samples; therefore, the data have been reported.RFW-1A (500-198719-1), RFW-1B (500-198719-2), RFW-2A (500-198719-3), RFW-2B (500-198719-4), RFW-3B (500-198719-5), RFW-6 (500-198719-9), RFW-7 (500-198719-10), RFW-12B (500-198719-13) and RFW-13 (500-198719-14)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Weston Solutions, Inc. Job ID: 500-198719-1 Project/Site: Black and Decker Client Sample ID: RFW-1A Lab Sample ID: 500-198719-1 Result Qualifier RL Analyte MDL Unit Dil Fac D Method Prep Type Acetone 6.8 J 10 1.7 ug/L 8260B Total/NA Client Sample ID: RFW-1B Lab Sample ID: 500-198719-2 Analyte Result Qualifier MDL Unit RL Dil Fac D Method Prep Type Acetone 4.5 J 10 1.7 ug/L 8260B Total/NA Client Sample ID: RFW-2A Lab Sample ID: 500-198719-3 Analyte Result Qualifier RΙ MDL Unit Dil Fac D Method Prep Type $\overline{2.3}$ \overline{J} Acetone 10 1.7 ug/L 8260B Total/NA Trichloroethene 0.19 J 0.50 0.16 ug/L 8260B Total/NA Client Sample ID: RFW-2B Lab Sample ID: 500-198719-4 Result Qualifier RL MDL Unit Dil Fac D Method Prep Type Trichloroethene 0.23 0.50 0.16 ug/L 1 8260B Total/NA Client Sample ID: RFW-3B Lab Sample ID: 500-198719-5 No Detections. Client Sample ID: RFW-4A Lab Sample ID: 500-198719-6 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type cis-1,2-Dichloroethene 0.57 J 1.0 0.41 ug/L 8260B Total/NA Chloroform 0.48 2.0 .1 0.37 ug/L 1 8260B Total/NA Trichloroethene 22 0.50 0.16 ug/L 1 8260B Total/NA Tetrachloroethene 11 1.0 0.37 ug/L 8260B Total/NA Client Sample ID: RFW-4B Lab Sample ID: 500-198719-7 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type cis-1,2-Dichloroethene 2.6 1.0 0.41 ug/L 8260B Total/NA Chloroform 1.1 2.0 0.37 ug/L 8260B 1 Total/NA Trichloroethene 58 0.50 0.16 ug/L 8260B Total/NA 1 Tetrachloroethene 65 1.0 0.37ug/L 8260B Total/NA Client Sample ID: RFW-4B DUP Lab Sample ID: 500-198719-8 Analyte Qualifier RL Result MDL Unit Dil Fac D Method Prep Type cis-1,2-Dichloroethene 1.0 2.6 0.41 ug/L 1 8260B Total/NA Chloroform 2.0 0.37 ug/L 1.1 1 8260B Total/NA 0.50 Trichloroethene 57 ug/L 8260B 0.16 1 Total/NA Tetrachloroethene 66 1.0 0.37 8260B ug/L Total/NA Client Sample ID: RFW-6 Lab Sample ID: 500-198719-9 Analyte RL Result Qualifier MDL Unit Dil Fac D Method Prep Type cis-1,2-Dichloroethene 0.57 1.0 .1 0.41 ug/L 1 8260B Total/NA

This Detection Summary does not include radiochemical test results.

2.3

1.2

Trichloroethene

Tetrachloroethene

1

1

8260B

8260B

0.50

1.0

0.16 ug/L

0.37 ug/L

Total/NA

Total/NA

Detection Summary

Client: Weston Solutions, Inc. Job ID: 500-198719-1 Project/Site: Black and Decker Client Sample ID: RFW-7 Lab Sample ID: 500-198719-10 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type Acetone 4.1 J 10 1.7 ug/L 8260B Total/NA Trichloroethene 0.38 0.50 8260B 0.16 ug/L Total/NA Client Sample ID: RFW-9 Lab Sample ID: 500-198719-11 Analyte RL Result Qualifier MDL Unit Dil Fac D Method Prep Type cis-1,2-Dichloroethene 13 1.0 0.41 ug/L 1 8260B Total/NA Trichloroethene 4.1 0.50 0.16 ug/L 8260B Total/NA Tetrachloroethene 8260B 3.0 1.0 0.37 ug/L Total/NA Client Sample ID: RFW-11B Lab Sample ID: 500-198719-12 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type Trichloroethene 0.51 0.50 0.16 8260B ug/L Total/NA Client Sample ID: RFW-12B Lab Sample ID: 500-198719-13 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type Acetone 2.8 10 1.7 ug/L 8260B Total/NA cis-1,2-Dichloroethene 2.8 1.0 0.41 ug/L 8260B Total/NA 1 Trichloroethene 82 0.50 0.16 ug/L 1 8260B Total/NA Tetrachloroethene 9.1 1.0 0.37 ug/L 8260B Total/NA Client Sample ID: RFW-13 Lab Sample ID: 500-198719-14 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type Carbon disulfide 1.2 2.0 0.45 ug/L 8260B Total/NA trans-1,2-Dichloroethene 5.3 1.0 0.35 8260B ug/L 1 Total/NA cis-1,2-Dichloroethene 3.2 1.0 0.41 ug/L 1 8260B Total/NA Trichloroethene 1.9 0.50 0.16 ug/L 8260B Total/NA Tetrachloroethene 5.4 1.0 0.37 ug/L 8260B Total/NA Client Sample ID: RFW-17 Lab Sample ID: 500-198719-15 No Detections Client Sample ID: EW-2 Lab Sample ID: 500-198719-16 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type Acetone 1.9 10 1.7 ug/L 8260B Total/NA cis-1,2-Dichloroethene 1.5 1.0 0.41 ug/L 1 8260B Total/NA Trichloroethene 79 0.50 0.16 ug/L 8260B Total/NA Tetrachloroethene 33 1.0 0.37 ug/L 8260B Total/NA Client Sample ID: EW-3 Lab Sample ID: 500-198719-17 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type cis-1,2-Dichloroethene 1.5 1.0 0.41 ug/L 8260B Total/NA

This Detection Summary does not include radiochemical test results.

16

0.65 J

7.2

Result Qualifier

Trichloroethene

Trichloroethene

Analyte

Tetrachloroethene

Client Sample ID: EW-4

Eurofins TestAmerica, Chicago

8260B

8260B

Method

8260B

Dil Fac D

Lab Sample ID: 500-198719-18

0.50

1.0

RL

0.50

0.16 ug/L

0.37 ug/L

MDL Unit

0.16 ug/L

Total/NA

Total/NA

Prep Type

Total/NA

Detection Summary

Client: Weston Solutions, Inc.

Project/Site: Black and Decker

Job ID: 500-198719-1

Client Sample ID: EW-4 (Continued)	Lab Sample ID: 500-198719-18
------------------------------------	------------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Tetrachloroethene	3.7		1.0	0.37	ug/L	1	8260B	Total/NA
Client Sample ID: EW-5						Lab Sar	nple ID: 50	0-198719-19
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Trichloroethene	62		0.50	0.16	ug/L	1	8260B	Total/NA
Tetrachloroethene	1.7		1.0	0.37	ug/L	1	8260B	Total/NA
Client Sample ID: EW-6						Lab San	nple ID: 50	0-198719-20
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Trichloroethene	3.0		0.50	0.16	ug/L	1	8260B	Total/NA
Tetrachloroethene	5.7		1.0	0.37	ug/L	1	8260B	Total/NA
Client Sample ID: EW-7						Lab Sar	nple ID: 50	0-198719-21
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	3.8		1.0	0.41	ug/L	1	8260B	Total/NA
Trichloroethene	2.6		0.50	0.16	ug/L	1	8260B	Total/NA
Tetrachloroethene	6.8		1.0	0.37	ug/L	1	8260B	Total/NA

Client Sample ID: EW-8 Lab Sample ID: 500-198719-22

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethane	0.74 J	1.0	0.41 ug/L	1	8260B	Total/NA
cis-1,2-Dichloroethene	26	1.0	0. 4 1 ug/L	1	8260B	Total/NA
Trichloroethene	5.7	0.50	0.16 ug/L	1	8260B	Total/NA
Tetrachloroethene	58	1.0	0.37 ug/L	1	8260B	Total/NA

Client Sample ID: EW-9 Lab Sample ID: 500-198719-23

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac I	Method	Prep Type
Trichloroethene	0.55		0.50	0.16	ug/L	1	8260B	 Total/NA
Tetrachloroethene	67		1.0	0.37	ug/L	1	8260B	Total/NA

Client Sample ID: EW-9 DUP Lab Sample ID: 500-198719-24

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	0.51		0.50	0.16	ug/L	1		8260B	Total/NA
Tetrachloroethene	69		1.0	0.37	ug/L	1		8260B	Total/NA

Client Sample ID: EW-10 Lab Sample ID: 500-198719-25

No Detections.

Client Sample ID: Trip Blank Lab Sample ID: 500-198719-26

No Detections.

This Detection Summary does not include radiochemical test results.

Job ID: 500-198719-1

Client: Weston Solutions, Inc.

Project/Site: Black and Decker

Method	Method Description	Protocol	Laboratory
8260B	VOC	SW846	TAL CHI
5030B	Purge and Trap	SW846	TAL CHI

Method Summary

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Sample Summary

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Job ID: 500-198719-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
500-198719-1	RFW-1A	Water	05/04/21 10:05	05/06/21 09:50	
500-198719-2	RFW-1B	Water	05/04/21 10:40	05/06/21 09:50	
500-198719-3	RFW-2A	Water	05/04/21 11:35	05/06/21 09:50	
500-198719-4	RFW-2B	Water	05/04/21 12:00	05/06/21 09:50	
500-198719-5	RFW-3B	Water	05/04/21 13:00	05/06/21 09:50	
500-198719-6	RFW-4A	Water	05/05/21 12:15	05/06/21 09:50	
500-198719-7	RFW-4B	Water	05/05/21 11:25	05/06/21 09:50	
500-198719-8	RFW-4B DUP	Water	05/05/21 11:25	05/06/21 09:50	
500-198719-9	RFW-6	Water	05/04/21 13:55	05/06/21 09:50	
500-198719-10	RFW-7	Water	05/04/21 16:35	05/06/21 09:50	
500-198719-11	RFW-9	Water	05/05/21 08:00	05/06/21 09:50	
500-198719-12	RFW-11B	Water	05/05/21 09:00	05/06/21 09:50	
500-198719-13	RFW-12B	Water	05/04/21 17:30	05/06/21 09:50	
500-198719-14	RFW-13	Water	05/04/21 14:50	05/06/21 09:50	
500-198719-15	RFW-17	Water	05/04/21 15:45	05/06/21 09:50	
500-198719-16	EW-2	Water	05/05/21 08:55	05/06/21 09:50	
500-198719-17	EW-3	Water	05/05/21 09:55	05/06/21 09:50	
500-198719-18	EW-4	Water	05/05/21 12:05	05/06/21 09:50	
500-198719-19	EW-5	Water	05/05/21 08:45	05/06/21 09:50	
500-198719-20	EW-6	Water	05/04/21 15:55	05/06/21 09:50	
500-198719-21	EW-7	Water	05/04/21 16:00	05/06/21 09:50	
500-198719-22	EW-8	Water	05/04/21 16:10	05/06/21 09:50	
500-198719-23	EW-9	Water	05/04/21 16:15	05/06/21 09:50	
500-198719-24	EW-9 DUP	Water	05/04/21 16:15	05/06/21 09:50	
500-198719-25	EW-10	Water	05/04/21 16:20	05/06/21 09:50	
500-198719-26	Trip Blank	Water	05/04/21 07:00	05/06/21 09:50	

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: RFW-1A Date Collected: 05/04/21 10:05

Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-1

Matrix: Water

Job ID: 500-198719-1

Method: 8260B - VOC

Method: 8260B - VOC Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		——————————————————————————————————————	0.15			- Topulou	05/15/21 14:09	1
Dichlorodifluoromethane	<3.0		3.0	0.67				05/15/21 14:09	1
Chloromethane	<1.0		1.0	0.32				05/15/21 14:09	1
Vinyl chloride	<1.0		1.0	0.20				05/15/21 14:09	1
Bromomethane	<3.0		3.0	0.80	-			05/15/21 14:09	1
Chloroethane	<1.0		1.0	0.51	•			05/15/21 14:09	1
Trichlorofluoromethane	<1.0		1.0	0.43				05/15/21 14:09	1
1,1-Dichloroethene	<1.0		1.0	0.39				05/15/21 14:09	1
Carbon disulfide	<2.0		2.0	0.45				05/15/21 14:09	1
Acetone	6.8	ſ	10		ug/L			05/15/21 14:09	1
Methylene Chloride	<5.0	J	5.0		ug/L			05/15/21 14:09	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35				05/15/21 14:09	1
1,1-Dichloroethane	<1.0		1.0	0.41				05/15/21 14:09	1
2,2-Dichloropropane	<1.0		1.0	0.44				05/15/21 14:09	1
cis-1,2-Dichloroethene	<1.0		1.0	0.44	-			05/15/21 14:09	1
Methyl Ethyl Ketone	<5.0		5.0		ug/L				
Bromochloromethane	<1.0		1.0	0.43				05/15/21 14:09	1
Chloroform	<2.0		2.0					05/15/21 14:09	1
1,1,1-Trichloroethane	<1.0			0.37	-			05/15/21 14:09	1
			1.0	0.38				05/15/21 14:09	1
1,1-Dichloropropene Carbon tetrachloride	<1.0		1.0	0.30				05/15/21 14:09	1
	<1.0		1.0	0.38				05/15/21 14:09	1
1,2-Dichloroethane	<1.0		1.0	0.39	•			05/15/21 14:09	1
Trichloroethene	<0.50		0.50	0.16				05/15/21 14:09	1
1,2-Dichloropropane	<1.0		1.0	0.43				05/15/21 14:09	1
Dibromomethane	<1.0		1.0	0.27				05/15/21 14:09	1
Bromodichloromethane	<1.0		1.0	0.37				05/15/21 14:09	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42				05/15/21 14:09	1
methyl isobutyl ketone	<5.0		5.0		ug/L			05/15/21 14:09	1
Toluene	<0.50		0.50	0.15				05/15/21 14:09	1
trans-1,3-Dichloropropene	<1.0		1.0	0.36				05/15/21 14:09	1
1,1,2-Trichloroethane	<1.0		1.0	0.35				05/15/21 14:09	1
Tetrachloroethene	<1.0		1.0	0.37				05/15/21 14:09	1
1,3-Dichloropropane	<1.0		1.0	0.36	-			05/15/21 14:09	1
2-Hexanone	<5.0	*_	5.0		ug/L			05/15/21 14:09	1
Dibromochloromethane	<1.0		1.0	0.49	-			05/15/21 14:09	1
1,2-Dibromoethane	<1.0		1.0		ug/L			05/15/21 14:09	1
Chlorobenzene	<1.0		1.0	0.39	-			05/15/21 14:09	1
1,1,1,2-Tetrachloroethane	<1.0		1.0		ug/L			05/15/21 14:09	1
Ethylbenzene	<0.50		0.50		ug/L			05/15/21 14:09	1
m&p-Xylene	<1.0		1.0		ug/L			05/15/21 14:09	1
o-Xylene	<0.50		0.50	0.22	ug/L			05/15/21 14:09	1
Styrene	<1.0		1.0	0.39	ug/L			05/15/21 14:09	1
Bromoform	<1.0		1.0	0.48	ug/L			05/15/21 14:09	1
Isopropylbenzene	<1.0		1.0	0.39	ug/L			05/15/21 14:09	1
Bromobenzene	<1.0		1.0	0.36	ug/L			05/15/21 14:09	1
1,1,2,2-Tetrachloroethane	<1.0		1.0	0.40	ug/L			05/15/21 14:09	1
1,2,3-Trichloropropane	<2.0		2.0	0.41	ug/L			05/15/21 14:09	1
N-Propylbenzene	<1.0		1.0	0.41	ug/L			05/15/21 14:09	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			05/15/21 14:09	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: RFW-1A Date Collected: 05/04/21 10:05

Date Received: 05/06/21 09:50

Job ID: 500-198719-1

Lab Sample ID: 500-198719-1

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25 ug/L		05/15/21 14:09	1
4-Chlorotoluene	<1.0	1.0	0.35 ug/L		05/15/21 14:09	1
tert-Butylbenzene	<1.0	1.0	0.40 ug/L		05/15/21 14:09	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36 ug/L		05/15/21 14:09	1
sec-Butylbenzene	<1.0	1.0	0.40 ug/L		05/15/21 14:09	1
1,3-Dichlorobenzene	<1.0	1.0	0.40 ug/L		05/15/21 14:09	1
p-Isopropyltoluene	<1.0	1.0	0.36 ug/L		05/15/21 14:09	1
1,4-Dichlorobenzene	<1.0	1.0	0.36 ug/L		05/15/21 14:09	1
n-Butylbenzene	<1.0	1.0	0.39 ug/L		05/15/21 14:09	1
1,2-Dichlorobenzene	<1.0	1.0	0.33 ug/L		05/15/21 14:09	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0 ug/L		05/15/21 14:09	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34 ug/L		05/15/21 14:09	1
Hexachlorobutadiene	<1.0	1.0	0.45 ug/L		05/15/21 14:09	1
Naphthalene	<1.0	1.0	0.34 ug/L		05/15/21 14:09	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46 ug/L		05/15/21 14:09	1

Surrogate	%Recovery Qualifier	Limits	Prepared A	nalyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	75 - 126	05/1	5/21 14:09	1
Toluene-d8 (Surr)	97	75 - 120	05/1	5/21 14:09	1
4-Bromofluorobenzene (Surr)	88	72 - 124	05/1	15/21 14:09	1
Dibromofluoromethane	107	75 - 120	05/1	5/21 14:09	1

Client: Weston Solutions, Inc. Job ID: 500-198719-1 Project/Site: Black and Decker

Client Sample ID: RFW-1B

Lab Sample ID: 500-198719-2 Date Collected: 05/04/21 10:40 Matrix: Water

Date Received: 05/06/21 09:50

Method: 8260B - VOC

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50	0.15	ug/L			05/15/21 14:37	1
Dichlorodifluoromethane	<3.0		3.0		ug/L			05/15/21 14:37	1
Chloromethane	<1.0		1.0		ug/L			05/15/21 14:37	1
Vinyl chloride	<1.0		1.0	0.20	-			05/15/21 14:37	1
Bromomethane	<3.0		3.0	0.80	_			05/15/21 14:37	1
Chloroethane	<1.0		1.0		ug/L			05/15/21 14:37	1
Trichlorofluoromethane	<1.0		1.0		ug/L			05/15/21 14:37	1
1,1-Dichloroethene	<1.0		1.0	0.39	-			05/15/21 14:37	1
Carbon disulfide	<2.0		2.0	0.45	-			05/15/21 14:37	1
Acetone	4.5	J	10		ug/L			05/15/21 14:37	1
Methylene Chloride	<5.0		5.0		ug/L			05/15/21 14:37	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			05/15/21 14:37	1
1,1-Dichloroethane	<1.0		1.0	0.41	ug/L			05/15/21 14:37	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			05/15/21 14:37	1
cis-1,2-Dichloroethene	<1.0		1.0	0.41	ug/L			05/15/21 14:37	1
Methyl Ethyl Ketone	<5.0		5.0	2.1	ug/L			05/15/21 14:37	1
Bromochloromethane	<1.0		1.0	0.43	ug/L			05/15/21 14:37	1
Chloroform	<2.0		2.0	0.37	ug/L			05/15/21 14:37	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	ug/L			05/15/21 14:37	1
1,1-Dichloropropene	<1.0		1.0	0.30	ug/L			05/15/21 14:37	1
Carbon tetrachloride	<1.0		1.0	0.38	ug/L			05/15/21 14:37	1
1,2-Dichloroethane	<1.0		1.0	0.39	ug/L			05/15/21 14:37	1
Trichloroethene	< 0.50		0.50	0.16	ug/L			05/15/21 14:37	1
1,2-Dichloropropane	<1.0		1.0	0.43	ug/L			05/15/21 14:37	1
Dibromomethane	<1.0		1.0	0.27	ug/L			05/15/21 14:37	1
Bromodichloromethane	<1.0		1.0	0.37	ug/L			05/15/21 14:37	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42	ug/L			05/15/21 14:37	1
methyl isobutyl ketone	<5.0		5.0	2.2	ug/L			05/15/21 14:37	1
Toluene	<0.50		0.50	0.15	ug/L			05/15/21 14:37	1
trans-1,3-Dichloropropene	<1.0		1.0	0.36	ug/L			05/15/21 14:37	1
1,1,2-Trichloroethane	<1.0		1.0	0.35	ug/L			05/15/21 14:37	1
Tetrachloroethene	<1.0		1.0	0.37	ug/L			05/15/21 14:37	1
1,3-Dichloropropane	<1.0		1.0	0.36	ug/L			05/15/21 14:37	1
2-Hexanone	<5.0	*_	5.0	1.6	ug/L			05/15/21 14:37	1
Dibromochloromethane	<1.0		1.0	0.49	ug/L			05/15/21 14:37	1
1,2-Dibromoethane	<1.0		1.0	0.39	-			05/15/21 14:37	1
Chlorobenzene	<1.0		1.0	0.39	ug/L			05/15/21 14:37	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46	-			05/15/21 14:37	1
Ethylbenzene	<0.50		0.50	0.18	ug/L			05/15/21 14:37	1
m&p-Xylene	<1.0		1.0	0.18	ug/L			05/15/21 14:37	1
o-Xylene	<0.50		0.50	0.22	ug/L			05/15/21 14:37	1
Styrene	<1.0		1.0	0.39	ug/L			05/15/21 14:37	1
Bromoform	<1.0		1.0		ug/L			05/15/21 14:37	1
Isopropylbenzene	<1.0		1.0		ug/L			05/15/21 14:37	1
Bromobenzene	<1.0		1.0		ug/L			05/15/21 14:37	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			05/15/21 14:37	1
1,2,3-Trichloropropane	<2.0		2.0		ug/L			05/15/21 14:37	1
N-Propylbenzene	<1.0		1.0		ug/L			05/15/21 14:37	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			05/15/21 14:37	1

Eurofins TestAmerica, Chicago

Client: Weston Solutions, Inc.

Job ID: 500-198719-1

Project/Site: Black and Decker

Client Sample ID: RFW-1B

Date Collected: 05/04/21 10:40

Lab Sample ID: 500-198719-2

Matrix: Water

Date Received: 05/06/21 09:50

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			05/15/21 14:37	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			05/15/21 14:37	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			05/15/21 14:37	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			05/15/21 14:37	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			05/15/21 14:37	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			05/15/21 14:37	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			05/15/21 14:37	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			05/15/21 14:37	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			05/15/21 14:37	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			05/15/21 14:37	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			05/15/21 14:37	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			05/15/21 14:37	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			05/15/21 14:37	1
Naphthalene	<1.0	1.0	0.34	ug/L			05/15/21 14:37	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			05/15/21 14:37	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	75 - 126	05/15/21 14:37	,
Toluene-d8 (Surr)	96	75 - 120	05/15/21 14:37	' 1
4-Bromofluorobenzene (Surr)	88	72 - 124	05/15/21 14:37	, 1
Dibromofluoromethane	109	75 - 120	05/15/21 14:37	, 1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: RFW-2A Date Collected: 05/04/21 11:35 Date Received: 05/06/21 09:50 Lab Sample ID: 500-198719-3

Matrix: Water

Job ID: 500-198719-1

Method: 8260B - VOC

Method: 8260B - VOC	.	0 1:0		•••		_	_		
Analyte	<0.50	Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Benzene			0.50		ug/L			05/15/21 15:06	1
Dichlorodifluoromethane	<3.0		3.0	0.67				05/15/21 15:06	1
Chloromethane	<1.0		1.0	0.32				05/15/21 15:06	1
Vinyl chloride	<1.0		1.0	0.20				05/15/21 15:06	1
Bromomethane	<3.0		3.0	0.80	-			05/15/21 15:06	1
Chloroethane	<1.0		1.0	0.51				05/15/21 15:06	1
Trichlorofluoromethane	<1.0		1.0	0.43	-			05/15/21 15:06	1
1,1-Dichloroethene	<1.0		1.0	0.39				05/15/21 15:06	1
Carbon disulfide	<2.0		2.0	0.45				05/15/21 15:06	1
Acetone	2.3	J	10		ug/L			05/15/21 15:06	1
Methylene Chloride	< 5.0		5.0		ug/L			05/15/21 15:06	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			05/15/21 15:06	1
1,1-Dichloroethane	<1.0		1.0	0.41	ug/L			05/15/21 15:06	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			05/15/21 15:06	1
cis-1,2-Dichloroethene	<1.0		1.0	0.41	ug/L			05/15/21 15:06	1
Methyl Ethyl Ketone	< 5.0		5.0	2.1	ug/L			05/15/21 15:06	1
Bromochloromethane	<1.0		1.0	0.43	ug/L			05/15/21 15:06	1
Chloroform	<2.0		2.0	0.37	ug/L			05/15/21 15:06	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	ug/L			05/15/21 15:06	1
1,1-Dichloropropene	<1.0		1.0	0.30	ug/L			05/15/21 15:06	1
Carbon tetrachloride	<1.0		1.0	0.38	ug/L			05/15/21 15:06	1
1,2-Dichloroethane	<1.0		1.0	0.39	ug/L			05/15/21 15:06	1
Trichloroethene	0.19	J	0.50	0.16				05/15/21 15:06	1
1,2-Dichloropropane	<1.0		1.0	0.43				05/15/21 15:06	1
Dibromomethane	<1.0		1.0		ug/L			05/15/21 15:06	1
Bromodichloromethane	<1.0		1.0	0.37				05/15/21 15:06	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			05/15/21 15:06	1
methyl isobutyl ketone	<5.0		5.0		ug/L			05/15/21 15:06	1
Toluene	<0.50		0.50		ug/L			05/15/21 15:06	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			05/15/21 15:06	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			05/15/21 15:06	1
Tetrachloroethene	<1.0		1.0		ug/L			05/15/21 15:06	1
1,3-Dichloropropane	<1.0		1.0		ug/L			05/15/21 15:06	1
2-Hexanone	<5.0		5.0		ug/L			05/15/21 15:06	1
Dibromochloromethane	<1.0		1.0		ug/L			05/15/21 15:06	1
1,2-Dibromoethane	<1.0		1.0		ug/L			05/15/21 15:06	1
Chlorobenzene	<1.0		1.0		ug/L			05/15/21 15:06	1
1,1,1,2-Tetrachloroethane	<1.0		1.0		ug/L			05/15/21 15:06	1
Ethylbenzene	<0.50		0.50		ug/L			05/15/21 15:06	1
m&p-Xylene	<1.0		1.0		ug/L			05/15/21 15:06	1
o-Xylene	<0.50		0.50		ug/L				
Styrene	<1.0		1.0		ug/L			05/15/21 15:06	1
Bromoform	<1.0		1.0		-			05/15/21 15:06	1
Isopropylbenzene	<1.0		1.0		ug/L			05/15/21 15:06	1
Bromobenzene					ug/L			05/15/21 15:06	1
	<1.0		1.0		ug/L			05/15/21 15:06	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			05/15/21 15:06	1
1,2,3-Trichloropropane	<2.0		2.0		ug/L			05/15/21 15:06	1
N-Propylbenzene	<1.0		1.0		ug/L			05/15/21 15:06	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			05/15/21 15:06	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: RFW-2A Date Collected: 05/04/21 11:35

Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-3

Matrix: Water

Job ID: 500-198719-1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			05/15/21 15:06	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			05/15/21 15:06	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			05/15/21 15:06	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			05/15/21 15:06	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			05/15/21 15:06	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			05/15/21 15:06	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			05/15/21 15:06	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			05/15/21 15:06	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			05/15/21 15:06	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			05/15/21 15:06	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			05/15/21 15:06	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			05/15/21 15:06	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			05/15/21 15:06	1
Naphthalene	<1.0	1.0	0.34	ug/L			05/15/21 15:06	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			05/15/21 15:06	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyze	d Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	75 - 126	05/15/21 15	5:06 1
Toluene-d8 (Surr)	96	75 - 120	05/15/21 15	5:06 1
4-Bromofluorobenzene (Surr)	87	72 - 124	05/15/21 15	5:06 1
Dibromofluoromethane	110	75 - 120	05/15/21 15	5:06 1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: RFW-2B Date Collected: 05/04/21 12:00 Date Received: 05/06/21 09:50 Lab Sample ID: 500-198719-4

Matrix: Water

Job ID: 500-198719-1

Method: 8260B - VOC

Method: 8260B - VOC	Denville Overliffen	D.	MD		_			D.: E
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene	<0.50	0.50	0.15				05/15/21 15:34	1
Dichlorodifluoromethane	<3.0	3.0	0.67				05/15/21 15:34	1
Chloromethane	<1.0	1.0	0.32	_			05/15/21 15:34	1
Vinyl chloride	<1.0	1.0	0.20	-			05/15/21 15:34	1
Bromomethane	<3.0	3.0	0.80				05/15/21 15:34	1
Chloroethane	<1.0	1.0	0.51	-			05/15/21 15:34	1
Trichlorofluoromethane	<1.0	1.0	0.43	-			05/15/21 15:34	1
1,1-Dichloroethene	<1.0	1.0	0.39	Ü			05/15/21 15:34	1
Carbon disulfide	<2.0	2.0	0.45				05/15/21 15:34	1
Acetone	<10	10		ug/L			05/15/21 15:34	1
Methylene Chloride	<5.0	5.0		ug/L			05/15/21 15:34	1
trans-1,2-Dichloroethene	<1.0	1.0	0.35	ug/L			05/15/21 15:34	1
1,1~Dichloroethane	<1.0	1.0	0.41	-			05/15/21 15:34	1
2,2-Dichloropropane	<1.0	1.0	0.44				05/15/21 15:34	1
cis-1,2-Dichloroethene	<1.0	1.0	0.41	ug/L			05/15/21 15:34	1
Methyl Ethyl Ketone	<5.0	5.0	2.1	ug/L			05/15/21 15:34	1
Bromochloromethane	<1.0	1.0	0.43	ug/L			05/15/21 15:34	1
Chloroform	<2.0	2.0	0.37	ug/L			05/15/21 15:34	1
1,1,1-Trichloroethane	<1.0	1.0	0.38	ug/L			05/15/21 15:34	1
1,1-Dichloropropene	<1.0	1.0	0.30	ug/L			05/15/21 15:34	1
Carbon tetrachloride	<1.0	1.0	0.38	ug/L			05/15/21 15:34	1
1,2-Dichloroethane	<1.0	1.0	0.39	ug/L			05/15/21 15:34	1
Trichloroethene	0.23 J	0.50	0.16	ug/L			05/15/21 15:34	1
1,2-Dichloropropane	<1.0	1.0	0.43	ug/L			05/15/21 15:34	1
Dibromomethane	<1.0	1.0	0.27	ug/L			05/15/21 15:34	1
Bromodichloromethane	<1.0	1.0	0.37	ug/L			05/15/21 15:34	1
cis-1,3-Dichloropropene	<1.0	1.0	0.42	ug/L			05/15/21 15:34	1
methyl isobutyl ketone	<5.0	5.0	2.2	ug/L			05/15/21 15:34	1
Toluene	<0.50	0.50	0.15	ug/L			05/15/21 15:34	1
trans-1,3-Dichloropropene	<1.0	1.0	0.36	ug/L			05/15/21 15:34	1
1,1,2-Trichloroethane	<1.0	1.0	0.35	ug/L			05/15/21 15:34	1
Tetrachloroethene	<1.0	1.0	0.37				05/15/21 15:34	1
1,3-Dichloropropane	<1.0	1.0	0.36	-			05/15/21 15:34	1
2-Hexanone	<5.0 *-	5.0	1.6	ug/L			05/15/21 15:34	1
Dibromochloromethane	<1.0	1.0	0.49				05/15/21 15:34	1
1,2-Dibromoethane	<1.0	1.0	0.39				05/15/21 15:34	1
Chlorobenzene	<1.0	1.0	0.39	~			05/15/21 15:34	1
1,1,1,2-Tetrachloroethane	<1.0	1.0	0.46	-			05/15/21 15:34	1
Ethylbenzene	<0.50	0.50	0.18				05/15/21 15:34	1
m&p-Xylene	<1.0	1.0		ug/L			05/15/21 15:34	1
o-Xylene	<0.50	0.50		ug/L			05/15/21 15:34	1
Styrene	<1.0	1.0		ug/L			05/15/21 15:34	1
Bromoform	<1.0	1.0	0.48				05/15/21 15:34	1
Isopropylbenzene	<1.0	1.0		ug/L			05/15/21 15:34	1
Bromobenzene	<1.0	1.0		ug/L			05/15/21 15:34	1
1,1,2,2-Tetrachloroethane	<1.0	1.0		ug/L			05/15/21 15:34	1
1,2,3-Trichloropropane	<2.0	2.0		ug/L ug/L			05/15/21 15:34	
N-Propylbenzene	<1.0	1.0		ug/L ug/L			05/15/21 15:34	1
2-Chlorotoluene	<1.0			ug/L ug/L				1
2 Omorogoluene	\1.0	1.0	0.31	uy/L			05/15/21 15:34	1

Eurofins TestAmerica, Chicago

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: RFW-2B Date Collected: 05/04/21 12:00

Date Received: 05/06/21 09:50

Job ID: 500-198719-1

Lab Sample ID: 500-198719-4

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			05/15/21 15:34	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			05/15/21 15:34	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			05/15/21 15:34	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			05/15/21 15:34	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			05/15/21 15:34	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			05/15/21 15:34	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			05/15/21 15:34	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			05/15/21 15:34	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			05/15/21 15:34	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			05/15/21 15:34	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			05/15/21 15:34	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			05/15/21 15:34	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			05/15/21 15:34	1
Naphthalene	<1.0	1.0	0.34	ug/L			05/15/21 15:34	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			05/15/21 15:34	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	75 - 126	05/15/21 15:3-	1
Toluene-d8 (Surr)	96	75 - 120	05/15/21 15:34	! 1
4-Bromofluorobenzene (Surr)	89	72 - 124	05/15/21 15:3-	! 1
Dibromofluoromethane	110	75 - 120	05/15/21 15:34	! 1

Client: Weston Solutions, Inc.

Project/Site: Black and Decker

Client Sample ID: RFW-3B

Date Collected: 05/04/21 13:00

Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-5

Matrix: Water

Job ID: 500-198719-1

Mathad: 8260B - VOC

Method: 8260B - VOC									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50	AND AND REAL PROPERTY AND	0.50	0.15	ug/L			05/15/21 16:03	1
Dichlorodifluoromethane	<3.0		3.0	0.67	ug/L			05/15/21 16:03	1
Chloromethane	<1.0		1.0	0.32	ug/L			05/15/21 16:03	1
Vinyl chloride	<1.0		1.0	0.20	ug/L			05/15/21 16:03	1
Bromomethane	<3.0		3.0	0.80	ug/L			05/15/21 16:03	1
Chloroethane	<1.0		1.0	0.51	ug/L			05/15/21 16:03	1
Trichlorofluoromethane	<1.0		1.0	0.43	ug/L			05/15/21 16:03	1
1,1-Dichloroethene	<1.0		1.0	0.39	ug/L			05/15/21 16:03	1
Carbon disulfide	<2.0		2.0	0.45	ug/L			05/15/21 16:03	1
Acetone	<10		10	1.7	ug/L			05/15/21 16:03	1
Methylene Chloride	<5.0		5.0	1.6	ug/L			05/15/21 16:03	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35				05/15/21 16:03	1
1,1-Dichloroethane	<1.0		1.0		ug/L			05/15/21 16:03	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			05/15/21 16:03	1
cis-1,2-Dichloroethene	<1.0		1.0	0.41	ug/L			05/15/21 16:03	1
Methyl Ethyl Ketone	<5.0		5.0	2.1	ug/L			05/15/21 16:03	1
Bromochloromethane	<1.0		1.0		ug/L			05/15/21 16:03	1
Chloroform	<2.0		2.0	0.37	_			05/15/21 16:03	1
1,1,1-Trichloroethane	<1.0		1.0		ug/L			05/15/21 16:03	1
1,1-Dichloropropene	<1.0		1.0		ug/L			05/15/21 16:03	1
Carbon tetrachloride	<1.0		1.0		ug/L			05/15/21 16:03	1
1.2-Dichloroethane	<1.0		1.0		ug/L			05/15/21 16:03	1
Trichloroethene	<0.50		0.50		ug/L			05/15/21 16:03	1
1,2-Dichloropropane	<1.0		1.0		ug/L			05/15/21 16:03	1
Dibromomethane	<1.0		1.0		ug/L			05/15/21 16:03	1
Bromodichloromethane	<1.0		1.0		ug/L			05/15/21 16:03	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			05/15/21 16:03	1
methyl isobutyl ketone	<5.0		5.0		ug/L			05/15/21 16:03	1
Toluene	<0.50		0.50		ug/L			05/15/21 16:03	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			05/15/21 16:03	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			05/15/21 16:03	1
Tetrachloroethene	<1.0		1.0		ug/L			05/15/21 16:03	1
1,3-Dichloropropane	<1.0		1.0		ug/L			05/15/21 16:03	1
2-Hexanone	<5.0	*_	5.0		ug/L			05/15/21 16:03	1
Dibromochloromethane	<1.0		1.0		ug/L			05/15/21 16:03	1
1,2-Dibromoethane	<1.0		1.0		ug/L			05/15/21 16:03	1
Chlorobenzene	<1.0		1.0		ug/L			05/15/21 16:03	1
1,1,1,2-Tetrachloroethane	<1.0		1.0		ug/L			05/15/21 16:03	1
Ethylbenzene	<0.50		0.50		ug/L			05/15/21 16:03	1
m&p-Xylene	<1.0		1.0		ug/L			05/15/21 16:03	1
o-Xylene	<0.50		0.50		ug/L			05/15/21 16:03	1
Styrene	<1.0		1.0		ug/L			05/15/21 16:03	1
Bromoform	<1.0		1.0		ug/L			05/15/21 16:03	1
Isopropylbenzene	<1.0		1.0		ug/L			05/15/21 16:03	1
Bromobenzene	<1.0		1.0		ug/L ug/L			05/15/21 16:03	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L ug/L			05/15/21 16:03	1
1,2,3-Trichloropropane	<2.0		2.0		ug/L ug/L			05/15/21 16:03	
N-Propylbenzene	<1.0		1.0		ug/L ug/L			05/15/21 16:03	1
2-Chlorotoluene	<1.0		1.0		ug/L ug/L			05/15/21 16:03	1 1
Z Oniorototuene	~1.0		1.0	0.51	ug/L			00/10/21 10:03	1

Client: Weston Solutions, Inc. Job ID: 500-198719-1

Project/Site: Black and Decker

Client Sample ID: RFW-3B Lab Sample ID: 500-198719-5 Date Collected: 05/04/21 13:00

Matrix: Water

Date Received: 05/06/21 09:50

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			05/15/21 16:03	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			05/15/21 16:03	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			05/15/21 16:03	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			05/15/21 16:03	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			05/15/21 16:03	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			05/15/21 16:03	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			05/15/21 16:03	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			05/15/21 16:03	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			05/15/21 16:03	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			05/15/21 16:03	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			05/15/21 16:03	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			05/15/21 16:03	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			05/15/21 16:03	1
Naphthalene	<1.0	1.0	0.34	ug/L			05/15/21 16:03	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			05/15/21 16:03	1

Surrogate	%Recovery Qualifier	Limits	Prepared Ar	nalyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	75 - 126	05/13	5/21 16:03	1
Toluene-d8 (Surr)	97	75 - 120	05/13	5/21 16:03	1
4-Bromofluorobenzene (Surr)	87	72 - 124	05/13	5/21 16:03	1
Dibromofluoromethane	109	75 - 120	05/13	5/21 16:03	1

Client: Weston Solutions, Inc.

Project/Site: Black and Decker

Job ID: 500-198719-1

Client Sample ID: RFW-4A

Date Collected: 05/05/21 12:15 Date Received: 05/06/21 09:50 Lab Sample ID: 500-198719-6

Matrix: Water

Method: 8260B - VOC

Method: 8260B - VOC									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50	0.15	ug/L			05/17/21 11:53	1
Dichlorodifluoromethane	<3.0		3.0	0.67	ug/L			05/17/21 11:53	1
Chloromethane	<1.0		1.0	0.32	ug/L			05/17/21 11:53	1
Vinyl chloride	<1.0		1.0	0.20	ug/L			05/17/21 11:53	1
Bromomethane	<3.0		3.0	0.80	ug/L			05/17/21 11:53	1
Chloroethane	<1.0		1.0	0.51	ug/L			05/17/21 11:53	1
Trichlorofluoromethane	<1.0		1.0	0.43	ug/L			05/17/21 11:53	1
1,1-Dichloroethene	<1.0		1.0	0.39				05/17/21 11:53	1
Carbon disulfide	<2.0		2.0	0.45				05/17/21 11:53	1
Acetone	<10		10		ug/L			05/17/21 11:53	1
Methylene Chloride	<5.0		5.0		ug/L			05/17/21 11:53	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	_			05/17/21 11:53	1
1,1-Dichloroethane	<1.0		1.0		ug/L			05/17/21 11:53	1
2,2-Dichloropropane	<1.0		1.0	0.44	•			05/17/21 11:53	1
cis-1,2-Dichloroethene	0.57	J	1.0		ug/L			05/17/21 11:53	1
Methyl Ethyl Ketone	<5.0		5.0	2.1	ug/L			05/17/21 11:53	1
Bromochloromethane	<1.0		1.0	0.43	_			05/17/21 11:53	1
Chloroform	0.48	J	2.0	0.37				05/17/21 11:53	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	-			05/17/21 11:53	1
1,1-Dichloropropene	<1.0		1.0	0.30	-			05/17/21 11:53	1
Carbon tetrachloride	<1.0		1.0	0.38	-			05/17/21 11:53	1
1,2-Dichloroethane	<1.0		1.0	0.39	-			05/17/21 11:53	1
Trichloroethene	22		0.50	0.16				05/17/21 11:53	1
1,2-Dichloropropane	<1.0		1.0		ug/L			05/17/21 11:53	1
Dibromomethane	<1.0		1.0	0.27	•			05/17/21 11:53	1
Bromodichloromethane	<1.0		1.0	0.37				05/17/21 11:53	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42				05/17/21 11:53	1
methyl isobutyl ketone	<5.0		5.0		ug/L			05/17/21 11:53	1
Toluene	<0.50		0.50		ug/L			05/17/21 11:53	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			05/17/21 11:53	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			05/17/21 11:53	1
Tetrachloroethene	11		1.0	0.37				05/17/21 11:53	1
1,3-Dichloropropane	<1.0		1.0		ug/L			05/17/21 11:53	1
2-Hexanone	<5.0		5.0		ug/L			05/17/21 11:53	1
Dibromochloromethane	<1.0		1.0		ug/L			05/17/21 11:53	1
1,2-Dibromoethane	<1.0		1.0		ug/L			05/17/21 11:53	1
Chlorobenzene	<1.0		1.0		ug/L			05/17/21 11:53	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46	-			05/17/21 11:53	1
Ethylbenzene	<0.50		0.50		ug/L			05/17/21 11:53	1
m&p-Xylene	<1.0		1.0		ug/L			05/17/21 11:53	1
o-Xylene	<0.50		0.50		ug/L			05/17/21 11:53	1
Styrene	<1.0		1.0		ug/L			05/17/21 11:53	1
Bromoform	<1.0		1.0		ug/L			05/17/21 11:53	1
Isopropylbenzene	<1.0		1.0		ug/L			05/17/21 11:53	1
Bromobenzene	<1.0		1.0		ug/L			05/17/21 11:53	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			05/17/21 11:53	1
1,2,3-Trichloropropane	<2.0		2.0		ug/L			05/17/21 11:53	1
N-Propylbenzene	<1.0		1.0		ug/L			05/17/21 11:53	1
2-Chlorotoluene	<1.0		1.0		ug/L			05/17/21 11:53	1
	1.0			2.01				30, , = 1 11.00	'

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: RFW-4A Date Collected: 05/05/21 12:15

Date Received: 05/06/21 09:50

Job ID: 500-198719-1

Lab Sample ID: 500-198719-6

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			05/17/21 11:53	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			05/17/21 11:53	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 11:53	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			05/17/21 11:53	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 11:53	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			05/17/21 11:53	1
p-lsopropyltoluene	<1.0	1.0	0.36	ug/L			05/17/21 11:53	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			05/17/21 11:53	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			05/17/21 11:53	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			05/17/21 11:53	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			05/17/21 11:53	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			05/17/21 11:53	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			05/17/21 11:53	1
Naphthalene	<1.0	1.0	0.34	ug/L			05/17/21 11:53	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			05/17/21 11:53	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	75 - 126	05/17/21 11:5	3 1
Toluene-d8 (Surr)	94	75 - 120	05/17/21 11:5	3 1
4-Bromofluorobenzene (Surr)	85	72 - 124	05/17/21 11:5	3 1
Dibromofluoromethane	111	75 - 120	05/17/21 11:5	3 1

Client: Weston Solutions, Inc. Job ID: 500-198719-1

Project/Site: Black and Decker

Client Sample ID: RFW-4B Date Collected: 05/05/21 11:25

Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-7

Matrix: Water

Mathad: 8260B - VOC

Method: 8260B - VOC Analyte	Pocult	Qualifier	RL	MDI	Unit	_	Dranarad	Amalumad	Dil Far
Benzene	<0.50	Quainer	0.50	0.15		D	Prepared	Analyzed 05/17/21 12:22	Dil Fac
Dichlorodifluoromethane	<3.0		3.0		ug/L			05/17/21 12:22	•
Chloromethane	<1.0		1.0		ug/L				1
Vinyl chloride	<1.0		1.0		-			05/17/21 12:22	1
Bromomethane	<3.0				ug/L			05/17/21 12:22	1
Chloroethane	<1.0		3.0		ug/L			05/17/21 12:22	1
			1.0		ug/L			05/17/21 12:22	1
Trichlorofluoromethane	<1.0		1.0		ug/L			05/17/21 12:22	1
1,1-Dichloroethene Carbon disulfide	<1.0		1.0		ug/L			05/17/21 12:22	1
	<2.0		2.0		ug/L			05/17/21 12:22	1
Acetone	<10		10		ug/L			05/17/21 12:22	1
Methylene Chloride	<5.0		5.0		ug/L			05/17/21 12:22	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	-			05/17/21 12:22	1
1,1-Dichloroethane	<1.0		1.0		ug/L			05/17/21 12:22	1
2,2-Dichloropropane	<1.0		1.0	0.44	-			05/17/21 12:22	1
cis-1,2-Dichloroethene	2.6		1.0		ug/L			05/17/21 12:22	1
Methyl Ethyl Ketone	<5.0		5.0		ug/L			05/17/21 12:22	1
Bromochloromethane	<1.0		1.0		ug/L			05/17/21 12:22	1
Chloroform	1.1	J	2.0	0.37				05/17/21 12:22	1
1,1,1-Trichloroethane	<1.0		1.0		ug/L			05/17/21 12:22	1
1,1-Dichloropropene	<1.0		1.0		ug/L			05/17/21 12:22	1
Carbon tetrachloride	<1.0		1.0	0.38	ug/L			05/17/21 12:22	1
1,2-Dichloroethane	<1.0		1.0	0.39	ug/L			05/17/21 12:22	1
Trichloroethene	58		0.50	0.16	ug/L			05/17/21 12:22	1
1,2-Dichloropropane	<1.0		1.0	0.43	ug/L			05/17/21 12:22	1
Dibromomethane	<1.0		1.0	0.27	ug/L			05/17/21 12:22	1
Bromodichloromethane	<1.0		1.0	0.37	ug/L			05/17/21 12:22	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42	ug/L			05/17/21 12:22	1
methyl isobutyl ketone	<5.0		5.0	2.2	ug/L			05/17/21 12:22	1
Toluene	<0.50		0.50	0.15	ug/L			05/17/21 12:22	1
trans-1,3-Dichloropropene	<1.0		1.0	0.36	ug/L			05/17/21 12:22	1
1,1,2-Trichloroethane	<1.0		1.0	0.35	ug/L			05/17/21 12:22	1
Tetrachloroethene	65		1.0	0.37	ug/L			05/17/21 12:22	1
1,3-Dichloropropane	<1.0		1.0	0.36	ug/L			05/17/21 12:22	1
2-Hexanone	<5.0		5.0	1.6	ug/L			05/17/21 12:22	1
Dibromochloromethane	<1.0		1.0	0.49	ug/L			05/17/21 12:22	1
1,2-Dibromoethane	<1.0		1.0	0.39	ug/L			05/17/21 12:22	1
Chlorobenzene	<1.0		1.0	0.39	ug/L			05/17/21 12:22	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46	ug/L			05/17/21 12:22	1
Ethylbenzene	<0.50		0.50		ug/L			05/17/21 12:22	1
m&p-Xylene	<1.0		1.0		ug/L			05/17/21 12:22	1
o-Xylene	<0.50		0.50		ug/L			05/17/21 12:22	1
Styrene	<1.0		1.0		ug/L			05/17/21 12:22	1
Bromoform	<1.0		1.0		ug/L			05/17/21 12:22	1
Isopropylbenzene	<1.0		1.0		ug/L			05/17/21 12:22	1
Bromobenzene	<1.0		1.0		ug/L			05/17/21 12:22	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			05/17/21 12:22	1
1,2,3-Trichloropropane	<2.0		2.0		ug/L			05/17/21 12:22	1
N-Propylbenzene	<1.0		1.0		ug/L			05/17/21 12:22	1
2-Chlorotoluene	<1.0		1.0		ug/L			05/17/21 12:22	1
2 Official formation of the state of the sta	~1.0		1.0	0.51	uy/L			03/11/21 12.22	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: RFW-4B Date Collected: 05/05/21 11:25

Date Received: 05/06/21 09:50

Job ID: 500-198719-1

Lab Sample ID: 500-198719-7

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			05/17/21 12:22	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			05/17/21 12:22	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 12:22	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			05/17/21 12:22	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 12:22	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			05/17/21 12:22	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			05/17/21 12:22	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			05/17/21 12:22	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			05/17/21 12:22	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			05/17/21 12:22	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			05/17/21 12:22	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			05/17/21 12:22	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			05/17/21 12:22	1
Naphthalene	<1.0	1.0	0.34	ug/L			05/17/21 12:22	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			05/17/21 12:22	1

Surrogate	%Recovery (Qualifier Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102	75 - 126	05/17/21 12:22	1
Toluene-d8 (Surr)	94	75 - 120	05/17/21 12:22	1
4-Bromofluorobenzene (Surr)	84	72 - 124	05/17/21 12:22	1
Dibromofluoromethane	110	75 - 120	05/17/21 12:22	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: RFW-4B DUP

Date Collected: 05/05/21 11:25

Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-8

Matrix: Water

Job ID: 500-198719-1

Method: 8260B - VOC

Method: 8260B - VOC								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50	0.50	0.15	ug/L			05/17/21 12:51	
Dichlorodifluoromethane	<3.0	3.0	0.67	ug/L			05/17/21 12:51	1
Chloromethane	<1.0	1.0	0.32	ug/L			05/17/21 12:51	1
Vinyl chloride	<1.0	1.0	0.20	ug/L			05/17/21 12:51	1
Bromomethane	<3.0	3.0	0.80	ug/L			05/17/21 12:51	1
Chloroethane	<1.0	1.0	0.51	ug/L			05/17/21 12:51	1
Trichlorofluoromethane	<1.0	1.0	0.43	ug/L			05/17/21 12:51	1
1,1-Dichloroethene	<1.0	1.0	0.39				05/17/21 12:51	1
Carbon disulfide	<2.0	2.0	0.45				05/17/21 12:51	1
Acetone	<10	10		ug/L			05/17/21 12:51	1
Methylene Chloride	<5.0	5.0		ug/L			05/17/21 12:51	1
trans-1,2-Dichloroethene	<1.0	1.0	0.35				05/17/21 12:51	1
1,1-Dichloroethane	<1.0	1.0		ug/L			05/17/21 12:51	1
2,2-Dichloropropane	<1.0	1.0	0.44	-			05/17/21 12:51	1
cis-1,2-Dichloroethene	2.6	1.0	0.41	_			05/17/21 12:51	1
Methyl Ethyl Ketone	<5.0	5.0		ug/L			05/17/21 12:51	1
Bromochloromethane	<1.0	1.0	0.43	-			05/17/21 12:51	1
Chloroform	1.1 J	2.0	0.37				05/17/21 12:51	1
1,1,1-Trichloroethane	<1.0	1.0	0.38	_			05/17/21 12:51	1
1,1-Dichloropropene	<1.0	1.0	0.30	-			05/17/21 12:51	1
Carbon tetrachloride	<1.0	1.0	0.38				05/17/21 12:51	1
1,2-Dichloroethane	<1.0	1.0	0.39	_			05/17/21 12:51	1
Trichloroethene	5 7	0.50	0.16				05/17/21 12:51	1
1,2-Dichloropropane	<1.0	1.0	0.43				05/17/21 12:51	1
Dibromomethane	<1.0	1.0	0.27				05/17/21 12:51	1
Bromodichloromethane	<1.0	1.0	0.37				05/17/21 12:51	1
cis-1,3-Dichloropropene	<1.0	1.0	0.42				05/17/21 12:51	1
methyl isobutyl ketone	<5.0	5.0		ug/L			05/17/21 12:51	1
Toluene	<0.50	0.50	0.15				05/17/21 12:51	1
trans-1,3-Dichloropropene	<1.0	1.0		ug/L			0 5 /17/21 12:51	1
1,1,2-Trichloroethane	<1.0	1.0	0.35	-			05/17/21 12:51	1
Tetrachloroethene	66	1.0	0.37				05/17/21 12:51	1
1,3-Dichloropropane	<1.0	1.0	0.36				05/17/21 12:51	1
2-Hexanone	<5.0	5.0		ug/L			05/17/21 12:51	1
Dibromochloromethane	<1.0	1.0		ug/L			05/17/21 12:51	1
1,2-Dibromoethane	<1.0	1.0	0.39				05/17/21 12:51	1
Chlorobenzene	<1.0	1.0		ug/L			05/17/21 12:51	1
1,1,1,2-Tetrachloroethane	<1.0	1.0	0.46	_			05/17/21 12:51	1
Ethylbenzene	<0.50	0.50		ug/L			05/17/21 12:51	1
m&p-Xylene	<1.0	1.0		ug/L			05/17/21 12:51	1
o-Xylene	<0.50	0.50		ug/L			05/17/21 12:51	1
Styrene	<1.0	1.0		ug/L			05/17/21 12:51	1
Bromoform	<1.0	1.0		ug/L			05/17/21 12:51	1
Isopropylbenzene	<1.0	1.0		ug/L			05/17/21 12:51	1
Bromobenzene	<1.0	1.0		ug/L			05/17/21 12:51	1
1,1,2,2-Tetrachloroethane	<1.0	1.0		ug/L			05/17/21 12:51	1
1,2,3-Trichloropropane	<2.0	2.0		ug/L			05/17/21 12:51	1
N-Propylbenzene	<1.0	1.0		ug/L			05/17/21 12:51	1
2-Chlorotoluene	<1.0	1.0		ug/L			05/17/21 12:51	1
			٠.٠١	~ 3 , –			30/1/ET (E.OT	į.

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: RFW-4B DUP

Date Collected: 05/05/21 11:25

Date Received: 05/06/21 09:50

Job ID: 500-198719-1

Lab Sample ID: 500-198719-8

Matrix: Water

Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<1.0	1.0	0.25	ug/L			05/17/21 12:51	1
<1.0	1.0	0.35	ug/L			05/17/21 12:51	1
<1.0	1.0	0.40	ug/L			05/17/21 12:51	1
<1.0	1.0	0.36	ug/L			05/17/21 12:51	1
<1.0	1.0	0.40	ug/L			05/17/21 12:51	1
<1.0	1.0	0.40	ug/L			05/17/21 12:51	1
<1.0	1.0	0.36	ug/L			05/17/21 12:51	1
<1.0	1.0	0.36	ug/L			05/17/21 12:51	1
<1.0	1.0	0.39	ug/L			05/17/21 12:51	1
<1.0	1.0	0.33	ug/L			05/17/21 12:51	1
<5.0	5.0	2.0	ug/L			05/17/21 12:51	1
<1.0	1.0	0.34	ug/L			05/17/21 12:51	1
<1.0	1.0	0.45	ug/L			05/17/21 12:51	1
<1.0	1.0	0.34	ug/L			05/17/21 12:51	1
<1.0	1.0	0.46	ug/L			05/17/21 12:51	1
	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	THE TAX PROPERTY OF THE PARTY O	75 - 126	05/17/21 12:5	1
Toluene-d8 (Surr)	94		75 - 120	05/17/21 12:5	1
4-Bromofluorobenzene (Surr)	85		72 - 124	05/17/21 12:5	1
Dibromofluoromethane	110		75 - 120	05/17/21 12:5	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: RFW-6

Date Collected: 05/04/21 13:55 Date Received: 05/06/21 09:50 Job ID: 500-198719-1

Lab Sample ID: 500-198719-9

Matrix: Water

Method: 8260B - VOC

Method: 8260B - VOC									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50	0.15	ug/L			05/15/21 16:31	
Dichlorodifluoromethane	<3.0		3.0	0.67	ug/L			05/15/21 16:31	1
Chloromethane	<1.0		1.0	0.32	ug/L			05/15/21 16:31	1
Vinyl chloride	<1.0		1.0	0.20	ug/L			05/15/21 16:31	1
Bromomethane	<3.0		3.0	0.80	ug/L			05/15/21 16:31	1
Chloroethane	<1.0		1.0	0.51	ug/L			05/15/21 16:31	1
Trichlorofluoromethane	<1.0		1.0	0.43	ug/L			05/15/21 16:31	1
1,1-Dichloroethene	<1.0		1.0	0.39	ug/L			05/15/21 16:31	1
Carbon disulfide	<2.0		2.0	0.45	ug/L			05/15/21 16:31	1
Acetone	<10		10	1.7	ug/L			05/15/21 16:31	1
Methylene Chloride	<5.0		5.0		ug/L			05/15/21 16:31	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			05/15/21 16:31	1
1,1-Dichloroethane	<1.0		1.0	0.41	ug/L			05/15/21 16:31	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			05/15/21 16:31	1
cis-1,2-Dichloroethene	0.57	J	1.0	0.41	ug/L			05/15/21 16:31	1
Methyl Ethyl Ketone	<5.0		5.0	2.1	ug/L			05/15/21 16:31	1
Bromochloromethane	<1.0		1.0	0.43				05/15/21 16:31	1
Chloroform	<2.0		2.0	0.37				05/15/21 16:31	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	ug/L			05/15/21 16:31	1
1,1-Dichloropropene	<1.0		1.0	0.30				05/15/21 16:31	1
Carbon tetrachloride	<1.0		1.0	0.38	-			05/15/21 16:31	1
1,2-Dichloroethane	<1.0		1.0	0.39				05/15/21 16:31	1
Trichloroethene	2.3		0.50	0.16	-			05/15/21 16:31	1
1,2-Dichloropropane	<1.0		1.0	0.43				05/15/21 16:31	1
Dibromomethane	<1.0		1.0	0.27				05/15/21 16:31	1
Bromodichloromethane	<1.0		1.0	0.37				05/15/21 16:31	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42				05/15/21 16:31	1
methyl isobutyl ketone	<5.0		5.0		ug/L			05/15/21 16:31	1
Toluene	< 0.50		0.50	0.15				05/15/21 16:31	1
trans-1,3-Dichloropropene	<1.0		1.0	0.36				05/15/21 16:31	1
1,1,2-Trichloroethane	<1.0		1.0	0.35	ug/L			05/15/21 16:31	1
Tetrachloroethene	1.2		1.0	0.37	ug/L			05/15/21 16:31	1
1,3-Dichloropropane	<1.0		1.0	0.36	ug/L			05/15/21 16:31	1
2-Hexanone	<5.0	*_	5.0		ug/L			05/15/21 16:31	1
Dibromochloromethane	<1.0		1.0	0.49	ug/L			05/15/21 16:31	1
1,2-Dibromoethane	<1.0		1.0	0.39	ug/L			05/15/21 16:31	1
Chlorobenzene	<1.0		1.0	0.39	ug/L			05/15/21 16:31	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46	ug/L			05/15/21 16:31	1
Ethylbenzene	<0.50		0.50	0.18	ug/L			05/15/21 16:31	1
m&p-Xylene	<1.0		1.0	0.18	ug/L			05/15/21 16:31	1
o-Xylene	<0.50		0.50	0.22	ug/L			05/15/21 16:31	1
Styrene	<1.0		1.0	0.39	ug/L			05/15/21 16:31	1
Bromoform	<1.0		1.0	0.48	ug/L			05/15/21 16:31	1
lsopropylbenzene	<1.0		1.0		ug/L			05/15/21 16:31	1
Bromobenzene	<1.0		1.0	0.36	ug/L			05/15/21 16:31	1
1,1,2,2-Tetrachloroethane	<1.0		1.0	0.40	ug/L			05/15/21 16:31	1
1,2,3-Trichloropropane	<2.0		2.0	0.41	ug/L			05/15/21 16:31	1
N-Propylbenzene	<1.0		1.0	0.41	ug/L			05/15/21 16:31	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			05/15/21 16:31	1

Client: Weston Solutions, Inc.
Project/Site: Black and Decker

Project/Site: Black and Decker

Client Sample ID: RFW-6 Date Collected: 05/04/21 13:55

Date Received: 05/06/21 09:50

Job ID: 500-198719-1

Lab Sample ID: 500-198719-9

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			05/15/21 16:31	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			05/15/21 16:31	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			05/15/21 16:31	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			05/15/21 16:31	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			05/15/21 16:31	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			05/15/21 16:31	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			05/15/21 16:31	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			05/15/21 16:31	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			05/15/21 16:31	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			05/15/21 16:31	1
1,2-Dibromo-3-Chloropropane	< 5.0	5.0	2.0	ug/L			05/15/21 16:31	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			05/15/21 16:31	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			05/15/21 16:31	1
Naphthalene	<1.0	1.0	0.34	ug/L			05/15/21 16:31	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			05/15/21 16:31	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	75 - 126	05/15/21 16:31	
Toluene-d8 (Surr)	97	75 - 120	05/15/21 16:31	1
4-Bromofluorobenzene (Surr)	87	72 - 124	05/15/21 16:31	1
Dibromofluoromethane	109	75 ₋ 120	05/15/21 16:31	1

Client: Weston Solutions, Inc.

Job ID: 500-198719-1

Project/Site: Black and Decker

Lab Sample ID: 500-198719-10 Matrix: Water

Client Sample ID: RFW-7 Date Collected: 05/04/21 16:35 Date Received: 05/06/21 09:50

Method: 8260B - VOC Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50	0.15	ug/L			05/15/21 17:00	1
Dichlorodifluoromethane	<3.0		3.0	0.67				05/15/21 17:00	1
Chloromethane	<1.0		1.0	0.32	-			05/15/21 17:00	1
Vinyl chloride	<1.0		1.0	0.20	-			05/15/21 17:00	1
Bromomethane	<3.0		3.0	0.80	-			05/15/21 17:00	1
Chloroethane	<1.0		1.0	0.51	-			05/15/21 17:00	1
Trichlorofluoromethane	<1.0		1.0	0.43	-			05/15/21 17:00	1
1,1-Dichloroethene	<1.0		1.0	0.39	•			05/15/21 17:00	1
Carbon disulfide	<2.0		2.0	0.45				05/15/21 17:00	1
Acetone	4.1	J	10		ug/L			05/15/21 17:00	1
Methylene Chloride	<5.0	-	5.0		ug/L			05/15/21 17:00	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			05/15/21 17:00	1
1,1-Dichloroethane	<1.0		1.0		ug/L			05/15/21 17:00	1
2,2-Dichloropropane	<1.0		1.0	0.44				05/15/21 17:00	1
cis-1,2-Dichloroethene	<1.0		1.0	0.41	-			05/15/21 17:00	1
Methyl Ethyl Ketone	<5.0		5.0		ug/L			05/15/21 17:00	1
Bromochloromethane	<1.0		1.0	0.43	_			05/15/21 17:00	1
Chloroform	<2.0		2.0	0.37	-			05/15/21 17:00	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	-			05/15/21 17:00	1
1,1-Dichloropropene	<1.0		1.0	0.30				05/15/21 17:00	1
Carbon tetrachloride	<1.0		1.0	0.38	-			05/15/21 17:00	1
1,2-Dichloroethane	<1.0		1.0		ug/L			05/15/21 17:00	1
Trichloroethene	0.38	ſ	0.50	0.16	-			05/15/21 17:00	1
1,2-Dichloropropane	<1.0	5	1.0	0.43	-			05/15/21 17:00	1
Dibromomethane	<1.0		1.0	0.43	_			05/15/21 17:00	1
Bromodichloromethane	<1.0		1.0	0.37				05/15/21 17:00	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42				05/15/21 17:00	1
methyl isobutyl ketone	<5.0		5.0		ug/L			05/15/21 17:00	1
Toluene	<0.50		0.50	0.15				05/15/21 17:00	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			05/15/21 17:00	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			05/15/21 17:00	1
Tetrachloroethene	<1.0		1.0	0.37	-			05/15/21 17:00	1
1,3-Dichloropropane	<1.0		1.0	0.36	_			05/15/21 17:00	1
2-Hexanone	<5.0	*_	5.0		ug/L			05/15/21 17:00	1
Dibromochloromethane	<1.0		1.0		ug/L			05/15/21 17:00	1
1,2-Dibromoethane	<1.0		1.0		ug/L			05/15/21 17:00	1
Chlorobenzene	<1.0		1.0		ug/L			05/15/21 17:00	1
1,1,1,2-Tetrachloroethane	<1.0		1.0		ug/L ug/L			05/15/21 17:00	1
Ethylbenzene	<0.50		0.50		ug/L				1
m&p-Xylene	<1.0		1.0		ug/L ug/L			05/15/21 17:00 05/15/21 17:00	1 1
o-Xylene	<0.50		0.50		ug/L			05/15/21 17:00	
Styrene	<1.0		1.0		ug/L ug/L				1
Bromoform	<1.0		1.0		-			05/15/21 17:00	1
Isopropylbenzene	<1.0		1.0		ug/L ug/L			05/15/21 17:00	1
Bromobenzene	<1.0		1.0		•			05/15/21 17:00	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			05/15/21 17:00	1
	<2.0				ug/L			05/15/21 17:00	1
1,2,3-Trichloropropane			2.0		ug/L			05/15/21 17:00	1
N-Propylbenzene 2-Chlorotoluene	<1.0 <1.0		1.0 1.0		ug/L ug/L			05/15/21 17:00 05/15/21 17:00	1

Client: Weston Solutions, Inc. Job ID: 500-198719-1 Project/Site: Black and Decker

Client Sample ID: RFW-7

Lab Sample ID: 500-198719-10

Matrix: Water

Date Collected: 05/04/21 16:35 Date Received: 05/06/21 09:50

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			05/15/21 17:00	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			05/15/21 17:00	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			05/15/21 17:00	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			05/15/21 17:00	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			05/15/21 17:00	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			05/15/21 17:00	1
p-lsopropyltoluene	<1.0	1.0	0.36	ug/L			05/15/21 17:00	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			05/15/21 17:00	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			05/15/21 17:00	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			05/15/21 17:00	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			05/15/21 17:00	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			05/15/21 17:00	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			05/15/21 17:00	1
Naphthalene	<1.0	1.0	0.34	ug/L			05/15/21 17:00	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			05/15/21 17:00	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analy	yzed Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	75 - 126	05/15/2	1 17:00 1
Toluene-d8 (Surr)	97	75 - 120	05/15/2	1 17:00 1
4-Bromofluorobenzene (Surr)	88	72 - 124	05/15/2	1 17:00 1
Dibromofluoromethane	111	75 - 120	05/15/2	1 17:00 1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: RFW-9 Date Collected: 05/05/21 08:00

Date Received: 05/06/21 09:50

Job ID: 500-198719-1

Lab Sample ID: 500-198719-11

Matrix: Water

Mothod: 8260B - VOC

Method: 8260B - VOC Analyte	Booult	Qualifier	RL	MDL	11:4	5	D	A (1	D:: E
Benzene	<0.50	Quanner	0.50			D	Prepared	Analyzed 05/17/21 13:20	Dil Fac
	<3.0				ug/L				1
Dichlorodifluoromethane Chloromethana			3.0		ug/L			05/17/21 13:20	1
Chloromethane	<1.0		1.0		ug/L			05/17/21 13:20	1
Vinyl chloride	<1.0		1.0		ug/L			05/17/21 13:20	1
Bromomethane	<3.0		3.0		ug/L			05/17/21 13:20	1
Chloroethane	<1.0		1.0		ug/L			05/17/21 13:20	1
Trichlorofluoromethane	<1.0		1.0		ug/L			05/17/21 13:20	1
1,1-Dichloroethene	<1.0		1.0		ug/L			05/17/21 13:20	1
Carbon disulfide	<2.0		2.0		ug/L			05/17/21 13:20	1
Acetone	<10		10		ug/L			05/17/21 13:20	1
Methylene Chloride	<5.0		5.0		ug/L			05/17/21 13:20	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			05/17/21 13:20	1
1,1-Dichloroethane	<1.0		1.0	0.41	ug/L			05/17/21 13:20	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			05/17/21 13:20	1
cis-1,2-Dichloroethene	13		1.0	0.41	ug/L			05/17/21 13:20	1
Methyl Ethyl Ketone	<5.0		5.0	2.1	ug/L			05/17/21 13:20	1
Bromochloromethane	<1.0		1.0	0.43	ug/L			05/17/21 13:20	1
Chloroform	<2.0		2.0	0.37	ug/L			05/17/21 13:20	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	ug/L			05/17/21 13:20	1
1,1-Dichloropropene	<1.0		1.0	0.30	ug/L			05/17/21 13:20	1
Carbon tetrachloride	<1.0		1.0	0.38	ug/L			05/17/21 13:20	1
1,2-Dichloroethane	<1.0		1.0	0.39	ug/L			05/17/21 13:20	1
Trichloroethene	4.1		0.50	0.16	ug/L			05/17/21 13:20	1
1,2-Dichloropropane	<1.0		1.0	0.43	ug/L			05/17/21 13:20	1
Dibromomethane	<1.0		1.0	0.27	ug/L			05/17/21 13:20	1
Bromodichloromethane	<1.0		1.0	0.37	ug/L			05/17/21 13:20	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42	ug/L			05/17/21 13:20	1
methyl isobutyl ketone	< 5.0		5.0	2.2	ug/L			05/17/21 13:20	1
Toluene	<0.50		0.50	0.15	ug/L			05/17/21 13:20	1
trans-1,3-Dichloropropene	<1.0		1.0	0.36	ug/L			05/17/21 13:20	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			05/17/21 13:20	1
Tetrachloroethene	3.0		1.0	0.37	ug/L			05/17/21 13:20	1
1,3-Dichloropropane	<1.0		1.0	0.36	ug/L			05/17/21 13:20	1
2-Hexanone	<5.0		5.0		ug/L			05/17/21 13:20	1
Dibromochloromethane	<1.0		1.0		ug/L			05/17/21 13:20	1
1,2-Dibromoethane	<1.0		1.0		ug/L			05/17/21 13:20	1
Chlorobenzene	<1.0		1.0		ug/L			05/17/21 13:20	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46	ug/L			05/17/21 13:20	1
Ethylbenzene	<0.50		0.50		ug/L			05/17/21 13:20	1
m&p-Xylene	<1.0		1.0		ug/L			05/17/21 13:20	1
o-Xylene	<0.50		0.50		ug/L			05/17/21 13:20	1
Styrene	<1.0		1.0		ug/L			05/17/21 13:20	1
Bromoform	<1.0		1.0		ug/L			05/17/21 13:20	1
Isopropylbenzene	<1.0		1.0		ug/L			05/17/21 13:20	1
Bromobenzene	<1.0		1.0		ug/L			05/17/21 13:20	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			05/17/21 13:20	1
1,2,3-Trichloropropane	<2.0		2.0		ug/L ug/L			05/17/21 13:20	1
N-Propylbenzene	<1.0		1.0		ug/L			05/17/21 13:20	1
2-Chlorotoluene	<1.0		1.0		ug/L			05/17/21 13:20	1

Eurofins TestAmerica, Chicago

Client: Weston Solutions, Inc.

Project/Site: Black and Decker

Client Sample ID: RFW-9 Date Collected: 05/05/21 08:00

Date Received: 05/06/21 09:50

Job ID: 500-198719-1

Lab Sample ID: 500-198719-11

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L		·	05/17/21 13:20	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			05/17/21 13:20	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 13:20	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			05/17/21 13:20	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 13:20	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			05/17/21 13:20	1
p-lsopropyltoluene	<1.0	1.0	0.36	ug/L			05/17/21 13:20	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	u g/L			05/17/21 13:20	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			05/17/21 13:20	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			05/17/21 13:20	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			05/17/21 13:20	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			05/17/21 13:20	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			05/17/21 13:20	1
Naphthalene	<1.0	1.0	0.34	ug/L			05/17/21 13:20	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			05/17/21 13:20	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		75 - 126	05/17/21 13:20	1
Toluene-d8 (Surr)	94		75 - 120	05/17/21 13:20	1
4-Bromofluorobenzene (Surr)	86		72 - 124	05/17/21 13:20	1
Dibromofluoromethane	112		75 - 120	05/17/21 13:20	1

Client: Weston Solutions, Inc.

Job ID: 500-198719-1

Project/Site: Black and Decker

Client Sample ID: RFW-118 Lab Sample ID: 500-198719-12
Date Collected: 05/05/21 09:00 Matrix: Water

Date Received: 05/05/21 09:50

Method: 8260B - VOC

Method: 8260B - VOC									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50		ug/L			05/17/21 13:49	1
Dichlorodifluoromethane	<3.0		3.0		ug/L			05/17/21 13:49	1
Chloromethane	<1.0		1.0	0.32	ug/L			05/17/21 13:49	1
Vinyl chloride	<1.0		1.0	0.20	ug/L			05/17/21 13:49	1
Bromomethane	<3.0		3.0	0.80	ug/L			05/17/21 13:49	1
Chloroethane	<1.0		1.0	0.51	ug/L			05/17/21 13:49	1
Trichlorofluoromethane	<1.0		1.0	0.43	ug/L			05/17/21 13:49	1
1,1-Dichloroethene	<1.0		1.0	0.39	ug/L			05/17/21 13:49	1
Carbon disulfide	<2.0		2.0	0.45	ug/L			05/17/21 13:49	1
Acetone	<10		10	1.7	ug/L			05/17/21 13:49	1
Methylene Chloride	<5.0		5.0	1.6	ug/L			05/17/21 13:49	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			05/17/21 13:49	1
1,1-Dichloroethane	<1.0		1.0	0.41	ug/L			05/17/21 13:49	1
2,2-Dichloropropane	<1.0		1.0		ug/L			05/17/21 13:49	1
cis-1,2-Dichloroethene	<1.0		1.0		ug/L			05/17/21 13:49	1
Methyl Ethyl Ketone	<5.0		5.0		ug/L			05/17/21 13:49	1
Bromochloromethane	<1.0		1.0		ug/L			05/17/21 13:49	1
Chloroform	<2.0		2.0		ug/L			05/17/21 13:49	1
1,1,1-Trichloroethane	<1.0		1.0		ug/L			05/17/21 13:49	1
1,1-Dichloropropene	<1.0		1.0		ug/L			05/17/21 13:49	1
Carbon tetrachloride	<1.0		1.0		ug/L			05/17/21 13:49	1
1,2-Dichloroethane	<1.0		1.0		ug/L			05/17/21 13:49	1
Trichloroethene	0.51		0.50		ug/L ug/L			05/17/21 13:49	1
1,2-Dichloropropane	<1.0		1.0		ug/L			05/17/21 13:49	1
Dibromomethane	<1.0		1.0		ug/L			05/17/21 13:49	1
Bromodichloromethane	<1.0		1.0		ug/L ug/L			05/17/21 13:49	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L ug/L				
methyl isobutyl ketone	<5.0		5.0		ug/L ug/L			05/17/21 13:49	1
Toluene					ug/L ug/L			05/17/21 13:49	1
	<0.50		0.50					05/17/21 13:49	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			05/17/21 13:49	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			05/17/21 13:49	1
Tetrachloroethene	<1.0		1.0		ug/L			05/17/21 13:49	1
1,3-Dichloropropane	<1.0		1.0		ug/L			05/17/21 13:49	1
2-Hexanone	< 5.0		5.0		ug/L			05/17/21 13:49	1
Dibromochloromethane	<1.0		1.0		ug/L			05/17/21 13:49	1
1,2-Dibromoethane	<1.0		1.0		ug/L			05/17/21 13:49	1
Chlorobenzene	<1.0		1.0		ug/L			05/17/21 13:49	1
1,1,1,2-Tetrachloroethane	<1.0		1.0		ug/L			05/17/21 13:49	1
Ethylbenzene	<0.50		0.50		ug/L			05/17/21 13:49	1
m&p-Xylene	<1.0		1.0		ug/L			05/17/21 13:49	1
o-Xylene	< 0.50		0.50		ug/L			05/17/21 13:49	1
Styrene	<1.0		1.0		ug/L			05/17/21 13:49	1
Bromoform	<1.0		1.0		ug/L			05/17/21 13:49	1
Isopropylbenzene	<1.0		1.0		ug/L			05/17/21 13:49	1
Bromobenzene	<1.0		1.0	0.36	ug/L			05/17/21 13:49	1
1,1,2,2-Tetrachloroethane	<1.0		1.0	0.40	ug/L			05/17/21 13:49	1
1,2,3-Trichloropropane	<2.0		2.0	0.41	ug/L			05/17/21 13:49	1
N-Propylbenzene	<1.0		1.0	0.41	ug/L			05/17/21 13:49	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			05/17/21 13:49	1

Eurofins TestAmerica, Chicago

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: RFW-11B Date Collected: 05/05/21 09:00

Date Received: 05/06/21 09:50

Job ID: 500-198719-1

Lab Sample ID: 500-198719-12

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			05/17/21 13:49	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			05/17/21 13:49	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 13:49	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			05/17/21 13:49	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 13:49	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			05/17/21 13:49	1
p-lsopropyltoluene	<1.0	1.0	0.36	ug/L			05/17/21 13:49	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			05/17/21 13:49	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			05/17/21 13:49	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			05/17/21 13:49	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			05/17/21 13:49	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			05/17/21 13:49	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			05/17/21 13:49	1
Naphthalene	<1.0	1.0	0.34	ug/L			05/17/21 13:49	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			05/17/21 13:49	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyze	ed Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	75 - 126	05/17/21 1	3:49 1
Toluene-d8 (Surr)	94	75 - 120	05/17/21 1	3:49 1
4-Bromofluorobenzene (Surr)	86	72 - 124	05/17/21 1	3:49 1
Dibromofluoromethane	112	75 ₋ 120	05/17/21 1	3:49 1

Client: Weston Solutions, Inc. Job ID: 500-198719-1 Project/Site: Black and Decker

Client Sample ID: RFW-12B Date Collected: 05/04/21 17:30

Lab Sample ID: 500-198719-13 Date Received: 05/06/21 09:50

Method: 8260B - VOC

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene	<0.50	0.50	0.15	ug/L			05/15/21 17:28	1
Dichlorodifluoromethane	<3.0	3.0	0.67	ug/L			05/15/21 17:28	1
Chloromethane	<1.0	1.0	0.32	ug/L			05/15/21 17:28	1
Vinyl chloride	<1.0	1.0	0.20	ug/L			05/15/21 17:28	1
Bromomethane	<3.0	3.0	0.80	ug/L			05/15/21 17:28	1
Chloroethane	<1.0	1.0	0.51	ug/L			05/15/21 17:28	1
Trichlorofluoromethane	<1.0	1.0	0.43	ug/L			05/15/21 17:28	1
1,1-Dichloroethene	<1.0	1.0	0.39	ug/L			05/15/21 17:28	1
Carbon disulfide	<2.0	2.0	0.45	ug/L			05/15/21 17:28	1
Acetone	2.8 J	10	1.7	ug/L			05/15/21 17:28	1
Methylene Chloride	<5.0	5.0	1.6	ug/L			05/15/21 17:28	1
trans-1,2-Dichloroethene	<1.0	1.0	0.35	ug/L			05/15/21 17:28	1
1,1-Dichloroethane	<1.0	1.0	0.41	ug/L			05/15/21 17:28	1
2,2-Dichloropropane	<1.0	1.0	0.44				05/15/21 17:28	1
cis-1,2-Dichloroethene	2.8	1.0	0.41	ug/L			05/15/21 17:28	1
Methyl Ethyl Ketone	<5.0	5.0	2.1	ug/L			05/15/21 17:28	1
Bromochloromethane	<1.0	1.0	0.43				05/15/21 17:28	1
Chloroform	<2.0	2.0	0.37	ug/L			05/15/21 17:28	1
1,1,1-Trichloroethane	<1.0	1.0	0.38				05/15/21 17:28	1
1,1-Dichloropropene	<1.0	1.0	0.30				05/15/21 17:28	1
Carbon tetrachloride	<1.0	1.0	0.38				05/15/21 17:28	1
1,2-Dichloroethane	<1.0	1.0	0.39	_			05/15/21 17:28	1
Trichloroethene	82	0.50	0.16	ug/L			05/15/21 17:28	1
1,2-Dichloropropane	<1.0	1.0	0.43	ug/L			05/15/21 17:28	1
Dibromomethane	<1.0	1.0	0.27				05/15/21 17:28	1
Bromodichloromethane	<1.0	1.0	0.37	ug/L			05/15/21 17:28	1
cis-1,3-Dichloropropene	<1.0	1.0	0.42	ug/L			05/15/21 17:28	1
methyl isobutyl ketone	<5.0	5.0	2.2	ug/L			05/15/21 17:28	1
Toluene	<0.50	0.50	0.15	ug/L			05/15/21 17:28	1
trans-1,3-Dichloropropene	<1.0	1.0	0.36				05/15/21 17:28	1
1,1,2-Trichloroethane	<1.0	1.0	0.35	ug/L			05/15/21 17:28	1
Tetrachloroethene	9.1	1.0	0.37	ug/L			05/15/21 17:28	1
1,3-Dichloropropane	<1.0	1.0	0.36	ug/L			05/15/21 17:28	1
2-Hexanone	<5.0 *-	5.0	1.6	ug/L			05/15/21 17:28	1
Dibromochloromethane	<1.0	1.0	0.49	ug/L			05/15/21 17:28	1
1,2-Dibromoethane	<1.0	1.0	0.39	ug/L			05/15/21 17:28	1
Chlorobenzene	<1.0	1.0	0.39	ug/L			05/15/21 17:28	1
1,1,1,2-Tetrachloroethane	<1.0	1.0	0.46				05/15/21 17:28	1
Ethylbenzene	<0.50	0.50	0.18	_			05/15/21 17:28	1
m&p-Xylene	<1.0	1.0		ug/L			05/15/21 17:28	1
o-Xylene	<0.50	0.50		ug/L			05/15/21 17:28	1
Styrene	<1.0	1.0		ug/L			05/15/21 17:28	1
Bromoform	<1.0	1.0		ug/L			05/15/21 17:28	1
Isopropylbenzene	<1.0	1.0		ug/L			05/15/21 17:28	1
Bromobenzene	<1.0	1.0		ug/L			05/15/21 17:28	1
1,1,2,2-Tetrachloroethane	<1.0	1.0		ug/L			05/15/21 17:28	1
1,2,3-Trichloropropane	<2.0	2.0		ug/L			05/15/21 17:28	1
N-Propylbenzene	<1.0	1.0		ug/L			05/15/21 17:28	1
2-Chlorotoluene	<1.0	1.0		ug/L			05/15/21 17:28	1

Eurofins TestAmerica, Chicago

Matrix: Water

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: RFW-12B Date Collected: 05/04/21 17:30

Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-13

Matrix: Water

Job ID: 500-198719-1

Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<1.0	1.0	0.25	ug/L		The Control of Additional and Management	05/15/21 17:28	1
<1.0	1.0	0.35	ug/L			05/15/21 17:28	1
<1.0	1.0	0.40	ug/L			05/15/21 17:28	1
<1.0	1.0	0.36	ug/L			05/15/21 17:28	1
<1.0	1.0	0.40	ug/L			05/15/21 17:28	1
<1.0	1.0	0.40	ug/L			05/15/21 17:28	1
<1.0	1.0	0.36	ug/L			05/15/21 17:28	1
<1.0	1.0	0.36	ug/L			05/15/21 17:28	1
<1.0	1.0	0.39	ug/L			05/15/21 17:28	1
<1.0	1.0	0.33	ug/L			05/15/21 17:28	1
<5.0	5.0	2.0	ug/L			05/15/21 17:28	1
<1.0	1.0	0.34	ug/L			05/15/21 17:28	1
<1.0	1.0	0.45	ug/L			05/15/21 17:28	1
<1.0	1.0	0.34	ug/L			05/15/21 17:28	1
<1.0	1.0	0.46	ug/L			05/15/21 17:28	1
	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	75 - 126		05/15/21 17:28	1
Toluene-d8 (Surr)	97	75 - 120		05/15/21 17:28	1
4-Bromofluorobenzene (Surr)	88	72 - 124		05/15/21 17:28	1
Dibromofluoromethane	110	75 - 120		05/15/21 17:28	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: RFW-13 Date Collected: 05/04/21 14:50 Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-14

Job ID: 500-198719-1

Matrix: Water

Method: 8260B - VOC

Method: 8260B - VOC									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50	0.15	ug/L			05/15/21 17:56	1
Dichlorodifluoromethane	<3.0		3.0	0.67	ug/L			05/15/21 17:56	1
Chloromethane	<1.0		1.0	0.32	ug/L			05/15/21 17:56	1
Vinyl chloride	<1.0		1.0	0.20	ug/L			05/15/21 17:56	1
Bromomethane	<3.0		3.0	0.80	ug/L			05/15/21 17:56	1
Chloroethane	<1.0		1.0	0.51				05/15/21 17:56	1
Trichlorofluoromethane	<1.0		1.0	0.43	ug/L			05/15/21 17:56	1
1,1-Dichloroethene	<1.0		1.0	0.39	ug/L			05/15/21 17:56	1
Carbon disulfide	1.2	J	2.0	0.45				05/15/21 17:56	1
Acetone	<10		10		ug/L			05/15/21 17:56	1
Methylene Chloride	<5.0		5.0		ug/L			05/15/21 17:56	1
trans-1,2-Dichloroethene	5.3		1.0	0.35				05/15/21 17:56	1
1,1-Dichloroethane	<1.0		1.0	0.41	-			05/15/21 17:56	1
2,2-Dichloropropane	<1.0		1.0	0.44				05/15/21 17:56	1
cis-1,2-Dichloroethene	3.2		1.0	0.41	-			05/15/21 17:56	1
Methyl Ethyl Ketone	<5.0		5.0		ug/L			05/15/21 17:56	1
Bromochloromethane	<1.0		1.0	0.43	-			05/15/21 17:56	1
Chloroform	<2.0		2.0	0.37				05/15/21 17:56	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	-			05/15/21 17:56	1
1,1-Dichloropropene	<1.0		1.0	0.30				05/15/21 17:56	1
Carbon tetrachloride	<1.0		1.0	0.38	-			05/15/21 17:56	1
1,2-Dichloroethane	<1.0		1.0	0.39	· -			05/15/21 17:56	1
Trichloroethene	1.9		0.50	0.16	-			05/15/21 17:56	1
1,2-Dichloropropane	<1.0		1.0	0.43	-			05/15/21 17:56	1
Dibromomethane	<1.0		1.0	0.27	_			05/15/21 17:56	1
Bromodichloromethane	<1.0		1.0	0.37				05/15/21 17:56	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42				05/15/21 17:56	1
methyl isobutyl ketone	<5.0	F1	5.0		ug/L			05/15/21 17:56	1
Toluene	<0.50		0.50	0.15	-			05/15/21 17:56	1
trans-1,3-Dichloropropene	<1.0		1.0	0.36				05/15/21 17:56	1
1,1,2-Trichloroethane	<1.0		1.0	0.35				05/15/21 17:56	1
Tetrachloroethene	5.4		1.0	0.37				05/15/21 17:56	1
1,3-Dichloropropane	<1.0		1.0	0.36				05/15/21 17:56	1
2-Hexanone	<5.0	*- F1	5.0		ug/L			05/15/21 17:56	1
Dibromochloromethane	<1.0		1.0	0.49				05/15/21 17:56	1
1,2-Dibromoethane	<1.0		1.0	0.39				05/15/21 17:56	1
Chlorobenzene	<1.0		1.0	0.39				05/15/21 17:56	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46	-			05/15/21 17:56	1
Ethylbenzene	< 0.50		0.50	0.18	ug/L			05/15/21 17:56	1
m&p-Xylene	<1.0		1.0		ug/L			05/15/21 17:56	1
o-Xylene	<0.50		0.50	0.22				05/15/21 17:56	1
Styrene	<1.0		1.0	0.39				05/15/21 17:56	1
Bromoform	<1.0		1.0		ug/L			05/15/21 17:56	1
Isopropylbenzene	<1.0		1.0		ug/L			05/15/21 17:56	1
Bromobenzene	<1.0		1.0		ug/L			05/15/21 17:56	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			05/15/21 17:56	1
1,2,3-Trichloropropane	<2.0		2.0		ug/L			05/15/21 17:56	1
N-Propylbenzene	<1.0		1.0		ug/L			05/15/21 17:56	1
2-Chlorotoluene	<1.0		1.0		ug/L			05/15/21 17:56	1
	7.0			Ų I	-5			30,10,21 17.00	'

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: RFW-13 Date Collected: 05/04/21 14:50

Date Received: 05/06/21 09:50

Job ID: 500-198719-1

Lab Sample ID: 500-198719-14

Matrix: Water

Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<1.0	1.0	0.25	ug/L			05/15/21 17:56	1
<1.0	1.0	0.35	ug/L			05/15/21 17:56	1
<1.0	1.0	0.40	ug/L			05/15/21 17:56	1
<1.0	1.0	0.36	ug/L			05/15/21 17:56	1
<1.0	1.0	0.40	ug/L			05/15/21 17:56	1
<1.0	1.0	0.40	ug/L			05/15/21 17:56	1
<1.0	1.0	0.36	ug/L			05/15/21 17:56	1
<1.0	1.0	0.36	ug/L			05/15/21 17:56	1
<1.0	1.0	0.39	ug/L			05/15/21 17:56	1
<1.0	1.0	0.33	ug/L			05/15/21 17:56	1
<5.0	5.0	2.0	ug/L			05/15/21 17:56	1
<1.0	1.0	0.34	ug/L			05/15/21 17:56	1
<1.0	1.0	0.45	ug/L			05/15/21 17:56	1
<1.0	1.0	0.34	ug/L			05/15/21 17:56	1
<1.0	1.0	0.46	ug/L			05/15/21 17:56	1
	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		75 - 126	05/15/21 17:56	1
Toluene-d8 (Surr)	96		75 - 120	05/15/21 17:56	1
4-Bromofluorobenzene (Surr)	87		72 - 124	05/15/21 17:56	1
Dibromofluoromethane	110		75 - 120	05/15/21 17:56	1

Client: Weston Solutions, Inc.

Project/Site: Black and Decker

Job ID: 500-198719-1

Client Sample ID: RFW-17 Date Collected: 05/04/21 15:45

Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-15

Matrix: Water

Method:	8260B	- VOC
---------	-------	-------

Method: 8260B - VOC									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50	0.15	ug/L			05/17/21 14:18	1
Dichlorodifluoromethane	<3.0		3.0		ug/L			05/17/21 14:18	1
Chloromethane	<1.0		1.0		ug/L			05/17/21 14:18	1
Vinyl chloride	<1.0		1.0		ug/L			05/17/21 14:18	1
Bromomethane	<3.0		3.0	0.80	ug/L			05/17/21 14:18	1
Chloroethane	<1.0		1.0	0.51	ug/L			05/17/21 14:18	1
Trichlorofluoromethane	<1.0		1.0	0.43	ug/L			05/17/21 14:18	1
1,1-Dichloroethene	<1.0		1.0	0.39	ug/L			05/17/21 14:18	1
Carbon disulfide	<2.0		2.0	0.45	ug/L			05/17/21 14:18	1
Acetone	<10		10	1.7	ug/L			05/17/21 14:18	1
Methylene Chloride	< 5.0		5.0	1.6	ug/L			05/17/21 14:18	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			05/17/21 14:18	1
1,1-Dichloroethane	<1.0		1.0	0.41				05/17/21 14:18	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			05/17/21 14:18	1
cis-1,2-Dichloroethene	<1.0		1.0	0.41	ug/L			05/17/21 14:18	1
Methyl Ethyl Ketone	< 5.0		5.0	2.1	ug/L			05/17/21 14:18	1
Bromochloromethane	<1.0		1.0		ug/L			05/17/21 14:18	1
Chloroform	<2.0		2.0		ug/L			05/17/21 14:18	1
1,1,1-Trichloroethane	<1.0		1.0		ug/L			05/17/21 14:18	1
1,1-Dichloropropene	<1.0		1.0		ug/L			05/17/21 14:18	1
Carbon tetrachloride	<1.0		1.0		ug/L			05/17/21 14:18	1
1,2-Dichloroethane	<1.0		1.0		ug/L			05/17/21 14:18	1
Trichloroethene	<0.50		0.50		ug/L			05/17/21 14:18	1
1,2-Dichloropropane	<1.0		1.0		ug/L			05/17/21 14:18	1
Dibromomethane	<1.0		1.0		ug/L			05/17/21 14:18	1
Bromodichloromethane	<1.0		1.0		ug/L			05/17/21 14:18	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			05/17/21 14:18	1
methyl isobutyl ketone	<5.0		5.0		ug/L			05/17/21 14:18	1
Toluene	<0.50		0.50		ug/L ug/ L			05/17/21 14:18	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			05/17/21 14:18	
1,1,2-Trichloroethane	<1.0		1.0		ug/L ug/L			05/17/21 14:18	1
Tetrachloroethene	<1.0		1.0		ug/L ug/L				1
1,3-Dichloropropane	<1.0		1.0					05/17/21 14:18	1
2-Hexanone	<5.0				ug/L			05/17/21 14:18	1
Dibromochloromethane	<1.0		5.0		ug/L			05/17/21 14:18	1
1,2-Dibromoethane	<1.0		1.0		ug/L			05/17/21 14:18	1
Chlorobenzene			1.0		ug/L			05/17/21 14:18	1
	<1.0		1.0	0.39	ug/L			05/17/21 14:18	1
1,1,1,2-Tetrachloroethane	<1.0		1.0		ug/L			05/17/21 14:18	1
Ethylbenzene	<0.50		0.50		ug/L			05/17/21 14:18	1
m&p-Xylene	<1.0		1.0		ug/L			05/17/21 14:18	1
o-Xylene	<0.50		0.50		ug/L			05/17/21 14:18	1
Styrene	<1.0		1.0		ug/L			05/17/21 14:18	1
Bromoform	<1.0		1.0		ug/L			05/17/21 14:18	1
Isopropylbenzene	<1.0		1.0		ug/L			05/17/21 14:18	1
Bromobenzene	<1.0		1.0		ug/L			05/17/21 14:18	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			05/17/21 14:18	1
1,2,3-Trichloropropane	<2.0		2.0		ug/L			05/17/21 14:18	1
N-Propylbenzene	<1.0		1.0		ug/L			05/17/21 14:18	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			05/17/21 14:18	1

Eurofins TestAmerica, Chicago

Page 37 of 82 5/18/2021

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: RFW-17 Date Collected: 05/04/21 15:45

Date Received: 05/06/21 09:50

Job ID: 500-198719-1

Lab Sample ID: 500-198719-15

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			05/17/21 14:18	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			05/17/21 14:18	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 14:18	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L.			05/17/21 14:18	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 14:18	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			05/17/21 14:18	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			05/17/21 14:18	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L.			05/17/21 14:18	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			05/17/21 14:18	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			05/17/21 14:18	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			05/17/21 14:18	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			05/17/21 14:18	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			05/17/21 14:18	1
Naphthalene	<1.0	1.0	0.34	ug/L			05/17/21 14:18	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			05/17/21 14:18	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	75 - 126	05/17/21 14:18	1
Toluene-d8 (Surr)	95	75 - 120	05/17/21 14:18	. 1
4-Bromofluorobenzene (Surr)	86	72 - 124	05/17/21 14:18	1
Dibromofluoromethane	111	75 ₋ 120	05/17/21 14:18	: 1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: EW-2

Date Collected: 05/05/21 08:55 Date Received: 05/06/21 09:50 Lab Sample ID: 500-198719-16

Matrix: Water

Job ID: 500-198719-1

Method: 8260B - VOC

Method: 8260B - VOC	5	0.175			_			
Analyte				Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50	0.9		ug/L			05/17/21 14:47	1
Dichlorodifluoromethane	<3.0			ug/L			05/17/21 14:47	1
Chloromethane	<1.0			ug/L			05/17/21 14:47	1
Vinyl chloride	<1.0			ug/L			05/17/21 14:47	1
Bromomethane	<3.0			ug/L			05/17/21 14:47	1
Chloroethane	<1.0			ug/L			05/17/21 14:47	1
Trichlorofluoromethane	<1.0			ug/L			05/17/21 14:47	1
1,1-Dichloroethene	<1.0			ug/L			05/17/21 14:47	1
Carbon disulfide	<2.0			ug/L			05/17/21 14:47	1
Acetone	1.9			ug/L			05/17/21 14:47	1
Methylene Chloride	<5.0	5		ug/L			05/17/21 14:47	1
trans-1,2-Dichloroethene	<1.0	1		ug/L			05/17/21 14:47	1
1,1-Dichloroethane	<1.0	1	.0 0.41	ug/L			05/17/21 14:47	1
2,2-Dichloropropane	<1.0	1	.0 0.44	ug/L			05/17/21 14:47	1
cis-1,2-Dichloroethene	1.5	1	.0 0.41	ug/L			05/17/21 14:47	1
Methyl Ethyl Ketone	<5.0	5	.0 2.1	ug/L			05/17/21 14:47	1
Bromochloromethane	<1.0	1	.0 0.43	ug/L			05/17/21 14:47	1
Chloroform	<2.0	2	.0 0.37	ug/L			05/17/21 14:47	1
1,1,1-Trichloroethane	<1.0	1	.0 0.38	ug/L			05/17/21 14:47	1
1,1-Dichloropropene	<1.0	1	.0 0.30	ug/L			05/17/21 14:47	1
Carbon tetrachloride	<1.0	1	.0 0.38	ug/L			05/17/21 14:47	1
1,2-Dichloroethane	<1.0	1	.0 0.39	ug/L			05/17/21 14:47	1
Trichloroethene	79	00	50 0.16	ug/L			05/17/21 14:47	1
1,2-Dichloropropane	<1.0	1	.0 0.43	ug/L			05/17/21 14:47	1
Dibromomethane	<1.0	1	.0 0.27	ug/L			05/17/21 14:47	1
Bromodichloromethane	<1.0	1	.0 0.37	ug/L			05/17/21 14:47	1
cis-1,3-Dichloropropene	<1.0	1	.0 0.42	ug/L			05/17/21 14:47	1
methyl isobutyl ketone	<5.0	5	.0 2.2	ug/L			05/17/21 14:47	1
Toluene	<0.50	0.	50 0.15	ug/L			05/17/21 14:47	1
trans-1,3-Dichloropropene	<1.0	1	.0 0.36	ug/L			05/17/21 14:47	1
1,1,2-Trichloroethane	<1.0	1	.0 0.35	ug/L			05/17/21 14:47	1
Tetrachloroethene	33	1	.0 0.37	ug/L			05/17/21 14:47	1
1,3-Dichloropropane	<1.0	1	.0 0.36	ug/L			05/17/21 14:47	1
2-Hexanone	<5.0	5	.0 1.6	ug/L			05/17/21 14:47	1
Dibromochloromethane	<1.0	1	.0 0.49	ug/L			05/17/21 14:47	1
1,2-Dibromoethane	<1.0	1		ug/L			05/17/21 14:47	1
Chlorobenzene	<1.0	1		ug/L			05/17/21 14:47	1
1,1,1,2-Tetrachloroethane	<1.0	1		ug/L			05/17/21 14:47	1
Ethylbenzene	<0.50	0.	50 0.18	ug/L			05/17/21 14:47	1
m&p-Xylene	<1.0			ug/L			05/17/21 14:47	1
o-Xylene	<0.50	0.		ug/L			05/17/21 14:47	1
Styrene	<1.0			ug/L			05/17/21 14:47	1
Bromoform	<1.0			ug/L			05/17/21 14:47	1.
Isopropylbenzene	<1.0			ug/L			05/17/21 14:47	1
Bromobenzene	<1.0			ug/L			05/17/21 14:47	1
1,1,2,2-Tetrachloroethane	<1.0			ug/L			05/17/21 14:47	1
1,2,3-Trichloropropane	<2.0			ug/L			05/17/21 14:47	1
N-Propylbenzene	<1.0			ug/L ug/L			05/17/21 14:47	1
2-Chlorotoluene	<1.0			ug/L ug/L			05/17/21 14:47	
2 Omorotoluene	×1.0	· ·	.0 0.31	ug/L			00/11/21 14:4/	1

Eurofins TestAmerica, Chicago

Client: Weston Solutions, Inc. Job ID: 500-198719-1

Project/Site: Black and Decker

Client Sample ID: EW-2 Lab Sample ID: 500-198719-16 Date Collected: 05/05/21 08:55

Matrix: Water

Date Received: 05/06/21 09:50

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			05/17/21 14:47	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			05/17/21 14:47	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 14:47	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			05/17/21 14:47	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 14:47	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			05/17/21 14:47	1
p-isopropyltoluene	<1.0	1.0	0.36	ug/L			05/17/21 14:47	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			05/17/21 14:47	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			05/17/21 14:47	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			05/17/21 14:47	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			05/17/21 14:47	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			05/17/21 14:47	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			05/17/21 14:47	1
Naphthalene	<1.0	1.0	0.34	ug/L			05/17/21 14:47	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			05/17/21 14:47	1

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102	75 - 126	0	5/17/21 14:47	1
Toluene-d8 (Surr)	94	75 - 120	0	5/17/21 14:47	1
4-Bromofluorobenzene (Surr)	86	72 - 124	0	5/17/21 14:47	1
Dibromofluoromethane	112	75 - 120	0	5/17/21 14:47	1

Client: Weston Solutions, Inc.

Job ID: 500-198719-1

Project/Site: Black and Decker

Client Sample ID: EW-3

Date Collected: 05/05/21 09:55
Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-17

Matrix: Water

Method: 8260B - VOC

Method: 8260B - VOC								
Analyte	Result Qualifier	· RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene	<0.50	0.50	0.15	ug/L			05/17/21 15:15	1
Dichlorodifluoromethane	<3.0	3.0	0.67	ug/L			05/17/21 15:15	1
Chloromethane	<1.0	1.0	0.32	ug/L			05/17/21 15:15	1
Vinyl chloride	<1.0	1.0	0.20	ug/L			05/17/21 15:15	1
Bromomethane	<3.0	3.0	0.80	ug/L			05/17/21 15:15	1
Chloroethane	<1.0	1.0	0.51	ug/L			05/17/21 15:15	1
Trichlorofluoromethane	<1.0	1.0	0.43	ug/L			05/17/21 15:15	1
1,1-Dichloroethene	<1.0	1.0	0.39	ug/L			05/17/21 15:15	1
Carbon disulfide	<2.0	2.0	0.45	ug/L			05/17/21 15:15	1
Acetone	<10	10		ug/L			05/17/21 15:15	1
Methylene Chloride	<5.0	5.0		ug/L			05/17/21 15:15	1
trans-1,2-Dichloroethene	<1.0	1.0		ug/L			05/17/21 15:15	1
1,1-Dichloroethane	<1.0	1.0		ug/L			05/17/21 15:15	1
2,2-Dichloropropane	<1.0	1.0		ug/L			05/17/21 15:15	1
cis-1,2-Dichloroethene	1.5	1.0		ug/L			05/17/21 15:15	1
Methyl Ethyl Ketone	<5.0	5.0		ug/L			05/17/21 15:15	1
Bromochloromethane	<1.0	1.0	0.43	_			05/17/21 15:15	1
Chloroform	<2.0	2.0		ug/L			05/17/21 15:15	1
1,1,1-Trichloroethane	<1.0	1.0		ug/L			05/17/21 15:15	1
1,1-Dichloropropene	<1.0	1,0		ug/L			05/17/21 15:15	1
Carbon tetrachloride	<1.0	1.0		ug/L			05/17/21 15:15	1
1.2-Dichloroethane	<1.0	1.0		ug/L			05/17/21 15:15	1
Trichloroethene	16	0.50		ug/L ug/L			05/17/21 15:15	1
1,2-Dichloropropane	<1.0	1.0		ug/L ug/L			05/17/21 15:15	1
Dibromomethane	<1.0	1.0		ug/L ug/L			05/17/21 15:15	1
Bromodichloromethane	<1.0	1.0		ug/L ug/L			05/17/21 15:15	1
cis-1,3-Dichloropropene	<1.0	1.0		ug/L ug/L			05/17/21 15:15	1
methyl isobutyl ketone	<5.0	5.0		ug/L ug/L			05/17/21 15:15	1
Toluene	<0.50	0.50		ug/L ug/L			05/17/21 15:15	1
trans-1,3-Dichloropropene	<1.0	1.0		ug/L ug/L			05/17/21 15:15	
1,1,2-Trichloroethane	<1.0	1.0		ug/L ug/L				1
	0.65 J	1.0		ug/L ug/L			05/17/21 15:15 05/17/21 15:15	1
Tetrachloroethene								1
1,3-Dichloropropane 2-Hexanone	<1.0 <5.0	1.0 5.0		ug/L			05/17/21 15:15 05/17/21 15:15	1
Dibromochloromethane				ug/L				1
	<1.0	1.0		ug/L			05/17/21 15:15	1
1,2-Dibromoethane	<1.0	1.0		ug/L			05/17/21 15:15	1
Chlorobenzene	<1.0	1.0		ug/L			05/17/21 15:15	1
1,1,1,2-Tetrachloroethane	<1.0	1.0		ug/L			05/17/21 15:15	1
Ethylbenzene	<0.50	0.50		ug/L			05/17/21 15:15	1
m&p-Xylene	<1.0	1.0		ug/L			05/17/21 15:15	1
o-Xylene	<0.50	0.50		ug/L			05/17/21 15:15	1
Styrene	<1.0	1.0		ug/L			05/17/21 15:15	1
Bromoform	<1.0	1.0		ug/L			05/17/21 15:15	1
Isopropylbenzene	<1.0	1.0		ug/L			05/17/21 15:15	1
Bromobenzene	<1.0	1.0		ug/L			05/17/21 15:15	1
1,1,2,2-Tetrachloroethane	<1.0	1.0		ug/L			05/17/21 15:15	1
1,2,3-Trichloropropane	<2.0	2.0		ug/L			05/17/21 15:15	1
N-Propylbenzene	<1.0	1.0		ug/L			05/17/21 15:15	1
2-Chlorotoluene	<1.0	1.0	0.31	ug/L			05/17/21 15:15	1

Eurofins TestAmerica, Chicago

Client: Weston Solutions, Inc. Project/Site: Black and Decker Job ID: 500-198719-1

Client Sample ID: EW-3

Lab Sample ID: 500-198719-17

Date Collected: 05/05/21 09:55 Date Received: 05/06/21 09:50

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			05/17/21 15:15	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			05/17/21 15:15	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 15:15	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			05/17/21 15:15	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 15:15	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			05/17/21 15:15	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			05/17/21 15:15	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			05/17/21 15:15	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			05/17/21 15:15	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			05/17/21 15:15	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			05/17/21 15:15	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			05/17/21 15:15	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			05/17/21 15:15	1
Naphthalene	<1.0	1.0	0.34	ug/L			05/17/21 15:15	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			05/17/21 15:15	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		75 - 126	05/17/21 15:15	1
Toluene-d8 (Surr)	93		75 - 120	05/17/21 15:15	1
4-Bromofluorobenzene (Surr)	87		72 - 124	05/17/21 15:15	1
Dibromofluoromethane	113		75 - 120	05/17/21 15:15	1

Client: Weston Solutions, Inc. Job ID: 500-198719-1 Project/Site: Black and Decker

Client Sample ID: EW-4

Lab Sample ID: 500-198719-18 Date Collected: 05/05/21 12:05 Matrix: Water

Date Received: 05/06/21 09:50

Method: 8260B - VOC Analyte	Result Qualifier	RL	MIDI	Unit	D Brongrad	Anglezod	Dil Ea-
Benzene	<0.50 Result Qualifier			ug/L	D Prepared	Analyzed 05/17/21 15:44	Dil Fac
Dichlorodifluoromethane	<3.0	3.0		ug/L ug/L			
Chloromethane	<1.0	1.0		ug/L ug/L		05/17/21 15:44 05/17/21 15:44	1
Vinyl chloride	<1.0	1.0		ug/L			
Bromomethane	<3.0	3.0				05/17/21 15:44	1
Chloroethane	<1.0	1.0		ug/L ug/L		05/17/21 15:44	1
Trichlorofluoromethane	<1.0	1.0		ug/L ug/L		05/17/21 15:44 05/17/21 15:44	1
1,1-Dichloroethene	<1.0	1.0					1
Carbon disulfide	<2.0	2.0		ug/L ug/L		05/17/21 15:44	1
Acetone						05/17/21 15:44	1
	<10	10		ug/L		05/17/21 15:44	1
Methylene Chloride	<5.0	5.0		ug/L		05/17/21 15:44	1
trans-1,2-Dichloroethene	<1.0	1.0		ug/L		05/17/21 15:44	1
1,1-Dichloroethane	<1.0	1.0		ug/L		05/17/21 15:44	1
2,2-Dichloropropane	<1.0	1.0		ug/L		05/17/21 15:44	1
cis-1,2-Dichloroethene	<1.0	1.0		ug/L		05/17/21 15:44	1
Methyl Ethyl Ketone	<5.0	5.0		ug/L		05/17/21 15:44	1
Bromochloromethane	<1.0	1.0		ug/L		05/17/21 15:44	1
Chloroform	<2.0	2.0		ug/L		05/17/21 15:44	1
1,1,1-Trichloroethane	<1.0	1.0		ug/L		05/17/21 15:44	1
1,1-Dichloropropene	<1.0	1.0		ug/L		05/17/21 15:44	1
Carbon tetrachloride	<1.0	1.0		ug/L		05/17/21 15:44	1
1,2-Dichloroethane	<1.0	1.0		ug/L		05/17/21 15:44	1
Trichloroethene	7.2	0.50		ug/L		05/17/21 15:44	1
1,2-Dichloropropane	<1.0	1.0		ug/L		05/17/21 15:44	1
Dibromomethane	<1.0	1.0		ug/L		05/17/21 15:44	1
Bromodichloromethane	<1.0	1.0		ug/L		05/17/21 15:44	1
cis-1,3-Dichloropropene	<1.0	1.0		ug/L		05/17/21 15:44	1
methyl isobutyl ketone	<5.0	5.0		ug/L		05/17/21 15:44	1
Toluene	<0.50	0.50		ug/L		05/17/21 15:44	1
trans-1,3-Dichloropropene	<1.0	1.0		ug/L		05/17/21 15:44	1
1,1,2-Trichloroethane	<1.0	1.0	0.35	ug/L		05/17/21 15:44	1
Tetrachloroethene	3 .7	1.0	0.37	ug/L		05/17/21 15:44	1
1,3-Dichloropropane	<1.0	1.0	0.36	ug/L		05/17/21 15:44	1
2-Hexanone	<5.0	5.0		ug/L		05/17/21 15:44	1
Dibromochloromethane	<1.0	1.0	0.49	ug/L		05/17/21 15:44	1
1,2-Dibromoethane	<1.0	1.0	0.39	ug/L		05/17/21 15:44	1
Chlorobenzene	<1.0	1.0	0.39	ug/L		05/17/21 15:44	1
1,1,1,2-Tetrachloroethane	<1.0	1.0		ug/L		05/17/21 15:44	1
Ethylbenzene	<0.50	0.50	0.18	ug/L		05/17/21 15:44	1
m&p-Xylene	<1.0	1.0	0.18	ug/L		05/17/21 15:44	1
o-Xylene	<0.50	0.50	0.22	ug/L		05/17/21 15:44	1
Styrene	<1.0	1.0	0.39	ug/L		05/17/21 15:44	1
Bromoform	<1.0	1.0	0.48	ug/L		05/17/21 15:44	1
Isopropylbenzene	<1.0	1.0	0.39	ug/L		05/17/21 15:44	1
Bromobenzene	<1.0	1.0	0.36	ug/L		05/17/21 15:44	1
1,1,2,2-Tetrachloroethane	<1.0	1.0	0.40	ug/L		05/17/21 15:44	1
1,2,3-Trichloropropane	<2.0	2.0	0.41	ug/L		05/17/21 15:44	1
N-Propylbenzene	<1.0	1.0	0.41	ug/L		05/17/21 15:44	1
2-Chlorotoiuene	<1.0	1.0	0.31	ug/L		05/17/21 15:44	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: EW-4

Date Collected: 05/05/21 12:05 Date Received: 05/06/21 09:50 Job ID: 500-198719-1

Lab Sample ID: 500-198719-18

Matrix: Water

Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<1.0	1.0	0.25	ug/L	11.50	WA	05/17/21 15:44	1
<1.0	1.0	0.35	ug/L			05/17/21 15:44	1
<1.0	1.0	0.40	ug/L			05/17/21 15:44	1
<1.0	1.0	0.36	ug/L			05/17/21 15:44	1
<1.0	1.0	0.40	ug/L			05/17/21 15:44	1
<1.0	1.0	0.40	ug/L			05/17/21 15:44	1
<1.0	1.0	0.36	ug/L			05/17/21 15:44	1
<1.0	1.0	0.36	ug/L			05/17/21 15:44	1
<1.0	1.0	0.39	ug/L			05/17/21 15:44	1
<1.0	1.0	0.33	ug/L			05/17/21 15:44	1
<5.0	5.0	2.0	ug/L			05/17/21 15:44	1
<1.0	1.0	0.34	ug/L			05/17/21 15:44	1
<1.0	1.0	0.45	ug/L			05/17/21 15:44	1
<1.0	1.0	0.34	ug/L			05/17/21 15:44	1
<1.0	1.0	0.46	ug/L			05/17/21 15:44	1
	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105	75 - 126	05/17/21 15:44	1
Toluene-d8 (Surr)	94	75 - 120	05/17/21 15:44	1
4-Bromofluorobenzene (Surr)	87	72 - 124	05/17/21 15:44	. 1
Dibromofluoromethane	113	75 - 120	05/17/21 15:44	. 1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: EW-5 Date Collected: 05/05/21 08:45 Lab Sample ID: 500-198719-19 Matrix: Water

Job ID: 500-198719-1

Date Received: 05/06/21 09:50

Method: 8260B - VO	d: 8260B - V	OC
--------------------	--------------	----

Method: 8260B - VOC									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50	0.15				05/17/21 16:13	1
Dichlorodifluoromethane	<3.0		3.0	0.67				05/17/21 16:13	1
Chloromethane	<1.0		1.0	0.32				05/17/21 16:13	1
Vinyl chloride	<1.0		1.0	0.20	-			05/17/21 16:13	1
Bromomethane	<3.0		3.0	0.80				05/17/21 16:13	1
Chloroethane	<1.0		1.0	0.51	ug/L			05/17/21 16:13	1
Trichlorofluoromethane	<1.0		1.0	0.43	ug/L			05/17/21 16:13	1
1,1-Dichloroethene	<1.0		1.0	0.39	ug/L			05/17/21 16:13	1
Carbon disulfide	<2.0		2.0	0.45	ug/L			05/17/21 16:13	1
Acetone	<10		10		ug/L			05/17/21 16:13	1
Methylene Chloride	<5.0		5.0	1.6	ug/L			05/17/21 16:13	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			05/17/21 16:13	1
1,1-Dichloroethane	<1.0		1.0	0.41	ug/L			05/17/21 16:13	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			05/17/21 16:13	1
cis-1,2-Dichloroethene	<1.0		1.0	0.41	ug/L			05/17/21 16:13	1
Methyl Ethyl Ketone	<5.0		5.0	2.1	ug/L			05/17/21 16:13	1
Bromochloromethane	<1.0		1.0	0.43	ug/L			05/17/21 16:13	1
Chloroform	<2.0		2.0	0.37	ug/L			05/17/21 16:13	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	ug/L			05/17/21 16:13	1
1,1-Dichloropropene	<1.0		1.0	0.30	ug/L			05/17/21 16:13	1
Carbon tetrachloride	<1.0		1.0	0.38	ug/L			05/17/21 16:13	1
1,2-Dichloroethane	<1.0		1.0	0.39	ug/L			05/17/21 16:13	1
Trichloroethene	62		0.50	0.16	ug/L			05/17/21 16:13	1
1,2-Dichloropropane	<1.0		1.0	0.43				05/17/21 16:13	1
Dibromomethane	<1.0		1.0		ug/L			05/17/21 16:13	1
Bromodichloromethane	<1.0		1.0	0.37	ug/L			05/17/21 16:13	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42	ug/L			05/17/21 16:13	1
methyl isobutyl ketone	<5.0		5.0		ug/L			05/17/21 16:13	1
Toluene	< 0.50		0.50		ug/L			05/17/21 16:13	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			05/17/21 16:13	1
1,1,2-Trichloroethane	<1.0		1.0	0.35	•			05/17/21 16:13	1
Tetrachloroethene	1.7		1.0		ug/L			05/17/21 16:13	1
1,3-Dichloropropane	<1.0		1.0		ug/L			05/17/21 16:13	1
2-Hexanone	<5.0		5.0		ug/L			05/17/21 16:13	1
Dibromochloromethane	<1.0		1.0		ug/L			05/17/21 16:13	1
1,2-Dibromoethane	<1.0		1.0		ug/L			05/17/21 16:13	1
Chlorobenzene	<1.0		1.0	0.39	•			05/17/21 16:13	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46				05/17/21 16:13	1
Ethylbenzene	<0.50		0.50		ug/L			05/17/21 16:13	1
m&p-Xylene	<1.0		1.0		ug/L			05/17/21 16:13	1
o-Xylene	<0.50		0.50		ug/L			05/17/21 16:13	1
Styrene	<1.0		1.0		ug/L			05/17/21 16:13	1
Bromoform	<1.0		1.0		ug/L			05/17/21 16:13	1
Isopropylbenzene	<1.0		1.0		ug/L			05/17/21 16:13	
Bromobenzene	<1.0		1.0		ug/L ug/L			05/17/21 16:13	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L ug/L			05/17/21 16:13	1
1,2,3-Trichloropropane	<2.0		2.0						1
N-Propylbenzene	<1.0				ug/L			05/17/21 16:13	1
• •			1.0		ug/L			05/17/21 16:13	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			05/17/21 16:13	1

Client: Weston Solutions, Inc.

Job ID: 500-198719-1 Project/Site: Black and Decker

Client Sample ID: EW-5 Date Collected: 05/05/21 08:45 Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-19

Matrix: Water

Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<1.0	1.0	0.25	ug/L			05/17/21 16:13	1
<1.0	1.0	0.35	ug/L			05/17/21 16:13	1
<1.0	1.0	0.40	ug/L			05/17/21 16:13	1
<1.0	1.0	0.36	ug/L			05/17/21 16:13	1
<1.0	1.0	0.40	ug/L			05/17/21 16:13	1
<1.0	1.0	0.40	ug/L			05/17/21 16:13	1
<1.0	1.0	0.36	ug/L			05/17/21 16:13	1
<1.0	1.0	0.36	ug/L			05/17/21 16:13	1
<1.0	1.0	0.39	ug/L			05/17/21 16:13	1
<1.0	1.0	0.33	ug/L			05/17/21 16:13	1
<5.0	5.0	2.0	ug/L			05/17/21 16:13	1
<1.0	1.0	0.34	ug/L			05/17/21 16:13	1
<1.0	1.0	0.45	ug/L			05/17/21 16:13	1
<1.0	1.0	0.34	ug/L		•	05/17/21 16:13	1
<1.0	1.0	0.46	ug/L			05/17/21 16:13	1
	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105	75 - 126	05/17/21 16:13	1
Toluene-d8 (Surr)	93	75 - 120	05/17/21 16:13	1
4-Bromofluorobenzene (Surr)	87	72 - 124	05/17/21 16:13	1
Dibromofluoromethane	113	75 - 120	05/17/21 16:13	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Job ID: 500-198719-1

Client Sample ID: EW-6 Date Collected: 05/04/21 15:55 Lab Sample ID: 500-198719-20 Matrix: Water

Date Received: 05/06/21 09:50

Method: 8260B - VOC Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50	0.15		- -		05/17/21 16:42	1
Dichlorodifluoromethane	<3.0		3.0		ug/L			05/17/21 16:42	1
Chloromethane	<1.0		1.0	0.32	-			05/17/21 16:42	1
Vinyl chloride	<1.0		1.0	0.20				05/17/21 16:42	1
Bromomethane	<3.0		3.0	0.80	-			05/17/21 16:42	1
Chloroethane	<1.0		1.0		ug/L			05/17/21 16:42	1
Trichlorofluoromethane	<1.0		1.0	0.43	-			05/17/21 16:42	1
1,1-Dichloroethene	<1.0		1.0	0.39				05/17/21 16:42	1
Carbon disulfide	<2.0		2.0	0.45	_			05/17/21 16:42	1
Acetone	<10		10		ug/L			05/17/21 16:42	1
Methylene Chloride	<5.0		5.0		ug/L			05/17/21 16:42	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			05/17/21 16:42	1
1,1-Dichloroethane	<1.0		1.0	0.41	_			05/17/21 16:42	1
2,2-Dichloropropane	<1.0		1.0	0.44	-			05/17/21 16:42	1
cis-1,2-Dichloroethene	<1.0		1.0	0.41	-			05/17/21 16:42	1
Methyl Ethyl Ketone	<5.0		5.0		ug/L			05/17/21 16:42	1
Bromochloromethane	<1.0		1.0	0.43	_			05/17/21 16:42	1
Chloroform	<2.0		2.0	0.43				05/17/21 16:42	1
1,1,1-Trichloroethane	<1.0		1.0	0.38				05/17/21 16:42	1
1,1-Dichloropropene	<1.0		1.0	0.30				05/17/21 16:42	
Carbon tetrachloride	<1.0		1.0	0.38				05/17/21 16:42	1
1.2-Dichloroethane	<1.0		1.0		ug/L ug/L				1
Trichloroethene	3.0		0.50	0.39				05/17/21 16:42	1
1,2-Dichloropropane	3.0 <1.0		1.0					05/17/21 16:42	1
Dibromomethane	<1.0		1.0	0.43				05/17/21 16:42	1
Bromodichloromethane	<1.0		1.0	0.27				05/17/21 16:42	1
cis-1,3-Dichloropropene	<1.0		1.0	0.37				05/17/21 16:42	1
methyl isobutyl ketone	< 5.0			0.42	_			05/17/21 16:42	1
Toluene	<0.50		5.0 0.50		ug/L			05/17/21 16:42	1
trans-1,3-Dichloropropene	<1.0				ug/L			05/17/21 16:42	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			05/17/21 16:42	1
			1.0		ug/L			05/17/21 16:42	1
Tetrachloroethene 1,3-Dichloropropane	5 .7 <1.0		1.0	0.37	_			05/17/21 16:42	1
2-Hexanone	< 5.0		1.0 5.0	0.36	_			05/17/21 16:42	1
Dibromochloromethane	<1.0		1.0		ug/L			05/17/21 16:42	1
1,2-Dibromoethane	<1.0		1.0		ug/L			05/17/21 16:42	1
Chlorobenzene	<1.0				ug/L			05/17/21 16:42	1
			1.0		ug/L			05/17/21 16:42	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46				05/17/21 16:42	1
Ethylbenzene m&p-Xylene	<0.50		0.50		ug/L			05/17/21 16:42	1
• •	<1.0		1.0		ug/L			05/17/21 16:42	1
o-Xylene	<0.50		0.50		ug/L			05/17/21 16:42	1
Styrene Bromoform	<1.0 <1.0		1.0		ug/L			05/17/21 16:42	1
			1.0		ug/L			05/17/21 16:42	1
Isopropylbenzene Bromehonzene	<1.0		1.0		ug/L			05/17/21 16:42	1
Bromobenzene	<1.0		1.0		ug/L			05/17/21 16:42	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			05/17/21 16:42	1
1,2,3-Trichloropropane	<2.0		2.0		ug/L			05/17/21 16:42	1
N-Propylbenzene	<1.0		1.0		ug/L			05/17/21 16:42	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			05/17/21 16:42	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Job ID: 500-198719-1

Client Sample ID: EW-6

Date Received: 05/06/21 09:50

Date Collected: 05/04/21 15:55

Lab Sample ID: 500-198719-20 Matrix: Water

Method, 62000 - VOC (Contil	iueu)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			05/17/21 16:42	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			05/17/21 16:42	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 16:42	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			05/17/21 16:42	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 16:42	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			05/17/21 16:42	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			05/17/21 16:42	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			05/17/21 16:42	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			05/17/21 16:42	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			05/17/21 16:42	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			05/17/21 16:42	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			05/17/21 16:42	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			05/17/21 16:42	1
Naphthalene	<1.0	1.0	0.34	ug/L			05/17/21 16:42	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			05/17/21 16:42	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	75 - 126	05/17/21 16:42	1
Toluene-d8 (Surr)	94	75 - 120	05/17/21 16:42	1
4-Bromofluorobenzene (Surr)	85	72 - 124	05/17/21 16:42	1
Dibromofluoromethane	112	75 - 120	05/17/21 16:42	1

Client: Weston Solutions, Inc. Job ID: 500-198719-1 Project/Site: Black and Decker

Client Sample ID: EW-7

Lab Sample ID: 500-198719-21 Date Collected: 05/04/21 16:00 Matrix: Water Date Received: 05/06/21 09:50

Method: 8260B - VOC

Method: 8260B - VOC	Desult	0	. MDI	11!4	_		A I 1	D.: -
Analyte Benzene	<0.50	Qualifier R		Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane		0.5		ug/L			05/17/21 17:11	1
Chloromethane	<3.0	3		ug/L			05/17/21 17:11	1
	<1.0	1		ug/L			05/17/21 17:11	1
Vinyl chloride	<1.0	1		ug/L			05/17/21 17:11	1
Bromomethane Chloroethane	<3.0	3		ug/L			05/17/21 17:11	1
	<1.0	1		ug/L			05/17/21 17:11	1
Trichlorofluoromethane	<1.0	1		ug/L			05/17/21 17:11	1
1,1-Dichloroethene	<1.0	1		ug/L			05/17/21 17:11	1
Carbon disulfide	<2.0	2		ug/L			05/17/21 17:11	1
Acetone	<10			ug/L			05/17/21 17:11	1
Methylene Chloride	<5.0	5		ug/L			05/17/21 17:11	1
trans-1,2-Dichloroethene	<1.0	1		ug/L			05/17/21 17:11	1
1,1-Dichloroethane	<1.0	1		ug/L			05/17/21 17:11	1
2,2-Dichloropropane	<1.0	1		ug/L			05/17/21 17:11	1
cis-1,2-Dichloroethene	3.8	1		ug/L			05/17/21 17:11	1
Methyl Ethyl Ketone	<5.0	5		ug/L			05/17/21 17:11	1
Bromochloromethane	<1.0	1	0 0.43	ug/L			05/17/21 17:11	1
Chloroform	<2.0	2	0 0.37	ug/L			05/17/21 17:11	1
1,1,1-Trichloroethane	<1.0	1	0 0.38	ug/L			05/17/21 17:11	1
1,1-Dichloropropene	<1.0	1	0 0.30	ug/L			05/17/21 17:11	1
Carbon tetrachloride	<1.0	1	0 0.38	ug/L			05/17/21 17:11	1
1,2-Dichloroethane	<1.0	1	0 0.39	ug/L			05/17/21 17:11	1
Trichloroethene	2.6	0.5	0 0.16	ug/L			05/17/21 17:11	1
1,2-Dichloropropane	<1.0	1	0 0.43	ug/L			05/17/21 17:11	1
Dibromomethane	<1.0	1	0 0.27	ug/L			05/17/21 17:11	1
Bromodichloromethane	<1.0	1	0 0.37	ug/L			05/17/21 17:11	1
cis-1,3-Dichloropropene	<1.0	1	0 0.42	ug/L			05/17/21 17:11	1
methyl isobutyl ketone	<5.0	5	0 2.2	ug/L			05/17/21 17:11	1
Toluene	<0.50	0.5	0 0.15	ug/L			05/17/21 17:11	1
trans-1,3-Dichloropropene	<1.0	1	0 0.36	ug/L			05/17/21 17:11	1
1,1,2-Trichloroethane	<1.0	1	0 0.35	ug/L			05/17/21 17:11	1
Tetrachloroethene	6.8	1	0 0.37	ug/L			05/17/21 17:11	1
1,3-Dichloropropane	<1.0	1	0 0.36	ug/L			05/17/21 17:11	1
2-Hexanone	<5.0	5		ug/L			05/17/21 17:11	1
Dibromochloromethane	<1.0	1		ug/L			05/17/21 17:11	1
1,2-Dibromoethane	<1.0	1		ug/L			05/17/21 17:11	1
Chlorobenzene	<1.0	1	0 0.39	ug/L			05/17/21 17:11	1
1,1,1,2-Tetrachloroethane	<1.0	1		ug/L			05/17/21 17:11	1
Ethylbenzene	<0.50	0.5		ug/L			05/17/21 17:11	1
m&p-Xylene	<1.0	1		ug/L			05/17/21 17:11	1
o-Xylene	<0.50	0.5		ug/L			05/17/21 17:11	1
Styrene	<1.0	1		ug/L			05/17/21 17:11	1
Bromoform	<1.0	. 1		ug/L			05/17/21 17:11	1
Isopropylbenzene	<1.0	1		ug/L			05/17/21 17:11	1
Bromobenzene	<1.0	1		ug/L			05/17/21 17:11	1
1,1,2,2-Tetrachloroethane	<1.0	1		ug/L			05/17/21 17:11	1
1,2,3-Trichloropropane	<2.0	2		ug/L			05/17/21 17:11	1
N-Propylbenzene	<1.0	1		ug/L			05/17/21 17:11	1
2-Chlorotoluene	<1.0	1		ug/L			05/17/21 17:11	1

Eurofins TestAmerica, Chicago

Page 49 of 82 5/18/2021

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Job ID: 500-198719-1

Client Sample ID: EW-7

Lab Sample ID: 500-198719-21

Date Collected: 05/04/21 16:00 Date Received: 05/06/21 09:50

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L		100 TO 10 TO 100	05/17/21 17:11	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			05/17/21 17:11	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 17:11	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			05/17/21 17:11	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 17:11	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			05/17/21 17:11	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			05/17/21 17:11	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			05/17/21 17:11	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			05/17/21 17:11	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			05/17/21 17:11	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			05/17/21 17:11	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			05/17/21 17:11	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			05/17/21 17:11	1
Naphthalene	<1.0	1.0	0.34	ug/L			05/17/21 17:11	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			05/17/21 17:11	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102	75 - 126	05/17/21 17:11	1
Toluene-d8 (Surr)	95	75 - 120	05/17/21 17:11	1
4-Bromofluorobenzene (Surr)	87	72 - 124	05/17/21 17:11	1
Dibromofluoromethane	111	75 - 120	05/17/21 17:11	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Job ID: 500-198719-1

Client Sample ID: EW-8

Lab Sample ID: 500-198719-22

Date Collected: 05/04/21 16:10 Date Received: 05/06/21 09:50

Matrix: Water

Method: 8260B - VOC

Method: 8260B - VOC	D #	0 15			_			
Analyte Benzene		Qualifier		L Unit		Prepared	Analyzed	Dil Fac
	<0.50	ı		5 ug/L			05/17/21 17:40	1
Dichlorodifluoromethane	<3.0			7 ug/L			05/17/21 17:40	1
Chloromethane	<1.0			2 ug/L			05/17/21 17:40	1
Vinyl chloride	<1.0			0 ug/L			05/17/21 17:40	1
Bromomethane	<3.0		3.0 0.8	•			05/17/21 17:40	1
Chloroethane	<1.0		1.0 0.5	•			05/17/21 17:40	1
Trichlorofluoromethane	<1.0			3 ug/L			05/17/21 17:40	1
1,1-Dichloroethene	<1.0			9 ug/L			05/17/21 17:40	1
Carbon disulfide	<2.0			5 ug/L			05/17/21 17:40	1
Acetone	<10			7 ug/L			05/17/21 17:40	1
Methylene Chloride	<5.0			3 ug/L			05/17/21 17:40	1
trans-1,2-Dichloroethene	<1.0			5 ug/L			05/17/21 17:40	1
1,1-Dichloroethane	0.74	J		1 ug/L			05/17/21 17:40	1
2,2-Dichloropropane	<1.0			4 ug/L			05/17/21 17:40	1
cis-1,2-Dichloroethene	26		1.0 0.4	1 ug/L			05/17/21 17:40	1
Methyl Ethyl Ketone	<5.0		5.0 2.	1 ug/L			05/17/21 17:40	1
Bromochloromethane	<1.0		1.0 0.4	3 ug/L			05/17/21 17:40	1
Chloroform	<2.0		2.0 0.3	7 ug/L			05/17/21 17:40	1
1,1,1-Trichloroethane	<1.0		1.0 0.3	B ug/L			05/17/21 17:40	1
1,1-Dichloropropene	<1.0		1.0 0.3	0 ug/L			05/17/21 17:40	1
Carbon tetrachloride	<1.0		1.0 0.3	8 ug/L			05/17/21 17:40	1
1,2-Dichloroethane	<1.0		1.0 0.3	9 ug/L			05/17/21 17:40	1
Trichloroethene	5.7	1	0.50 0.1	3 ug/L			05/17/21 17:40	1
1,2-Dichloropropane	<1.0		1.0 0.4	3 ug/L			05/17/21 17:40	1
Dibromomethane	<1.0		1.0 0.2	7 ug/L			05/17/21 17:40	1
Bromodichloromethane	<1.0		1.0 0.3	7 ug/L			05/17/21 17:40	1
cis-1,3-Dichloropropene	<1.0		1.0 0.4	2 ug/L			05/17/21 17:40	1
methyl isobutyl ketone	<5.0		5.0 2.	2 ug/L			05/17/21 17:40	1
Toluene	<0.50			- 5 ug/L			05/17/21 17:40	1
trans-1,3-Dichloropropene	<1.0			o ug/L			05/17/21 17:40	. 1
1,1,2-Trichloroethane	<1.0			5 ug/L			05/17/21 17:40	1
Tetrachloroethene	58			7 ug/L			05/17/21 17:40	1
1,3-Dichloropropane	<1.0			3 ug/L			05/17/21 17:40	1
2-Hexanone	<5.0			3 ug/L			05/17/21 17:40	1
Dibromochloromethane	<1.0		1.0 0.4	_			05/17/21 17:40	1
1,2-Dibromoethane	<1.0			9 ug/L			05/17/21 17:40	1
Chlorobenzene	<1.0			9 ug/L			05/17/21 17:40	1
1,1,1,2-Tetrachloroethane	<1.0			3 ug/L			05/17/21 17:40	1
Ethylbenzene	<0.50			B ug/L			05/17/21 17:40	1
m&p-Xylene	<1.0			8 ug/L			05/17/21 17:40	1
o-Xylene	<0.50			2 ug/L			05/17/21 17:40	1
Styrene	<1.0			g ug/L			05/17/21 17:40	1
Bromoform	<1.0			8 ug/L			05/17/21 17:40	1
Isopropylbenzene	<1.0			9 ug/L			05/17/21 17:40	1
Bromobenzene	<1.0			o ug/L 6 ug/L			05/17/21 17:40	1
1,1,2,2-Tetrachloroethane	<1.0			o ug/L o ug/L			05/17/21 17:40	
1,2,3-Trichloropropane	<2.0			o ug/L 1 ug/L			05/17/21 17:40	1 1
N-Propylbenzene	<1.0			i ug/L 1 ug/L				
2-Chlorotoluene	<1.0			-			05/17/21 17:40	1
2-Gradiotoluene	<1.0		1.0 0.3	1 ug/L			05/17/21 17:40	1

Client: Weston Solutions, Inc.

Job ID: 500-198719-1

Project/Site: Black and Decker

Client Sample ID: EW-8

Date Collected: 05/04/21 16:10

Lab Sample ID: 500-198719-22

Matrix: Water

Date Received: 05/06/21 09:50

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25 ug/L		05/17/21 17:40	1
4-Chlorotoluene	<1.0	1.0	0.35 ug/L		05/17/21 17:40	1
tert-Butylbenzene	<1.0	1.0	0.40 ug/L		05/17/21 17:40	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36 ug/L		05/17/21 17:40	1
sec-Butylbenzene	<1.0	1.0	0.40 ug/L		05/17/21 17:40	1
1,3-Dichlorobenzene	<1.0	1.0	0.40 ug/L		05/17/21 17:40	1
p-Isopropyltoluene	<1.0	1.0	0.36 ug/L		05/17/21 17:40	1
1,4-Dichlorobenzene	<1.0	1.0	0.36 ug/L		05/17/21 17:40	1
n-Butylbenzene	<1.0	1.0	0.39 ug/L		05/17/21 17:40	1
1,2-Dichlorobenzene	<1.0	1.0	0.33 ug/L		05/17/21 17:40	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0 ug/L		05/17/21 17:40	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34 ug/L		05/17/21 17:40	1
Hexachlorobutadiene	<1.0	1.0	0.45 ug/L		05/17/21 17:40	1
Naphthalene	<1.0	1.0	0.34 ug/L		05/17/21 17:40	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46 ug/L		05/17/21 17:40	1

Surrogate	%Recovery Qualific	er Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	75 - 126		05/17/21 17:40	1
Toluene-d8 (Surr)	94	75 - 120	(05/17/21 17:40	1
4-Bromofluorobenzene (Surr)	87	72 - 124	(05/17/21 17:40	1
Dibromofluoromethane	111	75 - 120	(05/17/21 17:40	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Lab Sample ID: 500-198719-23

Client Sample ID: EW-9 Date Collected: 05/04/21 16:15 Date Received: 05/06/21 09:50

Matrix: Water

Job ID: 500-198719-1

Method: 8260B - VOC Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50	0.50	0.15			7.1004104	05/17/21 18:09	1
Dichlorodifluoromethane	<3.0	3.0	0.67				05/17/21 18:09	1
Chloromethane	<1.0	1.0	0.32	-			05/17/21 18:09	1
Vinyl chloride	<1.0	1.0	0.20	-			05/17/21 18:09	1
Bromomethane	<3.0	3.0	0.80				05/17/21 18:09	1
Chloroethane	<1.0	1.0	0.51	-			05/17/21 18:09	1
Trichlorofluoromethane	<1.0	1.0	0.43				05/17/21 18:09	1
1,1-Dichloroethene	<1.0	1.0	0.39	-			05/17/21 18:09	1
Carbon disulfide	<2.0	2.0	0.45	-			05/17/21 18:09	1
Acetone	<10	10		ug/L			05/17/21 18:09	1
Methylene Chloride	<5.0	5.0		ug/L			05/17/21 18:09	1
trans-1,2-Dichloroethene	<1.0	1.0	0.35	-			05/17/21 18:09	1
1,1-Dichloroethane	<1.0	1.0	0.41	-			05/17/21 18:09	1
2,2-Dichloropropane	<1.0	1.0	0.44				05/17/21 18:09	1
cis-1,2-Dichloroethene	<1.0	1.0	0.41	•			05/17/21 18:09	1
Methyl Ethyl Ketone	<5.0	5.0		ug/L			05/17/21 18:09	1
Bromochloromethane	<1.0	1.0	0.43				05/17/21 18:09	1
Chloroform	<2.0	2.0	0.43				05/17/21 18:09	1
1,1,1-Trichloroethane	<1.0	1.0	0.38	-			05/17/21 18:09	1
1,1-Dichloropropene	<1.0	1.0	0.30	•				
Carbon tetrachloride	<1.0	1.0		•			05/17/21 18:09	1
1.2-Dichloroethane	<1.0	1.0	0.38	-			05/17/21 18:09	1
Trichloroethene			0.39	-			05/17/21 18:09	1
	0.55	0.50	0.16				05/17/21 18:09	1
1,2-Dichloropropane Dibromomethane	<1.0	1.0	0.43				05/17/21 18:09	1
Bromodichloromethane	<1.0	1.0	0.27				05/17/21 18:09	1
	<1.0	1.0	0.37	-			05/17/21 18:09	1
cis-1,3-Dichloropropene	<1.0	1.0	0.42	-			05/17/21 18:09	1
methyl isobutyl ketone Toluene	<5.0	5.0		ug/L			05/17/21 18:09	1
	< 0.50	0.50	0.15				05/17/21 18:09	1
trans-1,3-Dichloropropene	<1.0	1.0	0.36				05/17/21 18:09	1
1,1,2-Trichloroethane	<1.0	1.0	0.35	-			05/17/21 18:09	1
Tetrachloroethene	67	1.0	0.37	-			05/17/21 18:09	1
1,3-Dichloropropane	<1.0	1.0	0.36	-			05/17/21 18:09	1
2-Hexanone	<5.0	5.0		ug/L			05/17/21 18:09	1
Dibromochloromethane	<1.0	1.0	0.49	•			05/17/21 18:09	1
1,2-Dibromoethane	<1.0	1.0	0.39	-			05/17/21 18:09	1
Chlorobenzene	<1.0	1.0	0.39	•			05/17/21 18:09	1
1,1,1,2-Tetrachloroethane	<1.0	1.0	0.46				05/17/21 18:09	1
Ethylbenzene	< 0.50	0.50	0.18				05/17/21 18:09	1
m&p-Xylene	<1.0	1.0	0.18				05/17/21 18:09	1
o-Xylene	<0.50	0.50	0.22				05/17/21 18:09	1
Styrene	<1.0	1.0	0.39	-			05/17/21 18:09	1
Bromoform	<1.0	1.0	0.48				05/17/21 18:09	1
Isopropylbenzene	<1.0	1.0	0.39				05/17/21 18:09	1
Bromobenzene	<1.0	1.0	0.36	•			05/17/21 18:09	1
1,1,2,2-Tetrachloroethane	<1.0	1.0	0.40				05/17/21 18:09	1
1,2,3-Trichloropropane	<2.0	2.0	0.41				05/17/21 18:09	1
N-Propylbenzene	<1.0	1.0	0.41	-			05/17/21 18:09	1
2-Chlorotoluene	<1.0	1.0	0.31	ug/L			05/17/21 18:09	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: EW-9

Date Collected: 05/04/21 16:15 Date Received: 05/06/21 09:50 Job ID: 500-198719-1

Lab Sample ID: 500-198719-23 Matrix: Water

Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
<1.0	1.0	0.25 ug/L			05/17/21 18:09	1
<1.0	1.0	0.35 ug/L			05/17/21 18:09	1
<1.0	1.0	0.40 ug/L			05/17/21 18:09	1
<1.0	1.0	0.36 ug/L			05/17/21 18:09	1
<1.0	1.0	0.40 ug/L			05/17/21 18:09	1
<1.0	1.0	0.40 ug/L			05/17/21 18:09	1
<1.0	1.0	0.36 ug/L			05/17/21 18:09	1
<1.0	1.0	0.36 ug/L			05/17/21 18:09	1
<1.0	1.0	0.39 ug/L			05/17/21 18:09	1
<1.0	1.0	0.33 ug/L			05/17/21 18:09	1
<5.0	5.0	2.0 ug/L			05/17/21 18:09	1
<1.0	1.0	0.34 ug/L			05/17/21 18:09	1
<1.0	1.0	0.45 ug/L			05/17/21 18:09	1
<1.0	1.0	0.34 ug/L			05/17/21 18:09	1
<1.0	1.0	0.46 ug/L			05/17/21 18:09	1
	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		75 - 126		05/17/21 18:09	1
Toluene-d8 (Surr)	94		75 - 120		05/17/21 18:09	1
4-Bromofluorobenzene (Surr)	88		72 - 124		05/17/21 18:09	1
Dibromofluoromethane	112		75 - 120		05/17/21 18:09	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: EW-9 DUP Date Collected: 05/04/21 16:15

Date Received: 05/06/21 09:50

Job ID: 500-198719-1

Lab Sample ID: 500-198719-24

Matrix: Water

Method: 8260B - VOC

Method: 8260B - VOC	Popula	Ovalifier	D.(MD	1114		Doggan	A I	D.7 E
Analyte	<0.50	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene Dieklare diffusere verbaue			0.50	0.15				05/17/21 18:38	1
Dichlorodifluoromethane	<3.0		3.0	0.67				05/17/21 18:38	1
Chloromethane	<1.0		1.0	0.32				05/17/21 18:38	1
Vinyl chloride	<1.0		1.0	0.20				05/17/21 18:38	1
Bromomethane	<3.0		3.0	0.80	-			05/17/21 18:38	1
Chloroethane	<1.0		1.0	0.51	-			05/17/21 18:38	1
Trichlorofluoromethane	<1.0		1.0	0.43				05/17/21 18:38	1
1,1-Dichloroethene	<1.0		1.0	0.39				05/17/21 18:38	1
Carbon disulfide	<2.0		2.0	0.45	-			05/17/21 18:38	1
Acetone	<10		10		ug/L			05/17/21 18:38	1
Methylene Chloride	<5.0		5.0		ug/L			05/17/21 18:38	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	-			05/17/21 18:38	1
1,1-Dichloroethane	<1.0		1.0	0.41	ug/L			05/17/21 18:38	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			05/17/21 18:38	1
cis-1,2-Dichloroethene	<1.0		1.0	0.41	ug/L			05/17/21 18:38	1
Methyl Ethyl Ketone	<5.0		5.0	2.1	ug/L			05/17/21 18:38	1
Bromochloromethane	<1.0		1.0	0.43	ug/L			05/17/21 18:38	1
Chloroform	<2.0		2.0	0.37	ug/L			05/17/21 18:38	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	ug/L			05/17/21 18:38	1
1,1-Dichloropropene	<1.0		1.0	0.30	ug/L			05/17/21 18:38	1
Carbon tetrachloride	<1.0		1.0	0.38	ug/L			05/17/21 18:38	1
1,2-Dichloroethane	<1.0		1.0	0.39	ug/L			05/17/21 18:38	1
Trichloroethene	0.51		0.50	0.16	ug/L			05/17/21 18:38	1
1,2-Dichloropropane	<1.0		1.0	0.43				05/17/21 18:38	1
Dibromomethane	<1.0		1.0	0.27				05/17/21 18:38	1
Bromodichloromethane	<1.0		1.0	0.37				05/17/21 18:38	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42				05/17/21 18:38	1
methyl isobutyl ketone	<5.0		5.0		ug/L			05/17/21 18:38	1
Toluene	<0.50		0.50	0.15				05/17/21 18:38	1
trans-1,3-Dichloropropene	<1.0		1.0	0.36				05/17/21 18:38	1
1,1,2-Trichloroethane	<1.0		1.0	0.35				05/17/21 18:38	1
Tetrachloroethene	69		1.0	0.37				05/17/21 18:38	1
1,3-Dichloropropane	<1.0		1.0	0.36	-			05/17/21 18:38	1
2-Hexanone	<5.0		5.0		ug/L			05/17/21 18:38	1
Dibromochloromethane	<1.0		1.0		ug/L			05/17/21 18:38	1
1,2-Dibromoethane	<1.0		1.0	0.39	-			05/17/21 18:38	1
Chlorobenzene	<1.0		1.0	0.39				05/17/21 18:38	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46	-			05/17/21 18:38	1
Ethylbenzene	<0.50		0.50		ug/L			05/17/21 18:38	•
m&p-Xylene	<1.0		1.0		ug/L				1
o-Xylene	<0.50		0.50		ug/L ug/L			05/17/21 18:38	1
Styrene	<1.0		1.0					05/17/21 18:38	1
Bromoform	<1.0		1.0		ug/L ug/L			05/17/21 18:38	1
	<1.0				•			05/17/21 18:38	1
Isopropylbenzene Bromohanzene			1.0		ug/L			05/17/21 18:38	1
Bromobenzene 1.1.2.2 Tetraeblereethene	<1.0		1.0		ug/L			05/17/21 18:38	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			05/17/21 18:38	1
1,2,3-Trichloropropane	<2.0		2.0		ug/L			05/17/21 18:38	1
N-Propylbenzene	<1.0		1.0		ug/L			05/17/21 18:38	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			05/17/21 18:38	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Job ID: 500-198719-1

Client Sample ID: EW-9 DUP

Lab Sample ID: 500-198719-24

Date Collected: 05/04/21 16:15 Date Received: 05/06/21 09:50

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			05/17/21 18:38	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			05/17/21 18:38	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 18:38	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			05/17/21 18:38	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 18:38	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			05/17/21 18:38	1
p-isopropyltoluene	<1.0	1.0	0.36	ug/L			05/17/21 18:38	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			05/17/21 18:38	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			05/17/21 18:38	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			05/17/21 18:38	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			05/17/21 18:38	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			05/17/21 18:38	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			05/17/21 18:38	1
Naphthalene	<1.0	1.0	0.34	ug/L			05/17/21 18:38	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ua/L			05/17/21 18:38	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	75 - 126	03	5/17/21 18:38	1
Toluene-d8 (Surr)	94	75 - 120	03	5/17/21 18:38	1
4-Bromofluorobenzene (Surr)	88	72 - 124	03	5/17/21 18:38	1
Dibromofluoromethane	112	75 ₋ 120	08	5/17/21 18:38	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Job ID: 500-198719-1

Client Sample ID: EW-10 Date Collected: 05/04/21 16:20 Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-25

Matrix: Water

Method: 8260B - VOC

Method: 8260B - VOC								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50	0.50	0.15	ug/L			05/17/21 19:07	1
Dichlorodifluoromethane	<3.0	3.0	0.67	ug/L			05/17/21 19:07	1
Chloromethane	<1.0	1.0	0.32	ug/L			05/17/21 19:07	1
Vinyl chloride	<1.0	1.0	0.20	ug/L			05/17/21 19:07	1
Bromomethane	<3.0	3.0	0.80	ug/L			05/17/21 19:07	1
Chloroethane	<1.0	1.0	0.51	ug/L			05/17/21 19:07	1
Trichlorofluoromethane	<1.0	1.0	0.43				05/17/21 19:07	1
1,1-Dichloroethene	<1.0	1.0	0.39				05/17/21 19:07	1
Carbon disulfide	<2.0	2.0	0.45				05/17/21 19:07	1
Acetone	<10	10	1.7	ug/L			05/17/21 19:07	1
Methylene Chloride	<5.0	5.0	1.6	ug/L			05/17/21 19:07	1
trans-1,2-Dichloroethene	<1.0	1.0	0.35				05/17/21 19:07	1
1,1-Dichloroethane	<1.0	1.0	0.41				05/17/21 19:07	1
2,2-Dichloropropane	<1.0	1.0	0.44				05/17/21 19:07	1
cis-1,2-Dichloroethene	<1.0	1.0	0.41	-			05/17/21 19:07	1
Methyl Ethyl Ketone	<5.0	5.0		ug/L			05/17/21 19:07	1
Bromochloromethane	<1.0	1.0	0.43				05/17/21 19:07	1
Chloroform	<2.0	2.0	0.37	-			05/17/21 19:07	1
1,1,1-Trichloroethane	<1.0	1.0	0.38				05/17/21 19:07	1
1,1-Dichloropropene	<1.0	1.0	0.30				05/17/21 19:07	1
Carbon tetrachloride	<1.0	1.0	0.38				05/17/21 19:07	1
1,2-Dichloroethane	<1.0	1.0	0.39	-			05/17/21 19:07	1
Trichloroethene	<0.50	0.50	0.16				05/17/21 19:07	1
1,2-Dichloropropane	<1.0	1.0	0.43				05/17/21 19:07	1
Dibromomethane	<1.0	1.0	0.27				05/17/21 19:07	1
Bromodichloromethane	<1.0	1.0	0.37				05/17/21 19:07	1
cis-1,3-Dichloropropene	<1.0	1.0	0.42				05/17/21 19:07	1
methyl isobutyl ketone	<5.0	5.0		ug/L			05/17/21 19:07	1
Toluene	<0.50	0.50	0.15				05/17/21 19:07	1
trans-1,3-Dichloropropene	<1.0	1.0	0.36				05/17/21 19:07	1
1,1,2-Trichloroethane	<1.0	1.0	0.35	-			05/17/21 19:07	1
Tetrachloroethene	<1.0	1.0	0.37				05/17/21 19:07	1
1,3-Dichloropropane	<1.0	1.0	0.36				05/17/21 19:07	1
2-Hexanone	<5.0	5.0		ug/L			05/17/21 19:07	1
Dibromochloromethane	<1.0	1.0	0.49				05/17/21 19:07	1
1,2-Dibromoethane	<1.0	1.0	0.39	-			05/17/21 19:07	1
Chlorobenzene	<1.0	1.0	0.39				05/17/21 19:07	1
1,1,1,2-Tetrachloroethane	<1.0	1.0	0.46	-			05/17/21 19:07	1
Ethylbenzene	<0.50	0.50	0.18				05/17/21 19:07	1
m&p-Xylene	<1.0	1.0	0.18	_			05/17/21 19:07	1
o-Xylene	<0.50	0.50	0.22				05/17/21 19:07	1
Styrene	<1.0	1.0	0.39				05/17/21 19:07	1
Bromoform	<1.0	1.0	0.48	-			05/17/21 19:07	1
Isopropylbenzene	<1.0	1.0	0.39				05/17/21 19:07	1
Bromobenzene	<1.0	1.0	0.36	•			05/17/21 19:07	1
1,1,2,2-Tetrachloroethane	<1.0	1.0	0.40	-			05/17/21 19:07	1
1,2,3-Trichloropropane	<2.0	2.0	0.40	-			05/17/21 19:07	1
N-Propylbenzene	<1.0	1.0	0.41	-			05/17/21 19:07	1
2-Chlorotoluene	<1.0	1.0	0.41	-			05/17/21 19:07	1
	.1.0	1.0	0.01	ag/L			00/11/21 19.0/	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker Job ID: 500-198719-1

Client Sample ID: EW-10

Lab Sample ID: 500-198719-25

Date Collected: 05/04/21 16:20 Date Received: 05/06/21 09:50 Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L	· · · · · · · · · · · · · · · · · · ·		05/17/21 19:07	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			05/17/21 19:07	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 19:07	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			05/17/21 19:07	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			05/17/21 19:07	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			05/17/21 19:07	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			05/17/21 19:07	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			05/17/21 19:07	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			05/17/21 19:07	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			05/17/21 19:07	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			05/17/21 19:07	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			05/17/21 19:07	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			05/17/21 19:07	1
Naphthalene	<1.0	1.0	0.34	ug/L			05/17/21 19:07	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			05/17/21 19:07	1

Surrogate	%Recovery Qualifier	Limits	Prepared A	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102	75 - 126	05/	17/21 19:07	1
Toluene-d8 (Surr)	94	75 - 120	05/	17/21 19:07	1
4-Bromofluorobenzene (Surr)	88	72 - 124	05/	17/21 19:07	1
Dibromofluoromethane	111	75 - 120	05/	17/21 19:07	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: Trip Blank Date Collected: 05/04/21 07:00 Date Received: 05/06/21 09:50 Job ID: 500-198719-1

Lab Sample ID: 500-198719-26

Matrix: Water

Method: 8260B - VOC

Method: 8260B - VOC Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50	0.50	0.15		<u> </u>		05/17/21 11:24	1
Dichlorodifluoromethane	<3.0	3.0	0.67				05/17/21 11:24	1
Chloromethane	<1.0	1.0	0.32				05/17/21 11:24	1
Vinyl chloride	<1.0	1.0	0.20				05/17/21 11:24	1
Bromomethane	<3.0	3.0	0.80	-			05/17/21 11:24	1
Chloroethane	<1.0	1.0	0.51				05/17/21 11:24	1
Trichlorofluoromethane	<1.0	1.0	0.43				05/17/21 11:24	1
1,1-Dichloroethene	<1.0	1.0	0.39				05/17/21 11:24	1
Carbon disulfide	<2.0	2.0	0.45				05/17/21 11:24	1
Acetone	<10	10		ug/L			05/17/21 11:24	1
Methylene Chloride	<5.0	5.0		ug/L			05/17/21 11:24	1
trans-1,2-Dichloroethene	<1.0	1.0	0.35	-			05/17/21 11:24	1
1,1-Dichloroethane	<1.0	1.0	0.41				05/17/21 11:24	1
2,2-Dichloropropane	<1.0	1.0	0.44	-			05/17/21 11:24	1
cis-1,2-Dichloroethene	<1.0	1.0	0.41	•			05/17/21 11:24	1
Methyl Ethyl Ketone	<5.0	5.0		ug/L			05/17/21 11:24	1
Bromochloromethane	<1.0	1.0	0.43	-			05/17/21 11:24	1
Chloroform	<2.0	2.0	0.37				05/17/21 11:24	1
1,1,1-Trichloroethane	<1.0	1.0	0.38	•			05/17/21 11:24	1
1,1-Dichloropropene	<1.0	1.0	0.30	•			05/17/21 11:24	1
Carbon tetrachloride	<1.0	1.0	0.38	•			05/17/21 11:24	1
1,2-Dichloroethane	<1.0	1.0	0.39				05/17/21 11:24	1
Trichloroethene	<0.50	0.50	0.16	-			05/17/21 11:24	1
1,2-Dichloropropane	<1.0	1.0	0.43	-			05/17/21 11:24	1
Dibromomethane	<1.0	1.0	0.27	-			05/17/21 11:24	1
Bromodichloromethane	<1.0	1.0	0.37				05/17/21 11:24	1
cis-1,3-Dichloropropene	<1.0	1.0	0.42				05/17/21 11:24	1
methyl isobutyl ketone	<5.0	5.0		ug/L			05/17/21 11:24	1
Toluene	<0.50	0.50	0.15				05/17/21 11:24	1
trans-1,3-Dichloropropene	<1.0	1.0	0.36	-			05/17/21 11:24	1
1,1,2-Trichloroethane	<1.0	1.0	0.35	-			05/17/21 11:24	1
Tetrachloroethene	<1.0	1.0	0.37	_			05/17/21 11:24	1
1,3-Dichloropropane	<1.0	1.0	0.36	_			05/17/21 11:24	1
2-Hexanone	<5.0	5.0		ug/L			05/17/21 11:24	1
Dibromochloromethane	<1.0	1.0		ug/L			05/17/21 11:24	1
1,2-Dibromoethane	<1.0	1.0	0.39	-			05/17/21 11:24	1
Chlorobenzene	<1.0	1.0	0.39	•			05/17/21 11:24	1
1,1,1,2-Tetrachloroethane	<1.0	1.0	0.46	_			05/17/21 11:24	1
Ethylbenzene	<0.50	0.50	0.18				05/17/21 11:24	1
m&p-Xylene	<1.0	1.0		ug/L			05/17/21 11:24	1
o-Xylene	<0.50	0.50		ug/L			05/17/21 11:24	1
Styrene	<1.0	1.0		ug/L			05/17/21 11:24	1
Bromoform	<1.0	1.0	0.48				05/17/21 11:24	1
Isopropylbenzene	<1.0	1.0		ug/L			05/17/21 11:24	1
Bromobenzene	<1.0	1.0		ug/L			05/17/21 11:24	1
1,1,2,2-Tetrachloroethane	<1.0	1.0		ug/L			05/17/21 11:24	1
1,2,3-Trichloropropane	<2.0	2.0		ug/L			05/17/21 11:24	1
N-Propylbenzene	<1.0	1.0		ug/L			05/17/21 11:24	1
2-Chlorotoluene	<1.0	1.0		ug/L			05/17/21 11:24	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Job ID: 500-198719-1

Client Sample ID: Trip Blank

Lab Sample ID: 500-198719-26

Matrix: Water

Date Collected: 05/04/21 07:00 Date Received: 05/06/21 09:50

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25 ug/L		05/17/21 11:24	1
4-Chlorotoluene	<1.0	1.0	0.35 ug/L		05/17/21 11:24	1
tert-Butylbenzene	<1.0	1.0	0.40 ug/L		05/17/21 11:24	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36 ug/L		05/17/21 11:24	1
sec-Butylbenzene	<1.0	1.0	0.40 ug/L		05/17/21 11:24	1
1,3-Dichlorobenzene	<1.0	1.0	0.40 ug/L		05/17/21 11:24	1
p-Isopropyltoluene	<1.0	1.0	0.36 ug/L		05/17/21 11:24	1
1,4-Dichlorobenzene	<1.0	1.0	0.36 ug/L		05/17/21 11:24	1
n-Butylbenzene	<1.0	1.0	0.39 ug/L		05/17/21 11:24	1
1,2-Dichlorobenzene	<1.0	1.0	0.33 ug/L		05/17/21 11:24	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0 ug/L		05/17/21 11:24	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34 ug/L		05/17/21 11:24	1
Hexachlorobutadiene	<1.0	1.0	0.45 ug/L		05/17/21 11:24	1
Naphthalene	<1.0	1.0	0.34 ug/L		05/17/21 11:24	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46 ug/L		05/17/21 11:24	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	75 - 126		05/17/21 11:24	1
Toluene-d8 (Surr)	93	75 - 120		05/17/21 11:24	1
4-Bromofluorobenzene (Surr)	84	72 - 124		05/17/21 11:24	1
Dibromofluoromethane	111	75 - 120		05/17/21 11:24	1

Definitions/Glossary

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Job ID: 500-198719-1

Qualifiers

GC/MS VOA

*- LCS and/or LCSD is outside acceptance limits, low biased.

F1 MS and/or MSD recovery exceeds control limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

QC Association Summary

Client: Weston Solutions, Inc. Project/Site: Black and Decker

GC/MS VOA

Analysis Batch: 599042

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-198719-1	RFW-1A	Total/NA	Water	8260B	····
500-198719-2	RFW-1B	Total/NA	Water	8260B	
500-198719-3	RFW-2A	Total/NA	Water	8260B	
500-198719-4	RFW-2B	Total/NA	Water	8260B	
500-198719-5	RFW-3B	Total/NA	Water	8260B	
500-198719-9	RFW-6	Total/NA	Water	8260B	
500-198719-10	RFW-7	Total/NA	Water	8260B	
500-198719-13	RFW-12B	Total/NA	Water	8260B	
500-198719-14	RFW-13	Total/NA	Water	8260B	ē
MB 500-599042/6	Method Blank	Total/NA	Water	8260B	
LCS 500-599042/4	Lab Control Sample	Total/NA	Water	8260B	*
500-198719-14 MS	RFW-13	Total/NA	Water	8260B	
500-198719-14 MSD	RFW-13	Total/NA	Water	8260B	

Analysis Batch: 599167

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-198719-6	RFW-4A	Total/NA	Water	8260B	
500-198719-7	RFW-4B	Total/NA	Water	8260B	
500~198719-8	RFW-4B DUP	Total/NA	Water	8260B	
500-198719-11	RFW-9	Total/NA	Water	8260B	
500-198719-12	RFW-11B	Total/NA	Water	8260B	
500-198719-15	RFW-17	Total/NA	Water	8260B	
500-198719-16	EW-2	Total/NA	Water	8260B	
500-198719-17	EW-3	Total/NA	Water	8260B	
500-198719-18	EW-4	Total/NA	Water	8260B	
500-198719-19	EW-5	Total/NA	Water	8260B	
500-198719-20	EW-6	Total/NA	Water	8260B	
500-198719-21	EW-7	Total/NA	Water	8260B	
500-198719-22	EW-8	Total/NA	Water	8260B	
500-198719-23	EW-9	Total/NA	Water	8260B	
500-198719-24	EW-9 DUP	Total/NA	Water	8260B	
500-198719-25	EW-10	Total/NA	Water	8260B	
500-198719-26	Trip Blank	Total/NA	Water	8260B	
MB 500-599167/6	Method Blank	Total/NA	Water	8260B	
LCS 500-599167/4	Lab Control Sample	Total/NA	Water	8260B	

Job ID: 500-198719-1

Surrogate Summary

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Job ID: 500-198719-1

Method: 8260B - VOC

Matrix: Water

Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits)

		DCA	TOL	BFB	DBFM	., (, 1000)
Lab Sample ID	Client Sample ID	(75-126)	(75-120)	(72-124)	(75-120)	
500-198719-1	RFW-1A	96	97	88	107	
500-198719-2	RFW-1B	98	96	88	109	
500-198719-3	RFW-2A	97	96	87	110	
500-198719-4	RFW-2B	97	96	89	110	
500-198719-5	RFW-3B	96	97	87	109	
500-198719-6	RFW-4A	103	94	85	111	
500-198719-7	RFW-4B	102	94	84	110	
500-198719-8	RFW-4B DUP	103	94	85	110	
500-198719-9	RFW-6	96	97	87	109	
500-198719-10	RFW-7	100	97	88	111	
500-198719-11	RFW-9	102	94	86	112	
500-198719-12	RFW-11B	103	94	86	112	
500-198719-13	RFW-12B	99	97	88	110	
500-198719-14	RFW-13	97	96	87	110	
500-198719-14 MS	RFW-13	90	98	86	104	
500-198719-14 MSD	RFW-13	90	98	86	103	
500-198719-15	RFW-17	103	95	86	111	
500-198719-16	EW-2	102	94	86	112	
500-198719-17	EW-3	105	93	87	113	
500-198719-18	EW-4	105	94	87	113	
500-198719-19	EW-5	105	93	87	113	
500-198719-20	EW-6	103	94	85	112	
500-198719-21	EW-7	102	95	87	111	
500-198719-22	EW-8	103	94	87	111	
500-198719-23	EW-9	103	94	88	112	
500-198719-24	EW-9 DUP	103	94	88	112	
500-198719-25	EW-10	102	94	88	111	
500-198719-26	Trip Blank	101	93	84	111	
LCS 500-599042/4	Lab Control Sample	94	98	86	103	
LCS 500-599167/4	Lab Control Sample	96	97	84	106	
MB 500-599042/6	Method Blank	95	97	88	108	
MB 500-599167/6	Method Blank	102	95	84	111	
Cuma mata la acced						

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Method: 8260B - VOC

Lab Sample ID: MB 500-599042/6

Matrix: Water

Analysis Batch: 599042

Job ID: 500-198719-1

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50	0.15	ug/L			05/15/21 10:21	1
Dichlorodifluoromethane	<3.0		3.0	0.67	_			05/15/21 10:21	1
Chloromethane	<1.0		1.0	0.32	_			05/15/21 10:21	1
Vinyl chloride	<1.0		1.0	0.20				05/15/21 10:21	1
Bromomethane	<3.0		3.0	0.80	ug/L			05/15/21 10:21	1
Chloroethane	<1.0		1.0	0.51	ug/L			05/15/21 10:21	1
Trichlorofluoromethane	<1.0		1.0	0.43	ug/L			05/15/21 10:21	1
1,1-Dichloroethene	<1.0		1.0	0.39	ug/L			05/15/21 10:21	1
Carbon disulfide	<2.0		2.0	0.45	ug/L			05/15/21 10:21	1
Acetone	<10		10	1.7	ug/L			05/15/21 10:21	1
Methylene Chloride	<5.0		5.0	1.6	ug/L			05/15/21 10:21	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			05/15/21 10:21	1
1,1-Dichloroethane	<1.0		1.0	0.41	ug/L			05/15/21 10:21	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			05/15/21 10:21	1
cis-1,2-Dichloroethene	<1.0		1.0	0.41	ug/L			05/15/21 10:21	1
Methyl Ethyl Ketone	<5.0		5.0	2.1	ug/L			05/15/21 10:21	1
Bromochloromethane	<1.0		1.0	0.43	ug/L			05/15/21 10:21	1
Chloroform	<2.0		2.0	0.37	ug/L			05/15/21 10:21	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	ug/L			05/15/21 10:21	1
1,1-Dichloropropene	<1.0		1.0	0.30	ug/L			05/15/21 10:21	1
Carbon tetrachloride	<1.0		1.0	0.38	ug/L			05/15/21 10:21	1
1,2-Dichloroethane	<1.0		1.0	0.39	ug/L			05/15/21 10:21	1
Trichloroethene	<0.50		0.50	0.16	ug/L			05/15/21 10:21	1
1,2-Dichloropropane	<1.0		1.0	0.43	ug/L			05/15/21 10:21	1
Dibromomethane	<1.0		1.0	0.27	ug/L			05/15/21 10:21	1
Bromodichloromethane	<1.0		1.0	0.37	ug/L			05/15/21 10:21	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42	ug/L			05/15/21 10:21	1
methyl isobutyl ketone	<5.0		5.0	2.2	ug/L			05/15/21 10:21	1
Toluene	<0.50		0.50	0.15	ug/L			05/15/21 10:21	1
trans-1,3-Dichloropropene	<1.0		1.0	0.36	ug/L			05/15/21 10:21	1
1,1,2-Trichloroethane	<1.0		1.0	0.35	ug/L			05/15/21 10:21	1
Tetrachloroethene	<1.0		1.0	0.37	ug/L			05/15/21 10:21	1
1,3-Dichloropropane	<1.0		1.0	0.36	ug/L			05/15/21 10:21	1
2-Hexanone	<5.0		5.0	1.6	ug/L			05/15/21 10:21	1
Dibromochloromethane	<1.0		1.0	0.49	ug/L			05/15/21 10:21	1
1,2-Dibromoethane	<1.0		1.0	0.39	ug/L			05/15/21 10:21	1
Chlorobenzene	<1.0		1.0	0.39	ug/L			05/15/21 10:21	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46	ug/L			05/15/21 10:21	1
Ethylbenzene	<0.50		0.50	0.18	ug/L			05/15/21 10:21	1
m&p-Xylene	<1.0		1.0	0.18	ug/L			05/15/21 10:21	1
o-Xylene	< 0.50		0.50	0.22	ug/L			05/15/21 10:21	1
Styrene	<1.0		1.0	0.39	ug/L			05/15/21 10:21	1
Bromoform	<1.0		1.0	0.48	ug/L			05/15/21 10:21	1
Isopropylbenzene	<1.0		1.0	0.39	ug/L			05/15/21 10:21	1
Bromobenzene	<1.0		1.0	0.36	ug/L			05/15/21 10:21	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			05/15/21 10:21	1
1,2,3-Trichloropropane	<2.0		2.0	0.41	ug/L			05/15/21 10:21	1
					ug/L				

Eurofins TestAmerica, Chicago

Page 64 of 82

5/18/2021

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Method: 8260B - VOC (Continued)

Lab Sample ID: MB 500-599042/6 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 599042

Prep Type: Total/NA

Job ID: 500-198719-1

Tildiy 515 Baton, 0000-E									
	MB	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			05/15/21 10:21	1
1,3,5-Trimethylbenzene	<1.0		1.0	0.25	ug/L			05/15/21 10:21	1
4-Chlorotoluene	<1.0		1.0	0.35	ug/L			05/15/21 10:21	1
tert-Butylbenzene	<1.0		1.0	0.40	ug/L			05/15/21 10:21	1
1,2,4-Trimethylbenzene	<1.0		1.0	0.36	ug/L			05/15/21 10:21	1
sec-Butylbenzene	<1.0		1.0	0.40	ug/L			05/15/21 10:21	1
1,3-Dichlorobenzene	<1.0		1.0	0.40	ug/L			05/15/21 10:21	1
p-Isopropyltoluene	<1.0		1.0	0.36	ug/L			05/15/21 10:21	1
1,4-Dichlorobenzene	<1.0		1.0	0.36	ug/L			05/15/21 10:21	1
n-Butylbenzene	<1.0		1.0	0.39	ug/L			05/15/21 10:21	1
1,2-Dichlorobenzene	<1.0		1.0	0.33	ug/L			05/15/21 10:21	1
1,2-Dibromo-3-Chloropropane	<5.0		5.0	2.0	ug/L			05/15/21 10:21	1
1,2,4-Trichlorobenzene	<1.0		1.0	0.34	ug/L			05/15/21 10:21	1
Hexachlorobutadiene	<1.0		1.0	0.45	ug/L			05/15/21 10:21	1
Naphthalene	<1.0		1.0	0.34	ug/L			05/15/21 10:21	1
1,2,3-Trichlorobenzene	<1.0		1.0	0.46	ug/L			05/15/21 10:21	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	75 - 126	05/15/21 10::	21 1
Toluene-d8 (Surr)	97	75 - 120	05/15/21 10:.	21 1
4-Bromofluorobenzene (Surr)	88	72 - 124	05/15/21 10:.	21 1
Dibromofluoromethane	108	75 ₋ 120	05/15/21 10:.	21 1

Lab Sample ID: LCS 500-599042/4

Matrix: Water

Analysis Batch: 599042

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 599042								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	47.9		ug/L		96	70 - 120	
Dichlorodifluoromethane	50.0	39.3		ug/L		79	40 - 159	
Chloromethane	50.0	35.7		ug/L		71	56 - 152	
Vinyl chloride	50.0	43.9		ug/L		88	64 - 126	
Bromomethane	50.0	71.0		ug/L		142	40 - 152	
Chloroethane	50.0	45.4		ug/L		91	48 - 136	
Trichlorofluoromethane	50.0	47.5		ug/L		95	55 ₋ 128	
1,1-Dichloroethene	50.0	46.3		ug/L		93	67 - 122	
Carbon disulfide	50.0	43.7		ug/L		87	66 - 120	
Acetone	50.0	33.8		ug/L		68	40 - 143	
Methylene Chloride	50.0	43.1		ug/L		86	69 - 125	
trans-1,2-Dichloroethene	50.0	46.5		ug/L		93	70 - 125	
1,1-Dichloroethane	50.0	42.4		ug/L		85	70 - 125	
2,2-Dichloropropane	50.0	41.1		ug/L		82	58 - 139	
cis-1,2-Dichloroethene	50.0	45.6		ug/L		91	70 - 125	
Methyl Ethyl Ketone	50.0	34.8		ug/L		70	46 - 144	
Bromochloromethane	50.0	49.1		ug/L		98	65 - 122	
Chloroform	50.0	43.0		ug/L		86	70 - 120	
1,1,1-Trichloroethane	50.0	44.9		ug/L		90	70 - 125	
1,1-Dichloropropene	50.0	47.7		ug/L		95	70 - 121	

Eurofins TestAmerica, Chicago

Page 65 of 82 5/18/2021

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Method: 8260B - VOC (Continued)

Lab Sample ID: LCS 500-599042/4

Matrix: Water

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Analysis Batch: 599042

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 500-198719-1

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Carbon tetrachloride	50.0	47.7		ug/L		95	59 - 133
1,2-Dichloroethane	50.0	41.0		ug/L		82	68 - 127
Trichloroethene	50.0	50.9		ug/L		102	70 - 125
1,2-Dichloropropane	50.0	43.6		ug/L		87	67 ₋ 130
Dibromomethane	50.0	48.7		ug/L		97	70 - 120
Bromodichloromethane	50.0	43.5		ug/L		87	69 - 120
cis-1,3-Dichloropropene	50.0	42.5		ug/L		85	64 - 127
methyl isobutyl ketone	50.0	28.0		ug/L		56	55 - 139
Toluene	50.0	46.0		ug/L		92	70 ₋ 125
trans-1,3-Dichloropropene	50.0	40.8		ug/L		82	62 - 128
1,1,2-Trichloroethane	50.0	44.0		ug/L		88	71 - 130
Tetrachloroethene	50.0	49.1		ug/L		98	70 ₋ 128
1,3-Dichloropropane	50.0	45.1		ug/L		90	62 - 136
2-Hexanone	50.0	26.6	*_	ug/L		53	54 - 146
Dibromochloromethane	50.0	46.1		ug/L		92	68 - 125
1,2-Dibromoethane	50.0	43.3		ug/L		87	70 ₋ 125
Chlorobenzene	50.0	46.2		ug/L		92	70 - 120
1,1,1,2-Tetrachloroethane	50.0	46.7		ug/L		93	70 - 125
Ethylbenzene	50.0	45.2		ug/L		90	70 - 123
m&p-Xylene	50.0	44.1		ug/L		88	70 ₋ 125
o-Xylene	50.0	43.4		ug/L		87	70 - 120
Styrene	50.0	46.7		ug/L		93	70 ₋ 120
Bromoform	50.0	48.1		ug/L		96	56 ₋ 132
Isopropylbenzene	50.0	44.5		ug/L		89	70 ₋ 126
Bromobenzene	50.0	43.4		ug/L		87	70 - 122
1,1,2,2-Tetrachloroethane	50.0	42.5		ug/L		85	62 - 140
1,2,3-Trichloropropane	50.0	43.3		ug/L		87	50 ₋ 133
N-Propylbenzene	50.0	44.1		ug/L		88	69 - 127
2-Chlorotoluene	50.0	42.5		ug/L		85	70 ₋ 125
1,3,5-Trimethylbenzene	50.0	43.5		ug/L		87	70 - 123
4-Chlorotoluene	50.0	42.6		ug/L		85	68 - 124
tert-Butylbenzene	50.0	42.5		ug/L		85	70 - 121
1,2,4-Trimethylbenzene	50.0	43.3		ug/L		87	70 - 123
sec-Butylbenzene	50.0	44.9		ug/L		90	70 - 123
1,3-Dichlorobenzene	50.0	45.5		ug/L		91	70 - 125
p-Isopropyltoluene	50.0	44.5		ug/L		89	70 - 125
1,4-Dichlorobenzene	50.0	45.8		ug/L		92	70 - 120
n-Butylbenzene	50.0	44.9		ug/L		90	68 - 125
1,2-Dichlorobenzene	50.0	44.4		ug/L		89	70 - 125
1,2-Dibromo-3-Chloropropane	50.0	39.5		ug/L		79	56 - 123
1,2,4-Trichlorobenzene	50.0	37.3		ug/L		75	57 - 137
Hexachlorobutadiene	50.0	44.0		ug/L		88	51 ₋ 150
Naphthalene	50.0	35.9		ug/L		72	53 - 144
1,2,3-Trichlorobenzene	50.0	35.9		ug/L		72	51 ₋ 145
LCS LCS							

Eurofins TestAmerica, Chicago

Limits

75 - 126

75 - 120

%Recovery Qualifier

94

98

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Method: 8260B - VOC (Continued)

Lab Sample ID: LCS 500-599042/4 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 599042

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	86		72 - 124
Dibromofluoromethane	103		75 - 120

Lab Sample ID: 500-198719-14 MS

Matrix: Water

Analysis Batch: 599042

Client Sample ID: RFW-13

Prep Type: Total/NA

Job ID: 500-198719-1

Prep Type: Total/NA

Analysis Batch: 599042	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
Benzene	<0.50		50.0	47.1		ug/L		94	70 - 120
Dichlorodifluoromethane	<3.0		50.0	36.8		ug/L		74	40 - 159
Chloromethane	<1.0		50.0	33.5		ug/L		67	56 - 152
/inyl chloride	<1.0		50.0	41.6		ug/L		83	64 - 126
Bromomethane	<3.0		50.0	67.7		ug/L		135	40 - 152
Chloroethane	<1.0		50.0	44.6		ug/L		89	48 - 136
Frichlorofluoromethane	<1.0		50.0	45.4		ug/L		91	55 - 128
,1-Dichloroethene	<1.0		50.0	44.5		ug/L		89	67 - 122
Carbon disulfide	1.2	J	50.0	43.2		ug/L		84	66 - 120
Acetone	<10		50.0	29.0		ug/L		58	40 - 143
Methylene Chloride	<5.0		50.0	42.5		ug/L		85	69 - 125
rans-1,2-Dichloroethene	5.3		50.0	49.9		ug/L		89	70 ₋ 125
,1-Dichloroethane	<1.0		50.0	42.2		ug/L		84	70 ₋ 125
2,2-Dichloropropane	<1.0		50.0	38.1		ug/L		76	58 - 139
cis-1,2-Dichloroethene	3.2		50.0	48.0		ug/L		90	70 ₋ 125
Methyl Ethyl Ketone	<5.0		50.0	32.7		ug/L		65	46 - 144
Bromochloromethane	<1.0		50.0	48.4		ug/L		97	65 ₋ 122
Chloroform	<2.0		50.0	42.6		ug/L		85	70 - 120
,1,1-Trichloroethane	<1.0		50.0	43.3		ug/L		87	70 ₋ 125
,1-Dichloropropene	<1.0		50.0	45.8		ug/L		92	70 - 121
Carbon tetrachloride	<1.0		50.0	46.0		ug/L		92	59 ₋ 133
I,2-Dichloroethane	<1.0		50.0	39.2		ug/L		78	68 - 127
[richloroethene	1.9		50.0	51.3		ug/L		99	70 ₋ 125
1,2-Dichloropropane	<1.0		50.0	42.5		ug/L		85	67 - 130
Dibromomethane	<1.0		50.0	46.4		ug/L		93	70 - 120
Bromodichloromethane	<1.0		50.0	42.6		ug/L		85	69 - 120
cis-1,3-Dichloropropene	<1.0		50.0	39.4		ug/L		79	64 - 127
nethyl isobutyl ketone	<5.0	F1	50.0	24.5	F1	ug/L		49	55 ₋ 139
Toluene	< 0.50		50.0	45.5		ug/L		91	70 ₋ 125
rans-1,3-Dichloropropene	<1.0		50.0	37.9		ug/L		76	62 - 128
,1,2-Trichloroethane	<1.0		50.0	42.5		ug/L		85	71 - 130
etrachloroethene	5.4		50.0	52.7		ug/L		94	70 - 128
,3-Dichloropropane	<1.0		50.0	42.5		ug/L		85	62 - 136
2-Hexanone	<5.0	*- F1	50.0	22.7	F1	ug/L		45	54 - 146
Dibromochloromethane	<1.0		50.0	44.4		ug/L		89	68 - 125
,2-Dibromoethane	<1.0		50.0	40.6		ug/L		81	70 - 125
Chlorobenzene	<1.0		50.0	45.6		ug/L		91	70 - 120
1,1,1,2-Tetrachloroethane	<1.0		50.0	45.8		ug/L		92	70 - 125
Ethylbenzene	< 0.50		50.0	44.5		ug/L		89	70 - 123
m&p-Xylene	<1.0		50.0	43.4		ug/L		87	70 ₋ 125

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Method: 8260B - VOC (Continued)

Lab Sample ID: 500-198719-14 MS Client Sample ID: RFW-13 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 599042

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
o-Xylene	<0.50		50.0	43.1	P1 24	ug/L	Andrew Markey	86	70 - 120
Styrene	<1.0		50.0	46.0		ug/L		92	70 - 120
Bromoform	<1.0		50.0	44.5		ug/L		89	56 - 132
Isopropylbenzene	<1.0		50.0	43.6		ug/L		87	70 - 126
Bromobenzene	<1.0		50.0	42.2		ug/L		84	70 - 122
1,1,2,2-Tetrachloroethane	<1.0		50.0	39.6		ug/L		79	62 - 140
1,2,3-Trichloropropane	<2.0		50.0	40.6		ug/L		81	50 ₋ 133
N-Propylbenzene	<1.0		50.0	42.8		ug/L		86	69 - 127
2-Chlorotoluene	<1.0		50.0	41.7		ug/L		83	70 ₋ 125
1,3,5-Trimethylbenzene	<1.0		50.0	42.6		ug/L		85	70 ₋ 123
4-Chlorotoluene	<1.0		50.0	41.8		ug/L		84	68 ₋ 124
tert-Butylbenzene	<1.0		50.0	41.7		ug/L		83	70 - 121
1,2,4-Trimethylbenzene	<1.0		50.0	42.0		ug/L		84	70 ~ 123
sec-Butylbenzene	<1.0		50.0	43.6		ug/L		87	70 - 123
1,3-Dichlorobenzene	<1.0		50.0	43.8		ug/L		88	70 ₋ 125
p-Isopropyltoluene	<1.0		50.0	42.3		ug/L		85	70 - 125
1,4-Dichlorobenzene	<1.0		50.0	43.4		ug/L		87	70 - 120
n-Butylbenzene	<1.0		50.0	41.7		ug/L		83	68 ₋ 125
1,2-Dichlorobenzene	<1.0		50.0	42.9		ug/L		86	70 ₋ 125
1,2-Dibromo-3-Chloropropane	< 5.0		50.0	35.5		ug/L		71	56 - 123
1,2,4-Trichlorobenzene	<1.0		50.0	33.1		ug/L		66	57 ₋ 137
Hexachlorobutadiene	<1.0		50.0	40.0		ug/L		80	51 ₋ 150
Naphthalene	<1.0		50.0	30.6		ug/L		61	53 - 144
1,2,3-Trichlorobenzene	<1.0		50.0	32.7		ug/L		65	51 ₋ 145

ИS	MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	90		75 - 126
Toluene-d8 (Surr)	98		75 - 120
4-Bromofluorobenzene (Surr)	86		72 - 124
Dibromofluoromethane	104		75 - 120

Lab Sample ID: 500-198719-14 MSD

Matrix: Water

Analysis Batch: 599042

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.50		50.0	45.8		ug/L		92	70 - 120	3	20
Dichlorodifluoromethane	<3.0		50.0	35.8		ug/L		72	40 - 159	3	20
Chloromethane	<1.0		50.0	28.7		ug/L		57	56 - 152	15	20
Vinyl chloride	<1.0		50.0	40.5		ug/L		81	64 - 126	3	20
Bromomethane	<3.0		50.0	66.0		ug/L		132	40 - 152	2	20
Chloroethane	<1.0		50.0	42.5		ug/L		85	48 - 136	5	20
Trichlorofluoromethane	<1.0		50.0	44.1		ug/L		88	55 ₋ 128	3	20
1,1-Dichloroethene	<1.0		50.0	41.9		ug/L		84	67 - 122	6	20
Carbon disulfide	1.2	J	50.0	41.0		ug/L		80	66 - 120	5	20
Acetone	<10		50.0	30.2		ug/L		60	40 - 143	4	20
Methylene Chloride	<5.0		50.0	40.9		ug/L		82	69 - 125	4	20
trans-1,2-Dichloroethene	5.3		50.0	48.2		ug/L		86	70 - 125	3	20

Eurofins TestAmerica, Chicago

Client Sample ID: RFW-13

Prep Type: Total/NA

Job ID: 500-198719-1

Page 68 of 82

5/18/2021

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Method: 8260B - VOC (Continued)

Lab Sample ID: 500-198719-14 MSD Client Sample ID: RFW-13 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 599042

Analysis Batch: 599042											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	<1.0		50.0	40.5		ug/L		81	70 - 125	4	20
2,2-Dichloropropane	<1.0		50.0	37.3		ug/L		75	58 - 139	2	20
cis-1,2-Dichloroethene	3.2		50.0	46.8		ug/L		87	70 - 125	2	20
Methyl Ethyl Ketone	<5.0		50.0	32.3		ug/L		65	46 - 144	1	20
Bromochloromethane	<1.0		50.0	46.9		ug/L		94	65 - 122	3	20
Chloroform	<2.0		50.0	41.5		ug/L		83	70 - 120	3	20
1,1,1-Trichloroethane	<1.0		50.0	41.6		ug/L		83	70 - 125	4	20
1,1-Dichloropropene	<1.0		50.0	44.3		ug/L		89	70 - 121	3	20
Carbon tetrachloride	<1.0		50.0	44.5		ug/L		89	59 - 133	3	20
1,2-Dichloroethane	<1.0		50.0	38.4		ug/L		77	68 - 127	2	20
Trichloroethene	1.9		50.0	50.1		ug/L		96	70 - 125	3	20
1,2-Dichloropropane	<1.0		50.0	41.1		ug/L		82	67 - 130	3	20
Dibromomethane	<1.0		50.0	45.1		ug/L		90	70 - 120	3	20
Bromodichloromethane	<1.0		50.0	41.3		ug/L		83	69 - 120	3	20
cis-1,3-Dichloropropene	<1.0		50.0	39.0		ug/L		78	64 - 127	1	20
methyl isobutyl ketone	<5.0	F1	50.0	25.1	F1	ug/L		50	55 ₋ 139	2	20
Toluene	<0.50		50.0	44.1		ug/L		8 8	70 ₋ 125	3	20
trans-1,3-Dichloropropene	<1.0		50.0	37.7		ug/L		75	62 - 128	1	20
1,1,2-Trichloroethane	<1.0		50.0	41.6		ug/L		83	71 - 130	2	20
Tetrachloroethene	5.4		50.0	51.3		ug/L		92	70 - 128	3	20
1,3-Dichloropropane	<1.0		50.0	42.3		ug/L		85	62 - 136	1	20
2-Hexanone		*- F1	50.0	23.5	F1	ug/L		47	54 - 146	4	20
Dibromochloromethane	<1.0		50.0	44.0		ug/L		88	68 - 125	1	20
1,2-Dibromoethane	<1.0		50.0	40.0		ug/L		80	70 - 125	1	20
Chlorobenzene	<1.0		50.0	44.5		ug/L		89	70 - 120	3	20
1,1,1,2-Tetrachloroethane	<1.0		50.0	45.4		ug/L		91	70 - 125	1	20
Ethylbenzene	<0.50		50.0	43.2		ug/L		86	70 - 123	3	20
m&p-Xylene	<1.0		50.0	41.8		ug/L		84	70 - 125	4	20
o-Xylene	<0.50		50.0	41.5		ug/L		83	70 - 120	4	20
Styrene	<1.0		50.0	44.5		ug/L		89	70 - 120	3	20
Bromoform	<1.0		50.0	44.0		ug/L		88	56 - 132	1	20
Isopropylbenzene	<1.0		50.0	43.1		ug/L		86	70 - 126	1	20
Bromobenzene	<1.0		50.0	42.2		ug/L		84	70 - 122	0	20
1,1,2,2-Tetrachloroethane	<1.0		50.0	40.1		ug/L		80	62 - 140	1	20
1,2,3-Trichloropropane	<2.0		50.0	40.5		ug/L		81	50 - 133	0	20
N-Propylbenzene	<1.0		50.0	42.0		ug/L		84	69 - 127	2	20
2-Chlorotoluene	<1.0		50.0	41.2		ug/L		82	70 - 125	1	20
1,3,5-Trimethylbenzene	<1.0		50.0	42.0		ug/L		84	70 - 123	1	20
4-Chlorotoluene	<1.0		50.0	40.7		ug/L		81	68 - 124	2	20
tert-Butylbenzene	<1.0		50.0	41.1		ug/L ug/L		82	70 - 121	1	20
1,2,4-Trimethylbenzene	<1.0		50.0	41.8		ug/L ug/L		84	70 - 121	1	
sec-Butylbenzene	<1.0		50.0	42.9		_		86	70 - 123	2	20
1,3-Dichlorobenzene	<1.0		50.0	42.9		ug/L					20
	<1.0					ug/L		86	70 ₋ 125	2	20
p-Isopropyltoluene			50.0	41.7		ug/L		83	70 ₋ 125	1	20
1,4-Dichlorobenzene	<1.0		50.0	43.0		ug/L		86	70 - 120	1	20
n-Butylbenzene	<1.0		50.0	40.5		ug/L		81	68 ₋ 125	3	20
1,2-Dichlorobenzene	<1.0		50.0	42.3		ug/L		85	70 - 125	1	20
1,2-Dibromo-3-Chloropropane	<5.0		50.0	35.8		ug/L		72	56 - 123	1	20
1,2,4-Trichlorobenzene	<1.0		50.0	32.7		ug/L		65	57 - 137	1	20

Eurofins TestAmerica, Chicago

Job ID: 500-198719-1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Job ID: 500-198719-1

Method: 8260B - VOC (Continued)

Lab Sample ID: 500-198719-14 MSD Client Sample ID: RFW-13 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 599042

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hexachlorobutadiene	<1.0		50.0	40.2		ug/L		80	51 - 150	1	20
Naphthalene	<1.0		50.0	31.6		ug/L		63	53 - 144	3	20
1,2,3-Trichlorobenzene	<1.0		50.0	33.4		ua/L		67	51 ₋ 145	2	20

MSD MSD Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 90 75 - 126 Toluene-d8 (Surr) 98 75 - 120 4-Bromofluorobenzene (Surr) 86 72 - 124 Dibromofluoromethane 75 - 120 103

Lab Sample ID: MB 500-599167/6

Matrix: Water

Analysis Batch: 599167

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	мв						
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50	0.50	0.15	ug/L			05/17/21 10:55	1
Dichlorodifluoromethane	<3.0	3.0	0.67	ug/L			05/17/21 10:55	1
Chloromethane	<1.0	1.0	0.32	ug/L			05/17/21 10:55	1
Vinyl chloride	<1.0	1.0	0.20	ug/L			05/17/21 10:55	1
Bromomethane	<3.0	3.0	0.80	ug/L			05/17/21 10:55	1
Chloroethane	<1.0	1.0	0.51	ug/L			05/17/21 10:55	1
Trichlorofluoromethane	<1.0	1.0	0.43	ug/L			05/17/21 10:55	1
1,1-Dichloroethene	<1.0	1.0	0.39	ug/L			05/17/21 10:55	1
Carbon disulfide	<2.0	2.0	0.45	ug/L			05/17/21 10:55	1
Acetone	<10	10	1.7	ug/L			05/17/21 10:55	1
Methylene Chloride	<5.0	5.0	1.6	ug/L			05/17/21 10:55	1
trans-1,2-Dichloroethene	<1.0	1.0	0.35	ug/L			05/17/21 10:55	1
1,1-Dichloroethane	<1.0	1.0	0.41	ug/L			05/17/21 10:55	1
2,2-Dichloropropane	<1.0	1.0	0.44	ug/L			05/17/21 10:55	1
cis-1,2-Dichloroethene	<1.0	1.0	0.41	ug/L			05/17/21 10:55	1
Methyl Ethyl Ketone	<5.0	5.0	2.1	ug/L			05/17/21 10:55	1
Bromochloromethane	<1.0	1.0	0.43	ug/L			05/17/21 10:55	1
Chloroform	<2.0	2.0	0.37	ug/L			05/17/21 10:55	1
1,1,1-Trichloroethane	<1.0	1.0	0.38	ug/L			05/17/21 10:55	1
1,1-Dichloropropene	<1.0	1.0	0.30	ug/L			05/17/21 10:55	1
Carbon tetrachloride	<1.0	1.0	0.38	ug/L			05/17/21 10:55	1
1,2-Dichloroethane	<1.0	1.0	0.39	ug/L			05/17/21 10:55	1
Trichloroethene	<0.50	0.50	0.16	ug/L			05/17/21 10:55	1
1,2-Dichloropropane	<1.0	1.0	0.43	ug/L			05/17/21 10:55	1
Dibromomethane	<1.0	1.0		ug/L			05/17/21 10:55	1
Bromodichloromethane	<1.0	1.0	0.37	ug/L			05/17/21 10:55	1
cis-1,3-Dichloropropene	<1.0	1.0	0.42	ug/L			05/17/21 10:55	1
methyl isobutyl ketone	<5.0	5.0	2.2	ug/L			05/17/21 10:55	1
Toluene	<0.50	0.50		ug/L			05/17/21 10:55	1
trans-1,3-Dichloropropene	<1.0	1.0	0.36	ug/L			05/17/21 10:55	1
1,1,2-Trichloroethane	<1.0	1.0		ug/L			05/17/21 10:55	1
Tetrachloroethene	<1.0	1.0		ug/L			05/17/21 10:55	1
1,3-Dichloropropane	<1.0	1.0	0.36	ug/L			05/17/21 10:55	1

Eurofins TestAmerica, Chicago

Page 70 of 82 5/18/2021

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Method: 8260B - VOC (Continued)

Lab Sample ID: MB 500-599167/6

Matrix: Water

Analysis Batch: 599167

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-198719-1

١R

	1410	1410							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Hexanone	<5.0		5.0	1.6	ug/L			05/17/21 10:55	1
Dibromochloromethane	<1.0		1.0	0.49	ug/L			05/17/21 10:55	1
1,2-Dibromoethane	<1.0		1.0	0.39	ug/L			05/17/21 10:55	1
Chlorobenzene	<1.0		1.0	0.39	ug/L			05/17/21 10:55	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46	ug/L			05/17/21 10:55	1
Ethylbenzene	<0.50		0.50	0.18	ug/L			05/17/21 10:55	1
m&p-Xylene	<1.0		1.0	0.18	ug/L			05/17/21 10:55	1
o-Xylene	<0.50		0.50	0.22	ug/L			05/17/21 10:55	1
Styrene	<1.0		1.0	0.39	ug/L			05/17/21 10:55	1
Bromoform	<1.0		1.0	0.48	ug/L			05/17/21 10:55	1
Isopropylbenzene	<1.0		1.0	0.39	ug/L			05/17/21 10:55	1
Bromobenzene	<1.0		1.0	0.36	ug/L			05/17/21 10:55	1
1,1,2,2-Tetrachloroethane	<1.0		1.0	0.40	ug/L			05/17/21 10:55	1
1,2,3-Trichloropropane	<2.0		2.0	0.41	ug/L			05/17/21 10:55	1
N-Propylbenzene	<1.0		1.0	0.41	ug/L			05/17/21 10:55	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			05/17/21 10:55	1
1,3,5-Trimethylbenzene	<1.0		1.0	0.25	ug/L			05/17/21 10:55	1
4-Chlorotoluene	<1.0		1.0	0.35	ug/L			05/17/21 10:55	1
tert-Butylbenzene	<1.0		1.0	0.40	ug/L			05/17/21 10:55	1
1,2,4-Trimethylbenzene	<1.0		1.0	0.36	ug/L			05/17/21 10:55	1
sec-Butylbenzene	<1.0		1.0	0.40	ug/L			05/17/21 10:55	1
1,3-Dichlorobenzene	<1.0		1.0	0.40	ug/L			05/17/21 10:55	1
p-Isopropyltoluene	<1.0		1.0	0.36	ug/L			05/17/21 10:55	1
1,4-Dichlorobenzene	<1.0		1.0	0.36	ug/L			05/17/21 10:55	1
n-Butylbenzene	<1.0		1.0	0.39	ug/L			05/17/21 10:55	1
1,2-Dichlorobenzene	<1.0		1.0	0.33	ug/L			05/17/21 10:55	1
1,2-Dibromo-3-Chloropropane	<5.0		5.0	2.0	ug/L			05/17/21 10:55	1
1,2,4-Trichlorobenzene	<1.0		1.0	0.34	ug/L			05/17/21 10:55	1
Hexachlorobutadiene	<1.0		1.0		ug/L			05/17/21 10:55	1
Naphthalene	<1.0		1.0	0.34	ug/L			05/17/21 10:55	1
1,2,3-Trichlorobenzene	<1.0		1.0	0.46	ug/L			05/17/21 10:55	1
					-				

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102	75 ₋ 126	05/17/21 10:5	5 1
Toluene-d8 (Surr)	95	75 ₋ 120	05/17/21 10:5	5 1
4-Bromofluorobenzene (Surr)	84	72 - 124	05/17/21 10:5	5 1
Dibromofluoromethane	111	75 - 120	05/17/21 10:5	5 1

Lab Sample ID: LCS 500-599167/4

Matrix: Water

Analysis Batch: 599167

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
50.0	46.2		ug/L		92	70 - 120	
50.0	36.6		ug/L		73	40 - 159	
50.0	30.8		ug/L		62	56 ₋ 152	
50.0	40.7		ug/L		81	64 - 126	
50.0	57.2		ug/L		114	40 - 152	
	50.0 50.0 50.0 50.0 50.0	Added Result 50.0 46.2 50.0 36.6 50.0 30.8 50.0 40.7	50.0 46.2 50.0 36.6 50.0 30.8 50.0 40.7	Added Result Qualifier Unit 50.0 46.2 ug/L 50.0 36.6 ug/L 50.0 30.8 ug/L 50.0 40.7 ug/L	Added Result Qualifier Unit D 50.0 46.2 ug/L 50.0 36.6 ug/L 50.0 30.8 ug/L 50.0 40.7 ug/L	Added Result Qualifier Unit D %Rec 50.0 46.2 ug/L 92 50.0 36.6 ug/L 73 50.0 30.8 ug/L 62 50.0 40.7 ug/L 81	Added Result Qualifier Unit D %Rec Limits 50.0 46.2 ug/L 92 70 - 120 50.0 36.6 ug/L 73 40 - 159 50.0 30.8 ug/L 62 56 - 152 50.0 40.7 ug/L 81 64 - 126

Eurofins TestAmerica, Chicago

Page 71 of 82

5/18/2021

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Method: 8260B - VOC (Continued)

Lab Sample ID: LCS 500-599167/4

Matrix: Water

Analysis Batch: 599167

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 500-198719-1

	Spike	LCS	100				
							%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Chloroethane	50.0	43.0		ug/L		86	48 - 136
Trichlorofluoromethane	50.0	45.0		ug/L		90	55 - 128
1,1-Dichloroethene	50.0	44.4		ug/L		89	67 - 122
Carbon disulfide	50.0	41.7		ug/L		83	66 - 120
Acetone	50.0	33.8		ug/L		68	40 - 143
Methylene Chloride	50.0	42.3		ug/L		85	69 - 125
trans-1,2-Dichloroethene	50.0	44.6		ug/L		89	70 - 125
1,1-Dichloroethane	50.0	41.3		ug/L		83	70 - 125
2,2-Dichloropropane	50.0	39.4		ug/L		79	58 ₋ 139
cis-1,2-Dichloroethene	50.0	44.8		ug/L		90	70 - 125
Methyl Ethyl Ketone	50.0	38.3		ug/L		77	46 - 144
Bromochloromethane	50.0	50.0		ug/L		100	65 - 122
Chloroform	50.0	42.3		ug/L		85	70 - 120
1,1,1-Trichloroethane	50.0	43.1		ug/L		86	70 - 125
1,1-Dichloropropene	50.0	45.6		ug/L		91	70 - 121
Carbon tetrachloride	50.0	45.9		ug/L		92	59 - 133
1,2-Dichloroethane	50.0	41.2		ug/L		82	68 - 127
Trichloroethene	50.0	49.7		ug/L		99	70 - 125
1,2-Dichloropropane	50.0	43.0		ug/L		86	67 - 130
Dibromomethane	50.0	49.0		ug/L		98	70 - 120
Bromodichloromethane	50.0	43.3		ug/L		87	69 - 120
cis-1,3-Dichloropropene	50.0	42.1		ug/L		84	64 - 127
methyl isobutyl ketone	50.0	30.0		ug/L		60	55 - 139
Toluene	50.0	44.0		ug/L		88	70 ₋ 125
trans-1,3-Dichloropropene	50.0	41.2		ug/L		82	62 - 128
1,1,2-Trichloroethane	50.0	45.3		ug/L		91	71 - 130
Tetrachloroethene	50.0	46.9		ug/L		94	70 - 128
1,3-Dichloropropane	50.0	45.2		ug/L		90	62 - 136
2-Hexanone	50.0	30.0		ug/L		60	54 <i>-</i> 146
Dibromochloromethane	50.0	47.4		ug/L		95	68 ₋ 125
1,2-Dibromoethane	50.0	43.7		ug/L		87	70 - 125
Chlorobenzene	50.0	45.4		ug/L		91	70 - 120
1,1,1,2-Tetrachloroethane	50.0	47.4		ug/L		95	70 - 125
Ethylbenzene	50.0	43.6		ug/L		87	70 - 123
m&p-Xylene	50.0	42.3		ug/L		85	70 - 125
o-Xylene	50.0	42.1		ug/L		84	70 - 120
Styrene	50.0	46.2		ug/L		92	70 - 120
Bromoform	50.0	49.7		ug/L		99	56 - 132
Isopropylbenzene	50.0	41.4		ug/L		83	70 ₋ 126
Bromobenzene	50.0	42.0		ug/L		84	70 - 122
1,1,2,2-Tetrachloroethane	50.0	43.3		ug/L		87	62 - 140
1,2,3-Trichloropropane	50.0	44.1		ug/L		88	50 ₋ 133
N-Propylbenzene	50.0	41.1		ug/L		82	69 - 127
2-Chlorotoluene	50.0	39.9		ug/L		80	70 - 125
1,3,5-Trimethylbenzene	50.0	41.4		ug/L		83	70 - 123
4-Chlorotoluene	50.0	40.7		ug/L		81	68 - 124
tert-Butylbenzene	50.0	40.0		ug/L		80	70 - 121
·	50.0	41.7		ug/L		83	70 - 123
1,2,4-Trimethylbenzene	3U.U						

Eurofins TestAmerica, Chicago

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Method: 8260B - VOC (Continued)

Lab Sample ID: LCS 500-599167/4

Matrix: Water

Analysis Batch: 599167

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 500-198719-1

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,3-Dichlorobenzene	50.0	44.0		ug/L		88	70 - 125	
p-Isopropyltoluene	50.0	41.8		ug/L		84	70 - 125	
1,4-Dichlorobenzene	50.0	44.7		ug/L		89	70 - 120	
n-Butylbenzene	50.0	41.9		ug/L		84	68 - 125	
1,2-Dichlorobenzene	50.0	44.1		ug/L		88	70 - 125	
1,2-Dibromo-3-Chloropropane	50.0	42.3		ug/L		85	56 - 123	
1,2,4-Trichlorobenzene	50.0	40.6		ug/L		81	57 ₋ 137	
Hexachlorobutadiene	50.0	42.2		ug/L		84	51 - 150	
Naphthalene	50.0	40.4		ug/L		81	53 - 144	
1,2,3-Trichlorobenzene	50.0	41.6		ug/L		83	51 ₋ 145	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		75 - 126
Toluene-d8 (Surr)	97		75 - 120
4-Bromofluorobenzene (Surr)	84		72 - 124
Dibromofluoromethane	106		75 - 120

Client: Weston Solutions, Inc.

Project/Site: Black and Decker

Client Sample ID: RFW-1A

Date Collected: 05/04/21 10:05

Date Received: 05/06/21 09:50

Job ID: 500-198719-1

Lab Sample ID: 500-198719-1

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Total/NA Analysis 8260B 599042 05/15/21 14:09 PMF TAL CHI

Client Sample ID: RFW-1B Date Collected: 05/04/21 10:40 Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-2

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 599042 05/15/21 14:37 PMF TAL CHI

Client Sample ID: RFW-2A Date Collected: 05/04/21 11:35 Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-3

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 05/15/21 15:06 PMF 599042 TAL CHI

Client Sample ID: RFW-2B Date Collected: 05/04/21 12:00 Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-4

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 599042 05/15/21 15:34 PMF TAL CHI

Client Sample ID: RFW-3B Date Collected: 05/04/21 13:00 Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-5

Matrix: Water

Dilution Batch Batch Batch Prepared Method Prep Type Type Run Factor Number or Analyzed Analyst Lab Total/NA 8260B Analysis 599042 05/15/21 16:03 PMF TAL CHI

Client Sample ID: RFW-4A Date Collected: 05/05/21 12:15 Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-6

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Method Factor or Analyzed Type Run Number Analyst Lab Total/NA 05/17/21 11:53 Analysis 8260B PMF 599167 TAL CHI

Client Sample ID: RFW-4B Date Collected: 05/05/21 11:25 Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-7

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 599167 05/17/21 12:22 PMF TAL CHI

Client: Weston Solutions, Inc.

Project/Site: Black and Decker

Lab Sample ID: 500-198719-8

Matrix: Water

Job ID: 500-198719-1

Client Sample ID: RFW-4B DUP

Date Collected: 05/05/21 11:25

Date Received: 05/06/21 09:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	599167	05/17/21 12:51	PMF	TAL CHI

Client Sample ID: RFW-6

Date Collected: 05/04/21 13:55

Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-9

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 599042 05/15/21 16:31 PMF TAL CHI

Client Sample ID: RFW-7

Date Collected: 05/04/21 16:35 Date Received: 05/06/21 09:50 Lab Sample ID: 500-198719-10

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Method Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 599042 05/15/21 17:00 PMF TAL CHI

Client Sample ID: RFW-9

Date Collected: 05/05/21 08:00 Date Received: 05/06/21 09:50 Lab Sample ID: 500-198719-11

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA 8260B PMF Analysis 599167 05/17/21 13:20 TAL CHI

Client Sample ID: RFW-11B

Date Collected: 05/05/21 09:00

Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-12

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 05/17/21 13:49 PMF 599167 TAL CHI

Client Sample ID: RFW-12B

Date Collected: 05/04/21 17:30

Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-13

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Method Type Number or Analyzed Analyst Run Factor Lab Total/NA Analysis 8260B 599042 05/15/21 17:28 PMF TAL CHI

Client Sample ID: RFW-13

Date Collected: 05/04/21 14:50 Date Received: 05/06/21 09:50 Lab Sample ID: 500-198719-14

Matrix: Water

Batch Batch Dilution Batch Prepared
Prep Type Type Method Run Factor Number or Analyze

 Prep Type
 Type
 Method
 Run
 Factor
 Number
 or Analyzed
 Analyst
 Lab

 Total/NA
 Analysis
 8260B
 1
 599042
 05/15/21 17:56
 PMF
 TAL CHI

Client: Weston Solutions, Inc.

Project/Site: Black and Decker

Lab Sample ID: 500-198719-15

Matrix: Water

Job ID: 500-198719-1

Client Sample ID: RFW-17

Date Collected: 05/04/21 15:45 Date Received: 05/06/21 09:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	599167	05/17/21 14:18	PMF	TAL CHI

Client Sample ID: EW-2

Date Collected: 05/05/21 08:55 Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-16

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 599167 05/17/21 14:47 PMF TAL CHI

Client Sample ID: EW-3

Date Collected: 05/05/21 09:55 Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-17

Matrix: Water

Dilution Batch Batch Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA 8260B Analysis 599167 05/17/21 15:15 PMF TAL CHI

Client Sample ID: EW-4

Date Collected: 05/05/21 12:05 Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-18

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Method Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 599167 05/17/21 15:44 PMF TAL CHI

Client Sample ID: EW-5

Date Collected: 05/05/21 08:45 Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-19

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 599167 05/17/21 16:13 PMF TAL CHI

Client Sample ID: EW-6

Date Collected: 05/04/21 15:55 Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-20

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA 8260B Analysis 599167 05/17/21 16:42 PMF TAL CHI

Client Sample ID: EW-7

Date Collected: 05/04/21 16:00 Date Received: 05/06/21 09:50 Lab Sample ID: 500-198719-21

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed **Analyst** Lab Total/NA Analysis 8260B PMF 599167 05/17/21 17:11 TAL CHI

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Job ID: 500-198719-1

Client Sample ID: EW-8

Date Collected: 05/04/21 16:10

Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-22

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	599167	05/17/21 17:40	PMF	TAL CHI

Client Sample ID: EW-9

Date Collected: 05/04/21 16:15 Date Received: 05/06/21 09:50 Lab Sample ID: 500-198719-23

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	599167	05/17/21 18:09	PMF	TAL CHI

Client Sample ID: EW-9 DUP

Date Collected: 05/04/21 16:15

Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-24

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	599167	05/17/21 18:38	PMF	TAL CHI

Client Sample ID: EW-10

Date Collected: 05/04/21 16:20 Date Received: 05/06/21 09:50 Lab Sample ID: 500-198719-25

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	ERONAL P. INC. 1. 170.111	1	599167	05/17/21 19:07	PMF	TAL CHI

Client Sample ID: Trip Blank

Date Collected: 05/04/21 07:00

Date Received: 05/06/21 09:50

Lab Sample ID: 500-198719-26

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Anal y sis	8260B		1	599167	05/17/21 11:24	PMF	TAL CHI

Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Accreditation/Certification Summary

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Job ID: 500-198719-1

Laboratory: Eurofins TestAmerica, Chicago

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2903	04-30-21 *
Georgia	State	N/A	04-29-21 *
Georgia (DW)	State	939	04-30-21 *
Hawaii	State	NA	04-30-20 *
Illinois	NELAP	IL00035	04-29-22
Indiana	State	C-IL-02	06-29-21
lowa	State	082	05-01-22
Kansas	NELAP	E-10161	10-31-21
Kentucky (UST)	State	Al # 108083	04-29-21 *
Kentucky (WW)	State	KY90023	12-31-21
Louisiana	NELAP	02046	06-30-21
Mississippi	State	NA	04-30-20 *
North Carolina (WW/SW)	State	291	12-31-21
North Dakota	State	R-194	04-29-21 *
Oklahoma	State	8908	08-31-21
USDA	US Federal Programs	P330-18-00018	02-11-24
Wisconsin	State	999580010	08-31-21
Wyoming	State	8TMS-Q	04-30-20 *

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Chain of Custody Record 531461 & eurofins Environment Testing

Address					* TestAmerica
	Regulatory Program:				TAL-821
Client Contact	Project Manager		Site Contact & Flas		COC No
Company Name Wester Solution	Tel/Email:		Lab Contact D W v 1/2	Carrier	of 5 COCs
Address I weeken way	Analysis Turnaround		 	4	Sampler
City/State/Zip W.C. RA	· 	RKING DAYS			For Lab Use Only
Phone 610. 731.0583	TAT if different from Below 2 weeks		z		Walk-in Client Lab Sampling
Project Name Black + Daker	2 weeks		Z > V	6363	Lau Sampling
Site Hampstead MA	Z days			1 127648 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Job / SDG No
PO#	1 day		Fifered Sample (Y/N) Perform MS / MSD (Y/N) V O C		500-198719
	Sample		A Sar		1 200-110717
	Sample Sample Type		De EL	500-198719 COC	
Sample Identification	Date Time G=Grab)	Matrix Cont.			Sample Specific Notes
Production	duly in - C		[Sample openite Hotes
RFW-IA	5/4/21 1005 G	W 3	$I + I + \cdots + $		
RFW-1B	1040	1111			
RFW-2A	1135				
RFW-2B	1200]		
RFW-3B	1300				
RFW-4A	5/5 1245				
RFW-4B	1 1125				
RPW-4B DUP	1125				
RFW-6	5/4 1355				
ORFW-7	5/4 1635				
RFW-9	5/5 800				
KRFW-IIB	5/5 900 -	111	 	 	
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3			 	}-}-}-}-	
Possible Hazard Identification:	, o mading or other		Sample Disposal (A fee	may be assessed if samples are reta	ined longer than 1 mouth)
Are any samples from a listed EPA Hazardous Waste? Plea	se List any EPA Waste Codes for	the sample in th	e	may so accessed a complete the fermi	and longer trial I monthly
Comments Section if the lab is to dispose of the sample		· · · · · · · · · · · · · · · · · · ·	-		
Non Hazard Flammable Skin Imitant	Poison B Unkn	own	Return to Client	Disposal by Lab Archive fo	or Months
Special Instructions/QC Requirements & Comments:					
Custoev See/s Intect Tyes No	Custody Seal No		Cooler Temp	(°C) Obs'd Corr'd S	Therm ID No
Re inclushed by	Company	Daje/Time	Received by	Company	Date/Time
80 requested by	Company	Date/Time	Received by	Company	Date/Time
To The Sy	Company	Date/Time	Paceivad Mahoratan h	Company	Data/Titas /
	Company	Date/Time	Received Waboratory by	with Company Cott	576/21 0950
					11111

Page 79 of 82

5/18/2021

		Chain	of Custod	y Record 🚊	31462 🕏	eurofins Environment Te
Address						TestAmerica
	Regulatory Program:	_DW NPDE	S RCRA Ot	her		TAL-
Client Contact	Project Manager:		Site Contact	Date		COC No
Company Name	Tel/Email		Lab Contact	Carrie	r	_ <u>&</u> of <u>3</u> COCs
Address	Analysis Turnaround		11111			Sampler
City/State/Zip	 " 	KING DAYS				For Lab Use Only
Phone Fax	TAT if different from Below		Z			Walk-in Client
	2 weeks		ZZU			Lab Sampling
Project Name 5 lack + Necker	1 week) QQ C			Job / SDG No
PO#	1 day		ald Z			500-198719
	Sample		San'			300-110-719
	Sample Sample Type		P E			
Sample Identification	, te-comp i	# of Matrix Cont.	Filtered Sample (Y / N) Perform MS / MSD (Y / N)		1 1 1 1 1 1	Sample Specific Notes
AFW-13B	5/4 1730 6	w 3	 			Cample openine notes
RFW-13	5/4 1450 1	1 1	 	+++++		
RFW-17	5/4 1545	111	 			
Ew - 2	5/5 855					
Ew-3	5/5 355					
Ew-Y	5/5 1205					
Ew-5	5/5 845					2.B
EW-6	5/4 1555	+++				
Ew-7	5/4 1600					
Em-8	5/4 /6/0					
EW-9	5/4 1675					
Ew- 9 DUN	5/4 1615	1				
Preservation Used: 1= Ice, 2= NCI; 3= H2SO4; 4=HNO	3; S=NaOH; б= Other		34		10.00 1 (360 1 1 3 3 4 3 3 3 4 3 3 4 3 4 3 4 3 4 4 3 4	
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Ple	ase List any EPA Waste Codes for the	ne sample in th	Sample Dispos	al (A fee may be assess	sed if samples are reta	ined longer than 1 month)
Comments Section if the lab is to dispose of the sample			_			
Non Nazard Flammable Skin Irritant	Poison B Unknow	wn	Return to Clie	ent Disposal by	Lab Archive fo	or Months
Special Instructions/QC Requirements & Comments:						
Custody Seals Likact	Custody Seal No	······································	Coole	er Temp (°C) Obs'd	Corr'd	Therm ID No
Custody Seals Utact [] Yes [] No	Company 1	Date Time 160	Received by	remp (o) ousd	Company	Date/Time
Rein custed by	100 100	5 5 160 Date/Time	Received by		Company	Date/Time
	, ,		۸.	A		
Relinquished by	Company	Date/Time	Received in Lab	oratory of the state of the sta	Company OH	5/6/21 0950

Page 80 of 82

				Cł	nain	of	Cu	stoc	dy F	Recc	ord	Цą	1 11	2 4		ŝ eu	urofins	
												J J	1.48	SS	***	,• Cu	11011113	Environment Tr TestAmerica
Address																	: ;	restamenta
	Regu	latory Pre	ogram: (DW	NPDES	, [RCRA	. [(Other									TAL
Client Contact	Project M	lanager:				Site	Conta	act			Da	te:					COC No	
Company Name	Tel/Email:					Lab	Conta	act			C	arrier:					5 of	3 COCs
Address		 	Turnaround			П				1.	\Box						Sampler	
City/State/Zip		NDAR DAYS		RKING DAY	/S] [_	1 (i 1	For Lab Use Or	ıly
Phone	-1	AT if different f				Į	1										Walk-in Client	
Fax	-		2 weeks			Filtered Sample (Y/N)	1, 1										Lab Sampling	L
Project Name Black - Decker	1 5		1 week			۾ اخا	IV										Late / CDC No.	
P O #			2 days			음	0							l			Job / SDG No	10-7/0
F 0#			Sample			Sam Sam	1										500/1	40117
			Tyne			Filtered Sample (Y/N)	١٨							1			ĺ	
Samuela identification	Sample Date	Sample Time	(C≃Comp. G≃Grab)	Matrix	# of Cont.	if if	<u> </u>								1		Cample	C:F- Notos
Sample Identification				Mauia		1-1-	+-+	_	-	+-+-	++	+-+	-	-	-	+-1	Sample	Specific Notes
Trip Black	5/4/21	1630	G	W	3	Ш	Ш											
Trio Black	514/21	700	G	w	٦		Π			\top		TI	11	1				
11,6 Man	13/1/4	100	10	100	<u> </u>	1-	1+1	-+-	 -	++-	++	++	+-+	+	+	+-+		
		1			L	Ш				\perp				\perp		11	L	
	T	T		T	Γ	Π	T^{-}		П	T								
	+	+	 	+	 	┼┼	+	+	\vdash	++	++	+-+	++		\vdash	++		
						Ш	\perp				$\perp \downarrow$	$\perp \perp$	$\perp \perp$			\perp		
1	İ			1		11											(
	+	 	 	+	 	++	1	+		++	+	++	+-+	-+-	+	+-+		
				ļ		11	\perp			44	+	$\perp \perp$	44		$\sqcup \sqcup$	\perp		
		}			}						1 1					1	İ	
	1	 	†	+		1-1-	+	_		+	++	++	11	\top	\vdash	+++		
		 	 	 	}	↓ ↓	\downarrow	\dashv		+-	++	++	++	\perp	1	+		
				1			1									1 1		
	1			1			1			1		+	1	\top		\top		
		 	 	 	-	+	+		\vdash	++	++	++	++	+		+		
	l]	.			Ш										ł	_
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3	; 5≃NaOH;	6≖ Other																
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Pleacomments Section if the lab is to dispose of the sample	ase List any	EPA Wastr	e Codes for	the sam	ple in th		ampl	e Dispo	osal (A	4 fee m	ay be a	sesse	if san	ples	are ret	ained	l longer than 1 m	nonth)
Non Hazerd Flammable Skin Irritant	Paisor	n B	Unkn	JOW?		\neg	[= R	teturn to (Client		Dispo	sal by La	h	-	Archive	for	Months	
Special Instructions/QC Requirements & Comments:												,5G, U,			·			
(7)																		
Custody Seals Intact Yes No	Custody S							Cod	oler Te	mp (°C	C) Öbs'd			orr,q			Therm ID No	
Retinguished by	Company	١ ١		Date/T	ime Pj lo	od₽	eceiv	ed by				C	ompan	y		1	Date/Time	
	115	<u> 4840</u>	Л		u	_												
Reinquimed by	Company			Dete/	ime	R	eceiv	ed by				C	ompan	У			Date/Time	
· · · · · · · · · · · · · · · · · · ·				<u> </u>					,		Α							
Pir stude by)	Company			Date/T	ime	K	eceiv	ed in 1	///	· · · · · · · · · · · · · · · · · · ·	lant	k lo	ompan		1.77	- 1	Date/Time	1060
						丄		At	un	علاے ر	COV		1211	1 -t.	KL	- t	576/21	0950

Page 81 of 82

5/18/2021

Login Sample Receipt Checklist

Client: Weston Solutions, Inc.

Job Number: 500-198719-1

Login Number: 198719 List Source: Eurofins TestAmerica, Chicago

List Number: 1

Creator: Scott, Sherri L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
here are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
ample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	False	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ANALYTICAL REPORT

Eurofins TestAmerica, Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

Laboratory Job ID: 680-198546-1 Client Project/Site: Black & Decker

For

Weston Solutions, Inc. 1400 Weston Way PO BOX 2653 West Chester, Pennsylvania 19380

Attn: Greg Flasinski

Authorized for release by: 5/14/2021 2:37:49 PM

Amy Weinberg, Project Manager II (813)885-7427

amy.weinberg@Eurofinset.com

.....LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Case Narrative

Client: Weston Solutions, Inc. Project/Site: Black & Decker		Job ID: 680-198546-1
1 Tojestone. Black & Besker		
Job ID: 680-198546-1		
Laboratory: Eurofins TestAmerica, Savannah		
Narrative		
	Job Narrative	
	680-198546-1	

Comments

No additional comments.

Receipt

The samples were received on 5/6/2021 11:30 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 5.3° C.

GC/MS VOA

Method 524.2: The lot test of the laboratory trip blank water associated with analytical batch 680-668421 indicated a detection above the reporting limit (RL) for the following analyte(s): Methylene Chloride. Reanalysis confirmed the presence of Methylene Chloride; therefore the original results have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Sample Summary

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Job ID: 680-198546-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
680-198546-1	RFW-20	Water	05/04/21 09:10	05/06/21 11:30	
680-198546-2	RFW-21	Water	05/04/21 08:15	05/06/21 11:30	
680-198546-3	HAMP-22	Water	05/05/21 09:25	05/06/21 11:30	
680-198546-4	HAMP-23	Water	05/05/21 09:20	05/06/21 11:30	
680-198546-5	Trip Blank	Water	05/04/21 07:00	05/06/21 11:30	

Method Summary

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Job ID: 680-198546-1

MethodMethod DescriptionProtocolLaboratory524.2Volatile Organic Compounds (GC/MS)EPA-DWTAL SAV

Protocol References:

EPA-DW = "Methods For The Determination Of Organic Compounds In Drinking Water", EPA/600/4-88/039, December 1988 And Its Supplements.

Laboratory References:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Definitions/Glossary

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Job ID: 680-198546-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Client: Weston Solutions, Inc.

Job ID: 680-198546-1

Project/Site: Black & Decker

Client Sample ID: RFW-20

Date Collected: 05/04/21 09:10

Lab Sample ID: 680-198546-1

Matrix: Water

Method: 524.2 - Volatile Organic Compounds (GC/MS)

Method: 524.2 - Volatile Orga Analyte	Result Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<10	10	5.0	ug/L			05/12/21 18:32	1
Benzene	<0.50	0.50	0.082	ug/L			05/12/21 18:32	1
Bromobenzene	<0.50	0.50	0.091	ug/L			05/12/21 18:32	1
Bromoform	<0.50	0.50	0.17	ug/L			05/12/21 18:32	1
Bromomethane	<1.0	1.0		ug/L			05/12/21 18:32	1
Carbon tetrachloride	<0.50	0.50		ug/L			05/12/21 18:32	1
Chlorobenzene	< 0.50	0.50	0.14	ug/L			05/12/21 18:32	1
Chlorobromomethane	<0.50	0.50		ug/L			05/12/21 18:32	1
Chlorodibromomethane	<0.50	0.50		ug/L			05/12/21 18:32	1
Chloroethane	<1.0	1.0	0.22	ug/L			05/12/21 18:32	1
Chloroform	<0.50	0.50		ug/L			05/12/21 18:32	1
Chloromethane	<0.50	0.50		ug/L			05/12/21 18:32	1
2-Chlorotoluene	<0.50	0.50		ug/L			05/12/21 18:32	1
4-Chlorotoluene	<0.50	0.50		ug/L			05/12/21 18:32	1
cis-1,2-Dichloroethene	<0.50	0.50	0.090				05/12/21 18:32	1
cis-1,3-Dichloropropene	<0.50	0.50	0.081				05/12/21 18:32	1
1,2-Dibromo-3-Chloropropane	<0.50	0.50		ug/L			05/12/21 18:32	1
Dibromomethane	<0.50	0.50		ug/L			05/12/21 18:32	1
1,2-Dichlorobenzene	<0.50	0.50		ug/L			05/12/21 18:32	1
1,3-Dichlorobenzene	<0.50	0.50		ug/L			05/12/21 18:32	1
1,4-Dichlorobenzene	<0.50	0.50		ug/L			05/12/21 18:32	1
Dichlorobromomethane	<0.50	0.50	0.079				05/12/21 18:32	1
Dichlorodifluoromethane	<0.50	0.50		ug/L			05/12/21 18:32	1
1,1-Dichloroethane	<0.50	0.50	0.078				05/12/21 18:32	1
1,2-Dichloroethane	<0.50	0.50	0.076				05/12/21 18:32	
1,1-Dichloroethene	<0.50	0.50	0.086					1
1,2-Dichloropropane	<0.50	0.50	0.096				05/12/21 18:32	1
1,3-Dichloropropane	<0.50	0.50	0.090				05/12/21 18:32	1
2,2-Dichloropropane	<0.50	0.50					05/12/21 18:32	1
1,1-Dichloropropene	<0.50	0.50	0.20	ug/L			05/12/21 18:32	1
1,3-Dichloropropene, Total	<0.50	0.50					05/12/21 18:32	1
Diisopropyl ether	<0.50	0.50	0.081				05/12/21 18:32	1
Ethylbenzene	<0.50	0.50		ug/L			05/12/21 18:32	1
Ethylene Dibromide			0.099				05/12/21 18:32	1
Freon 113	<0.50	0.50		ug/L			05/12/21 18:32	1
Hexachlorobutadiene	<0.50	0.50		ug/L			05/12/21 18:32	1
	<0.50	0.50		ug/L			05/12/21 18:32	1
2-Hexanone	<10	10		ug/L			05/12/21 18:32	1
Isopropylbenzene	<0.50	0.50	0.15	_			05/12/21 18:32	1
4-Isopropyltoluene	<0.50	0.50		ug/L			05/12/21 18:32	1
Methylene Chloride	<0.50	0.50	0.20				05/12/21 18:32	1
2-Butanone (MEK)	<10	10		ug/L			05/12/21 18:32	1
4-Methyl-2-pentanone (MIBK)	<10	10		ug/L			05/12/21 18:32	1
m-Xylene & p-Xylene	<0.50	0.50	0.15				05/12/21 18:32	1
Naphthalene	<1.0	1.0	0.43				05/12/21 18:32	1
n-Butylbenzene	<0.50	0.50	0.17	-			05/12/21 18:32	1
N-Propylbenzene	<0.50	0.50	0.17				05/12/21 18:32	1
o-Xylene	<0.50	0.50	0.086				05/12/21 18:32	1
sec-Butylbenzene	<0.50	0.50	0.14				05/12/21 18:32	1
Styrene	<0.50	0.50	0.089	ug/L			05/12/21 18:32	1

Eurofins TestAmerica, Savannah

Page 6 of 30 5/14/2021

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Job ID: 680-198546-1

Client Sample ID: RFW-20 Date Collected: 05/04/21 09:10

Lab Sample ID: 680-198546-1

Date Received: 05/06/21 11:30

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tert-amyl methyl ether	<0.50	0.50	0.20	ug/L			05/12/21 18:32	1
tert-Butyl alcohol	<10	10	1.6	ug/L			05/12/21 18:32	1
tert-Butylbenzene	<0.50	0.50	0.14	ug/L			05/12/21 18:32	1
Tert-butyl ethyl ether	<0.50	0.50	0.26	ug/L			05/12/21 18:32	1
1,1,1,2-Tetrachloroethane	<0.50	0.50	0.24	ug/L			05/12/21 18:32	1
1,1,2,2-Tetrachloroethane	<0.50	0.50	0.13	ug/L			05/12/21 18:32	1
Tetrachloroethene	<0.50	0.50	0.18	ug/L			05/12/21 18:32	1
Toluene	<0.50	0.50	0.086	ug/L			05/12/21 18:32	1
trans-1,2-Dichloroethene	<0.50	0.50	0.090	ug/L			05/12/21 18:32	1
trans-1,3-Dichloropropene	<0.50	0.50	0.11	ug/L			05/12/21 18:32	1
1,2,3-Trichlorobenzene	<0.50	0.50	0.14	ug/L			05/12/21 18:32	1
1,2,4-Trichlorobenzene	<0.50	0.50	0.12	ug/L			05/12/21 18:32	1
1,1,1-Trichloroethane	<0.50	0.50	0.15	ug/L			05/12/21 18:32	1
1,1,2-Trichloroethane	<0.50	0.50	0.16	ug/L			05/12/21 18:32	1
Trichloroethene	<0.50	0.50	0.13	ug/L			05/12/21 18:32	1
Trichlorofluoromethane	<0.50	0.50	0.23	ug/L			05/12/21 18:32	1
1,2,3-Trichloropropane	<0.50	0.50	0.17	ug/L			05/12/21 18:32	1
Trihalomethanes, Total	<0.50	0.50	0.079	ug/L			05/12/21 18:32	1
1,2,4-Trimethylbenzene	<0.50	0.50	0.17	ug/L			05/12/21 18:32	1
1,3,5-Trimethylbenzene	<0.50	0.50		ug/L			05/12/21 18:32	1
Vinyl chloride	<0.50	0.50	0.16	ug/L			05/12/21 18:32	1
Xylenes, Total	<0.50	0.50	0.086				05/12/21 18:32	1

Surrogate	%Recovery C	Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene	77		70 - 130	05/12/21 18:32	1
1,2-Dichlorobenzene-d4	119		70 - 130	05/12/21 18:32	1

Client: Weston Solutions, Inc.
Project/Site: Black & Decker

Client Sample ID: RFW-21 Lab Sample ID: 680-198546-2

Date Collected: 05/04/21 08:15

Date Received: 05/06/21 11:30

Matrix: Water

Method: 524.2 - Volatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<10	10	5.0	ug/L			05/12/21 21:14	1
Benzene	<0.50	0.50	0.082	ug/L			05/12/21 21:14	1
Bromobenzene	<0.50	0.50	0.091	ug/L			05/12/21 21:14	1
Bromoform	<0.50	0.50	0.17	ug/L			05/12/21 21:14	1
Bromomethane	<1.0	1.0	0.20	ug/L			05/12/21 21:14	1
Carbon tetrachloride	<0.50	0.50	0.11	ug/L			05/12/21 21:14	1
Chlorobenzene	<0.50	0.50	0.14	ug/L			05/12/21 21:14	1
Chlorobromomethane	<0.50	0.50	0.30	ug/L			05/12/21 21:14	1
Chlorodibromomethane	<0.50	0.50	0.13	ug/L			05/12/21 21:14	1
Chloroethane	<1.0	1.0	0.22				05/12/21 21:14	1
Chloroform	<0.50	0.50	0.20				05/12/21 21:14	1
Chloromethane	<0.50	0.50	0.15				05/12/21 21:14	1
2-Chlorotoluene	<0.50	0.50	0.11				05/12/21 21:14	1
4-Chlorotoluene	<0.50	0.50	0.13				05/12/21 21:14	1
cis-1,2-Dichloroethene	<0.50	0.50	0.090	-			05/12/21 21:14	1
cis-1,3-Dichloropropene	<0.50	0.50	0.081	-			05/12/21 21:14	1
1,2-Dibromo-3-Chloropropane	<0.50	0.50	0.30				05/12/21 21:14	1
Dibromomethane	<0.50	0.50	0.16				05/12/21 21:14	1
1,2-Dichlorobenzene	<0.50	0.50	0.16	-			05/12/21 21:14	1
1,3-Dichlorobenzene	<0.50	0.50	0.11				05/12/21 21:14	1
1.4-Dichlorobenzene	<0.50	0.50	0.13				05/12/21 21:14	1
Dichlorobromomethane	<0.50	0.50	0.079	-			05/12/21 21:14	1
Dichlorodifluoromethane	<0.50	0.50	0.34	_			05/12/21 21:14	1
1,1-Dichloroethane	<0.50	0.50	0.078	-			05/12/21 21:14	1
1,2-Dichloroethane	<0.50	0.50	0.086	-			05/12/21 21:14	1
1,1-Dichloroethene	<0.50	0.50	0.15				05/12/21 21:14	1
1,2-Dichloropropane	<0.50	0.50	0.096				05/12/21 21:14	1
1,3-Dichloropropane	<0.50	0.50	0.10				05/12/21 21:14	1
2,2-Dichloropropane	<0.50	0.50	0.20	-			05/12/21 21:14	1
1,1-Dichloropropene	<0.50	0.50	0.095	-			05/12/21 21:14	1
1,3-Dichloropropene, Total	<0.50	0.50	0.081	-			05/12/21 21:14	1
Diisopropyl ether	<0.50	0.50	0.28				05/12/21 21:14	1
Ethylbenzene	<0.50	0.50	0.099	-			05/12/21 21:14	1
Ethylene Dibromide	<0.50	0.50	0.039				05/12/21 21:14	1
Freon 113	<0.50	0.50	0.15				05/12/21 21:14	1
Hexachlorobutadiene	<0.50	0.50	0.16				05/12/21 21:14	1
2-Hexanone	<10	10		ug/L ug/L			05/12/21 21:14	1
sopropylbenzene	<0.50	0.50	0.15				05/12/21 21:14	1
4-Isopropyltoluene	<0.50	0.50	0.13	•			05/12/21 21:14	
Methylene Chloride	<0.50	0.50		-				1
2-Butanone (MEK)	<10	10	0.20				05/12/21 21:14	1
4-Methyl-2-pentanone (MIBK)	<10	10		ug/L			05/12/21 21:14	1
• ' '				ug/L			05/12/21 21:14	1
n-Xylene & p-Xylene	<0.50	0.50	0.15				05/12/21 21:14	1
Naphthalene	<1.0	1.0	0.43				05/12/21 21:14	1
n-Butylbenzene	<0.50	0.50	0.17				05/12/21 21:14	1
N-Propylbenzene	<0.50	0.50	0.17	-			05/12/21 21:14	1
o-Xylene	<0.50	0.50	0.086	-			05/12/21 21:14	1
sec-Butylbenzene	<0.50	0.50	0.14				05/12/21 21:14	1
Styrene	<0.50	0.50	0.089	ug/L			05/12/21 21:14	1

Eurofins TestAmerica, Savannah

Job ID: 680-198546-1

Page 8 of 30 5/14/2021

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Job ID: 680-198546-1

Client Sample ID: RFW-21 Date Collected: 05/04/21 08:15

Lab Sample ID: 680-198546-2

Matrix: Water

Date Received: 05/06/21 11:30

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier RL	. MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tert-amyl methyl ether	<0.50	0.50	0.20	ug/L			05/12/21 21:14	1
tert-Butyl alcohol	<10	10	1.6	ug/L			05/12/21 21:14	1
tert-Butylbenzene	< 0.50	0.50	0.14	ug/L			05/12/21 21:14	1
Tert-butyl ethyl ether	< 0.50	0.50	0.26	ug/L			05/12/21 21:14	1
1,1,1,2-Tetrachloroethane	< 0.50	0.50	0.24	ug/L			05/12/21 21:14	1
1,1,2,2-Tetrachloroethane	< 0.50	0.50	0.13	ug/L			05/12/21 21:14	1
Tetrachloroethene	< 0.50	0.50	0.18	ug/L			05/12/21 21:14	1
Toluene	< 0.50	0.50	0.086	ug/L			05/12/21 21:14	1
trans-1,2-Dichloroethene	< 0.50	0.50	0.090	ug/L			05/12/21 21:14	1
trans-1,3-Dichloropropene	< 0.50	0.50	0.11	ug/L			05/12/21 21:14	1
1,2,3-Trichlorobenzene	< 0.50	0.50	0.14	ug/L			05/12/21 21:14	1
1,2,4-Trichlorobenzene	<0.50	0.50	0.12	ug/L			05/12/21 21:14	1
1,1,1-Trichloroethane	< 0.50	0.50	0.15	ug/L			05/12/21 21:14	1
1,1,2-Trichloroethane	< 0.50	0.50	0.16	ug/L			05/12/21 21:14	1
Trichloroethene	< 0.50	0.50	0.13	ug/L			05/12/21 21:14	1
Trichlorofluoromethane	< 0.50	0.50	0.23	ug/L			05/12/21 21:14	1
1,2,3-Trichloropropane	< 0.50	0.50	0.17	ug/L			05/12/21 21:14	1
Trihalomethanes, Total	< 0.50	0.50	0.079	ug/L			05/12/21 21:14	1
1,2,4-Trimethylbenzene	< 0.50	0.50	0.17	ug/L			05/12/21 21:14	1
1,3,5-Trimethylbenzene	< 0.50	0.50	0.16	ug/L			05/12/21 21:14	1
Vinyl chloride	<0.50	0.50	0.16	ug/L			05/12/21 21:14	1
Xylenes, Total	<0.50	0.50	0.086	ug/L			05/12/21 21:14	1
Surrogate	%Recovery	Qualifier Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	78	70 - 130		05/12/21 21:14	1
1,2-Dichlorobenzene-d4	117	70 - 130		05/12/21 21:14	1

Client: Weston Solutions, Inc.

Job ID: 680-198546-1

Project/Site: Black & Decker

Client Sample ID: HAMP-22 Lab Sample ID: 680-198546-3
Date Collected: 05/05/21 09:25 Matrix: Water

Date Collected: 05/05/21 09:25

Date Received: 05/06/21 11:30

Matrix: Water

Method: 524.2 - Volatile Organic Compounds (GC/MS)

Analyte	Result Qualifi	ier RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<10	10	5.0	ug/L			05/12/21 21:37	1
Benzene	<0.50	0.50	0.082	ug/L			05/12/21 21:37	1
Bromobenzene	<0.50	0.50	0.091	ug/L			05/12/21 21:37	1
Bromoform	< 0.50	0.50	0.17	ug/L			05/12/21 21:37	1
Bromomethane	<1.0	1.0	0.20	ug/L			05/12/21 21:37	1
Carbon tetrachloride	< 0.50	0.50	0.11	ug/L			05/12/21 21:37	1
Chlorobenzene	< 0.50	0.50	0.14	ug/L			05/12/21 21:37	1
Chlorobromomethane	<0.50	0.50	0.30	ug/L			05/12/21 21:37	1
Chlorodibromomethane	< 0.50	0.50	0.13	ug/L			05/12/21 21:37	1
Chloroethane	<1.0	1.0	0.22	ug/L			05/12/21 21:37	1
Chloroform	0.22 J	0.50	0.20	ug/L			05/12/21 21:37	1
Chloromethane	<0.50	0.50	0.15	ug/L			05/12/21 21:37	1
2-Chlorotoluene	<0.50	0.50		ug/L			05/12/21 21:37	1
4-Chlorotoluene	<0.50	0.50		ug/L			05/12/21 21:37	1
cis-1,2-Dichloroethene	<0.50	0.50	0.090	-			05/12/21 21:37	1
cis-1,3-Dichloropropene	<0.50	0.50	0.081				05/12/21 21:37	1
1,2-Dibromo-3-Chloropropane	<0.50	0.50		ug/L			05/12/21 21:37	1
Dibromomethane	<0.50	0.50	0.16				05/12/21 21:37	1
1,2-Dichlorobenzene	<0.50	0.50		ug/L			05/12/21 21:37	1
1,3-Dichlorobenzene	<0.50	0.50		ug/L			05/12/21 21:37	1
1,4-Dichlorobenzene	<0.50	0.50		ug/L			05/12/21 21:37	1
Dichlorobromomethane	<0.50	0.50	0.079	-			05/12/21 21:37	1
Dichlorodifluoromethane	<0.50	0.50		ug/L			05/12/21 21:37	1
1,1-Dichloroethane	<0.50	0.50	0.078				05/12/21 21:37	1
1,2-Dichloroethane	<0.50	0.50	0.086				05/12/21 21:37	1
,1-Dichloroethene	<0.50	0.50		ug/L			05/12/21 21:37	1
1,2-Dichloropropane	<0.50	0.50	0.096				05/12/21 21:37	1
I,3-Dichloropropane	<0.50	0.50		ug/L			05/12/21 21:37	1
2,2-Dichloropropane	< 0.50	0.50	0.20				05/12/21 21:37	1
1,1-Dichloropropene	< 0.50	0.50	0.095				05/12/21 21:37	1
1,3-Dichloropropene, Total	<0.50	0.50	0.081				05/12/21 21:37	1
Diisopropyl ether	<0.50	0.50		ug/L			05/12/21 21:37	1
Ethylbenzene	<0.50	0.50	0.099				05/12/21 21:37	1
Ethylene Dibromide	<0.50	0.50	0.20				05/12/21 21:37	1
Freon 113	<0.50	0.50	0.15				05/12/21 21:37	1
Hexachlorobutadiene	<0.50	0.50	0.26				05/12/21 21:37	1
2-Hexanone	<10	10		ug/L			05/12/21 21:37	1
sopropylbenzene	<0.50	0.50	0.15				05/12/21 21:37	1
4-Isopropyltoluene	<0.50	0.50		ug/L			05/12/21 21:37	1
Methylene Chloride	<0.50	0.50		ug/L			05/12/21 21:37	1
2-Butanone (MEK)	<10	10		ug/L			05/12/21 21:37	1
4-Methyl-2-pentanone (MIBK)	<10	10		ug/L			05/12/21 21:37	1
m-Xylene & p-Xylene	<0.50	0.50		ug/L			05/12/21 21:37	1
Naphthalene	<1.0	1.0		ug/L			05/12/21 21:37	1
n-Butylbenzene	<0.50	0.50		ug/L			05/12/21 21:37	1
N-Propylbenzene	<0.50	0.50		ug/L			05/12/21 21:37	1
p-Xylene	<0.50	0.50	0.086	-			05/12/21 21:37	1
sec-Butylbenzene	<0.50	0.50		ug/L			05/12/21 21:37	1
	-5.50	0.50		ug/L			UUI 1212 21.01	

Eurofins TestAmerica, Savannah

Client: Weston Solutions, Inc. Project/Site: Black & Decker

ton Solutions, Inc.

Job ID: 680-198546-1

Client Sample ID: HAMP-22 Date Collected: 05/05/21 09:25

Date Received: 05/06/21 11:30

Lab Sample ID: 680-198546-3

Matrix: Water

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tert-amyl methyl ether	<0.50	API Shi Wi alaman	0.50	0.20	ug/L			05/12/21 21:37	1
tert-Butyl alcohol	<10		10	1.6	ug/L			05/12/21 21:37	1
tert-Butylbenzene	< 0.50		0.50	0.14	ug/L			05/12/21 21:37	1
Tert-butyl ethyl ether	< 0.50		0.50	0.26	ug/L			05/12/21 21:37	1
1,1,1,2-Tetrachloroethane	< 0.50		0.50	0.24	ug/L			05/12/21 21:37	1
1,1,2,2-Tetrachloroethane	< 0.50		0.50	0.13	ug/L			05/12/21 21:37	1
Tetrachloroethene	1.9		0.50	0.18	ug/L			05/12/21 21:37	1
Toluene	<0.50		0.50	0.086	ug/L			05/12/21 21:37	1
trans-1,2-Dichloroethene	< 0.50		0.50	0.090	ug/L			05/12/21 21:37	1
trans-1,3-Dichloropropene	< 0.50		0.50	0.11	ug/L			05/12/21 21:37	1
1,2,3-Trichlorobenzene	< 0.50		0.50	0.14	ug/L			05/12/21 21:37	1
1,2,4-Trichlorobenzene	<0.50		0.50	0.12	ug/L			05/12/21 21:37	1
1,1,1-Trichloroethane	< 0.50		0.50	0.15	ug/L			05/12/21 21:37	1
1,1,2-Trichloroethane	<0.50		0.50	0.16	ug/L			05/12/21 21:37	1
Trichloroethene	< 0.50		0.50	0.13	ug/L			05/12/21 21:37	1
Trichlorofluoromethane	< 0.50		0.50	0.23	ug/L			05/12/21 21:37	1
1,2,3-Trichloropropane	< 0.50		0.50	0.17	ug/L			05/12/21 21:37	1
Trihalomethanes, Total	0.22	J	0.50	0.079	ug/L			05/12/21 21:37	1
1,2,4-Trimethylbenzene	< 0.50		0.50	0.17	ug/L			05/12/21 21:37	1
1,3,5-Trimethylbenzene	< 0.50		0.50	0.16	ug/L			05/12/21 21:37	1
Vinyl chloride	< 0.50		0.50	0.16	ug/L			05/12/21 21:37	1
Xylenes, Total	<0.50		0.50	0.086	ug/L			05/12/21 21:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	79		70 - 130					05/12/21 21:37	

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene	79		70 - 130	05/12/21 21:37	1
1,2-Dichlorobenzene-d4	116		70 - 130	05/12/21 21:37	1

Client: Weston Solutions, Inc. Job ID: 680-198546-1

Project/Site: Black & Decker

Lab Sample ID: 680-198546-4 Client Sample ID: HAMP-23 Date Collected: 05/05/21 09:20

Matrix: Water

Date Received: 05/06/21 11:30

Method: 524.2 - Volatile Org Analyte	Result Q		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<10	10	5.0	ug/L			05/12/21 22:00	1
Benzene	< 0.50	0.50	0.082				05/12/21 22:00	1
Bromobenzene	<0.50	0.50	0.091	_			05/12/21 22:00	1
Bromoform	< 0.50	0.50	0.17	_			05/12/21 22:00	1
Bromomethane	<1.0	1.0	0.20	_			05/12/21 22:00	1
Carbon tetrachloride	< 0.50	0.50	0.11				05/12/21 22:00	1
Chlorobenzene	< 0.50	0.50	0.14				05/12/21 22:00	1
Chlorobromomethane	< 0.50	0.50	0.30				05/12/21 22:00	1
Chlorodibromomethane	< 0.50	0.50	0.13	-			05/12/21 22:00	1
Chloroethane	<1.0	1.0	0.22				05/12/21 22:00	1
Chloroform	< 0.50	0.50	0.20				05/12/21 22:00	1
Chloromethane	< 0.50	0.50	0.15	-			05/12/21 22:00	1
2-Chlorotoluene	< 0.50	0.50	0.11	_			05/12/21 22:00	1
4-Chlorotoluene	< 0.50	0.50	0.13	_			05/12/21 22:00	1
cis-1,2-Dichloroethene	< 0.50	0.50	0.090				05/12/21 22:00	1
cis-1,3-Dichloropropene	< 0.50	0.50	0.081	ug/L			05/12/21 22:00	1
1,2-Dibromo-3-Chloropropane	< 0.50	0.50	0.30	-			05/12/21 22:00	1
Dibromomethane	<0.50	0.50	0.16	-			05/12/21 22:00	1
1,2-Dichlorobenzene	< 0.50	0.50	0.16				05/12/21 22:00	1
1,3-Dichlorobenzene	< 0.50	0.50	0.11				05/12/21 22:00	1
1,4-Dichlorobenzene	< 0.50	0.50	0.13				05/12/21 22:00	1
Dichlorobromomethane	< 0.50	0.50	0.079				05/12/21 22:00	1
Dichlorodifluoromethane	< 0.50	0.50	0.34				05/12/21 22:00	1
1,1-Dichloroethane	< 0.50	0.50	0.078				05/12/21 22:00	1
1,2-Dichloroethane	<0.50	0.50	0.086				05/12/21 22:00	1
1,1-Dichloroethene	< 0.50	0.50	0.15	-			05/12/21 22:00	1
1,2-Dichloropropane	< 0.50	0.50	0.096	-			05/12/21 22:00	1
1,3-Dichloropropane	< 0.50	0.50	0.10	-			05/12/21 22:00	1
2,2-Dichloropropane	<0.50	0.50	0.20				05/12/21 22:00	1
1,1-Dichloropropene	< 0.50	0.50	0.095	-			05/12/21 22:00	1
1,3-Dichloropropene, Total	< 0.50	0.50	0.081	-			05/12/21 22:00	1
Diisopropyl ether	< 0.50	0.50	0.28				05/12/21 22:00	1
Ethylbenzene	<0.50	0.50	0.099				05/12/21 22:00	1
Ethylene Dibromide	< 0.50	0.50	0.20				05/12/21 22:00	1
Freon 113	< 0.50	0.50	0.15	-			05/12/21 22:00	1
Hexachlorobutadiene	< 0.50	0.50	0.26				05/12/21 22:00	1
2-Hexanone	<10	10		ug/L			05/12/21 22:00	1
lsopropylbenzene	< 0.50	0.50	0.15	-			05/12/21 22:00	1
4-lsopropyltoluene	<0.50	0.50	0.21				05/12/21 22:00	1
Methylene Chloride	< 0.50	0.50	0.20				05/12/21 22:00	1
2-Butanone (MEK)	<10	10		ug/L			05/12/21 22:00	1
4-Methyl-2-pentanone (MIBK)	<10	10		ug/L			05/12/21 22:00	1
m-Xylene & p-Xylene	<0.50	0.50	0.15	•			05/12/21 22:00	1
Naphthalene	<1.0	1.0	0.43	_			05/12/21 22:00	1
n-Butylbenzene	<0.50	0.50	0.17				05/12/21 22:00	1
N-Propylbenzene	<0.50	0.50	0.17				05/12/21 22:00	1
o-Xylene	<0.50	0.50	0.086				05/12/21 22:00	1
sec-Butylbenzene	<0.50	0.50	0.14				05/12/21 22:00	1

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Project/Site: Black & Decker

Client Sample ID: HAMP-23 Date Collected: 05/05/21 09:20

Date Received: 05/06/21 11:30

Lab Sample ID: 680-193546-4

Matrix: Water

Job ID: 680-198546-1

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tert-amyl methyl ether	<0.50	0	50 0.20	ug/L			05/12/21 22:00	1
tert-Butyl alcohol	<10		10 1.6	ug/L			05/12/21 22:00	1
tert-Butylbenzene	< 0.50	0	50 0.14	ug/L			05/12/21 22:00	1
Tert-butyl ethyl ether	< 0.50	0	50 0.26	ug/L			05/12/21 22:00	1
1,1,1,2-Tetrachloroethane	<0.50	0	50 0.24	ug/L			05/12/21 22:00	1
1,1,2,2-Tetrachloroethane	<0.50	0	50 0.13	ug/L			05/12/21 22:00	1
Tetrachloroethene	< 0.50	0	50 0.18	ug/L			05/12/21 22:00	1
Toluene	< 0.50	0	50 0.086	ug/L			05/12/21 22:00	1
trans-1,2-Dichloroethene	< 0.50	0	50 0.090	ug/L			05/12/21 22:00	1
trans-1,3-Dichloropropene	< 0.50	0	50 0.11	ug/L			05/12/21 22:00	1
1,2,3-Trichlorobenzene	< 0.50	0	50 0.14	ug/L			05/12/21 22:00	1
1,2,4-Trichlorobenzene	< 0.50	0	50 0.12	ug/L			05/12/21 22:00	1
1,1,1-Trichloroethane	<0.50	0	50 0.15	ug/L			05/12/21 22:00	1
1,1,2-Trichloroethane	<0.50	0	50 0.16	ug/L			05/12/21 22:00	1
Trichloroethene	< 0.50	0	50 0.13	ug/L			05/12/21 22:00	1
Trichlorofluoromethane	< 0.50	0	50 0.23	ug/L			05/12/21 22:00	1
1,2,3-Trichloropropane	< 0.50	0	50 0.17	ug/L			05/12/21 22:00	1
Trihalomethanes, Total	<0.50	0	50 0.079	ug/L			05/12/21 22:00	1
1,2,4-Trimethylbenzene	< 0.50	0	50 0.17	ug/L			05/12/21 22:00	1
1,3,5-Trimethylbenzene	< 0.50	0	50 0.16	ug/L			05/12/21 22:00	1
Vinyl chloride	< 0.50	0	50 0.16	ug/L			05/12/21 22:00	1
Xylenes, Total	<0.50	0	50 0.086	ug/L			05/12/21 22:00	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	76		70 - 130		05/12/21 22:00	1
1,2-Dichlorobenzene-d4	117		70 - 130		05/12/21 22:00	1

Client: Weston Solutions, Inc. Job ID: 680-198546-1 Project/Site: Black & Decker

Client Sample ID: Trip Blank Date Collected: 05/04/21 07:00

Date Received: 05/06/21 11:30

Lab Sample ID: 680-198546-5

Matrix: Water

Method: 524.2 - Volatile Orga Analyte	Result Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<10	10	5.0	ug/L			05/12/21 15:27	1
Benzene	<0.50	0.50	0.082	ug/L			05/12/21 15:27	1
Bromobenzene	<0.50	0.50	0.091	ug/L			05/12/21 15:27	1
Bromoform	<0.50	0.50	0.17	ug/L			05/12/21 15:27	1
Bromomethane	<1.0	1.0	0.20	ug/L			05/12/21 15:27	1
Carbon tetrachloride	<0.50	0.50	0.11	ug/L			05/12/21 15:27	1
Chlorobenzene	<0.50	0.50		ug/L			05/12/21 15:27	1
Chlorobromomethane	<0.50	0.50		ug/L			05/12/21 15:27	1
Chlorodibromomethane	<0.50	0.50		ug/L			05/12/21 15:27	1
Chloroethane	<1.0	1.0		ug/L			05/12/21 15:27	1
Chloroform	<0.50	0.50		ug/L			05/12/21 15:27	1
Chloromethane	<0.50	0.50		ug/L			05/12/21 15:27	1
2-Chlorotoluene	<0.50	0.50		ug/L			05/12/21 15:27	1
4-Chlorotoluene	<0.50	0.50		ug/L			05/12/21 15:27	1
cis-1,2-Dichloroethene	<0.50	0.50	0.090				05/12/21 15:27	1
cis-1,3-Dichloropropene	<0.50	0.50	0.081	_			05/12/21 15:27	1
1,2-Dibromo-3-Chloropropane	<0.50	0.50		ug/L			05/12/21 15:27	1
Dibromomethane	<0.50	0.50		ug/L			05/12/21 15:27	1
1,2-Dichlorobenzene	<0.50	0.50		ug/L			05/12/21 15:27	1
1,3-Dichlorobenzene	<0.50	0.50		ug/L			05/12/21 15:27	1
1,4-Dichlorobenzene	<0.50	0.50		ug/L			05/12/21 15:27	1
Dichlorobromomethane	<0.50	0.50	0.079	-			05/12/21 15:27	1
Dichlorodifluoromethane	<0.50	0.50	0.34				05/12/21 15:27	1
1,1-Dichloroethane	<0.50	0.50	0.078	_			05/12/21 15:27	1
1,2-Dichloroethane	<0.50	0.50	0.086				05/12/21 15:27	1
1,1-Dichloroethene	<0.50	0.50		ug/L			05/12/21 15:27	1
1,2-Dichloropropane	<0.50	0.50	0.096	_			05/12/21 15:27	1
1,3-Dichloropropane	<0.50	0.50		ug/L			05/12/21 15:27	1
2,2-Dichloropropane	<0.50	0.50		ug/L			05/12/21 15:27	1
1,1-Dichloropropene	<0.50	0.50	0.095				05/12/21 15:27	1
1,3-Dichloropropene, Total	<0.50	0.50	0.081	-			05/12/21 15:27	1
Diisopropyl ether	<0.50	0.50		ug/L ug/L			05/12/21 15:27	1
Ethylbenzene	<0.50	0.50	0.099				05/12/21 15:27	
Ethylene Dibromide	<0.50	0.50		ug/L ug/L				1
Freon 113	<0.50	0.50		ug/L ug/L			05/12/21 15:27	1
Hexachlorobutadiene	<0.50	0.50		ug/L ug/L			05/12/21 15:27	
2-Hexanone	<10	10		ug/L ug/L			05/12/21 15:27	1
Isopropylbenzene	<0.50	0.50		-			05/12/21 15:27	1
			0.15				05/12/21 15:27	
4-Isopropyltoluene	<0.50	0.50		ug/L			05/12/21 15:27	1
2-Butanone (MEK)	<10	10		ug/L			05/12/21 15:27	1
4-Methyl-2-pentanone (MIBK)	<10	10		ug/L			05/12/21 15:27	1
m-Xylene & p-Xylene	<0.50	0.50		ug/L			05/12/21 15:27	1
Naphthalene	<1.0	1.0		ug/L			05/12/21 15:27	1
n-Butylbenzene	<0.50	0.50		ug/L			05/12/21 15:27	1
N-Propylbenzene	<0.50	0.50		ug/L			05/12/21 15:27	1
o-Xylene	<0.50	0.50	0.086				05/12/21 15:27	1
sec-Butylbenzene	<0.50	0.50		ug/L			05/12/21 15:27	1
Styrene Technology to the tech	<0.50	0.50	0.089	-			05/12/21 15:27	1
Tert-amyl methyl ether	<0.50	0.50	0.20	ug/L			05/12/21 15:27	1

Eurofins TestAmerica, Savannah

Client: Weston Solutions, Inc. Project/Site: Black & Decker

1,2-Dichlorobenzene-d4

Job ID: 680-198546-1

Client Sample ID: Trip Blank Date Collected: 05/04/21 07:00 Date Received: 05/06/21 11:30

Lab Sample ID: 680-198546-5

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
tert-Butyl alcohol	<10	10	1.6	ug/L			05/12/21 15:27	1
tert-Butylbenzene	<0.50	0.50	0.14	ug/L			05/12/21 15:27	1
Tert-butyl ethyl ether	<0.50	0.50	0.26	ug/L			05/12/21 15:27	1
1,1,1,2-Tetrachloroethane	<0.50	0.50	0.24	ug/L			05/12/21 15:27	1
1,1,2,2-Tetrachloroethane	<0.50	0.50	0.13	ug/L			05/12/21 15:27	1
Tetrachloroethene	<0.50	0.50	0.18	ug/L			05/12/21 15:27	1
Toluene	<0.50	0.50	0.086	ug/L			05/12/21 15:27	1
trans-1,2-Dichloroethene	<0.50	0.50	0.090	ug/L			05/12/21 15:27	1
trans-1,3-Dichloropropene	<0.50	0.50	0.11	ug/L			05/12/21 15:27	1
1,2,3-Trichlorobenzene	<0.50	0.50	0.14	ug/L			05/12/21 15:27	1
1,2,4-Trichlorobenzene	<0.50	0.50	0.12	ug/L			05/12/21 15:27	1
1,1,1-Trichloroethane	<0.50	0.50	0.15	ug/L			05/12/21 15:27	1
1,1,2-Trichloroethane	<0.50	0.50	0.16	ug/L			05/12/21 15:27	1
Trichloroethene	<0.50	0.50	0.13	ug/L			05/12/21 15:27	1
Trichlorofluoromethane	<0.50	0.50	0.23	ug/L			05/12/21 15:27	1
1,2,3-Trichloropropane	<0.50	0.50	0.17	ug/L			05/12/21 15:27	1
Trihalomethanes, Total	<0.50	0.50	0.079	ug/L			05/12/21 15:27	1
1,2,4-Trimethylbenzene	<0.50	0.50	0.17	ug/L			05/12/21 15:27	1
1,3,5-Trimethylbenzene	<0.50	0.50	0.16	ug/L			05/12/21 15:27	1
Vinyl chloride	<0.50	0.50	0.16	ug/L			05/12/21 15:27	1
Xylenes, Total	<0.50	0.50	0.086	ug/L			05/12/21 15:27	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	80	70 - 130			-		05/12/21 15:27	1

Method: 524.2 - Volatile Organic Compounds (GC/MS) - RA

113

Result Qualifier

Methylene Chloride	0.81	0.50	0.20 ug/L		05/13/21 14:46	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	80	70 - 130			05/13/21 14:46	1
1,2-Dichlorobenzene-d4	116	70 - 130			05/13/21 14:46	1

MDL Unit

70 - 130

05/12/21 15:27

Analyzed

Dil Fac

Prepared

Client: Weston Solutions, Inc. Job ID: 680-198546-1

Project/Site: Black & Decker

Method: 524.2 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-668236/8 Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 668236	MD MD							
Analyte	MB MB Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<10	10		ug/L			05/12/21 14:18	1
Benzene	< 0.50	0.50	0.082				05/12/21 14:18	1
Bromobenzene	<0.50	0.50	0.091				05/12/21 14:18	1
Bromoform	<0.50	0.50	0.17				05/12/21 14:18	1
Bromomethane	<1.0	1.0	0.20	-			05/12/21 14:18	1
Carbon tetrachloride	<0.50	0.50	0.11	ug/L			05/12/21 14:18	1
Chlorobenzene	<0.50	0.50	0.14	_			05/12/21 14:18	1
Chlorobromomethane	<0.50	0.50	0.30	ug/L			05/12/21 14:18	1
Chlorodibromomethane	<0.50	0.50	0.13				05/12/21 14:18	1
Chloroethane	<1.0	1.0	0.22	-			05/12/21 14:18	1
Chloroform	<0.50	0.50	0.20				05/12/21 14:18	1
Chloromethane	<0.50	0.50	0.15				05/12/21 14:18	1
2-Chlorotoluene	<0.50	0.50	0.11				05/12/21 14:18	1
4-Chlorotoluene	<0.50	0.50	0.13	-			05/12/21 14:18	1
cis-1,2-Dichloroethene	<0.50	0.50	0.090	ug/L			05/12/21 14:18	1
cis-1,3-Dichloropropene	<0.50	0.50	0.081	ug/L			05/12/21 14:18	1
1,2-Dibromo-3-Chloropropane	<0.50	0.50	0.30				05/12/21 14:18	1
Dibromomethane	<0.50	0.50	0.16	-			05/12/21 14:18	1
1,2-Dichlorobenzene	<0.50	0.50	0.16	-			05/12/21 14:18	1
1,3-Dichlorobenzene	<0.50	0.50	0.11				05/12/21 14:18	1
1,4-Dichlorobenzene	<0.50	0.50	0.13				05/12/21 14:18	1
Dichlorobromomethane	<0.50	0.50	0.079	-			05/12/21 14:18	1
Dichlorodifluoromethane	<0.50	0.50	0.34				05/12/21 14:18	1
1,1-Dichloroethane	<0.50	0.50	0.078				05/12/21 14:18	1
1,2-Dichloroethane	<0.50	0.50	0.086	-			05/12/21 14:18	1
1,1-Dichloroethene	<0.50	0.50	0.15	-			05/12/21 14:18	1
1,2-Dichloropropane	<0.50	0.50	0.096	-			05/12/21 14:18	1
1,3-Dichloropropane	<0.50	0.50	0.10	-			05/12/21 14:18	1
2,2-Dichloropropane	<0.50	0.50	0.20				05/12/21 14:18	1
1,1-Dichloropropene	<0.50	0.50	0.095				05/12/21 14:18	1
1,3-Dichloropropene, Total	<0.50	0.50	0.081				05/12/21 14:18	1
Diisopropyl ether	<0.50	0.50	0.28				05/12/21 14:18	1
Ethylbenzene	<0.50	0.50	0.099				05/12/21 14:18	1
Ethylene Dibromide	<0.50	0.50	0.20				05/12/21 14:18	1
Freon 113	<0.50	0.50	0.15	-			05/12/21 14:18	1
Hexachlorobutadiene	<0.50	0.50	0.26	-			05/12/21 14:18	1
2-Hexanone	<10	10		ug/L			05/12/21 14:18	1
Isopropylbenzene	<0.50	0.50	0.15	-			05/12/21 14:18	1
4-Isopropyltoluene	<0.50	0.50	0.21				05/12/21 14:18	1
Methylene Chloride	<0.50	0.50	0.20	•			05/12/21 14:18	1
2-Butanone (MEK)	<10	10		ug/L			05/12/21 14:18	1
4-Methyl-2-pentanone (MIBK)	<10	10		ug/L			05/12/21 14:18	1
m-Xylene & p-Xylene	<0.50	0.50	0.15				05/12/21 14:18	1
Naphthalene	<1.0	1.0	0.13	-			05/12/21 14:18	1
n-Butylbenzene	<0.50	0.50	0.43				05/12/21 14:18	1
N-Propylbenzene	<0.50	0.50	0.17	-			05/12/21 14:18	1
o-Xylene	<0.50	0.50	0.086	-			05/12/21 14:18	1
· //j/0/10	٠٠.٠٠	0.50	0.000	ug/L			JJ/ (Z/Z 14.10	1

Eurofins TestAmerica, Savannah

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Job ID: 680-198546-1

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-668236/8

Matrix: Water

Analysis Batch: 668236

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB I	MB						
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	<0.50	0.50	0.089	ug/L			05/12/21 14:18	1
Tert-amyl methyl ether	<0.50	0.50	0.20	ug/L			05/12/21 14:18	1
tert-Butyl alcohol	<10	10	1.6	ug/L			05/12/21 14:18	1
tert-Butylbenzene	< 0.50	0.50	0.14	ug/L			05/12/21 14:18	1
Tert-butyl ethyl ether	< 0.50	0.50	0.26	ug/L			05/12/21 14:18	1
1,1,1,2-Tetrachloroethane	<0.50	0.50	0.24	ug/L			05/12/21 14:18	1
1,1,2,2-Tetrachloroethane	<0.50	0.50	0.13	ug/L			05/12/21 14:18	1
Tetrachloroethene	< 0.50	0.50	0.18	ug/L			05/12/21 14:18	1
Toluene	<0.50	0.50	0.086	ug/L			05/12/21 14:18	1
trans-1,2-Dichloroethene	< 0.50	0.50	0.090	ug/L			05/12/21 14:18	1
trans-1,3-Dichloropropene	< 0.50	0.50	0.11	ug/L			05/12/21 14:18	1
1,2,3-Trichlorobenzene	<0.50	0.50	0.14	ug/L			05/12/21 14:18	1
1,2,4-Trichlorobenzene	<0.50	0.50	0.12	ug/L			05/12/21 14:18	1
1,1,1-Trichloroethane	< 0.50	0.50	0.15	ug/L			05/12/21 14:18	1
1,1,2-Trichloroethane	<0.50	0.50	0.16	ug/L			05/12/21 14:18	1
Trichloroethene	<0.50	0.50	0.13	ug/L			05/12/21 14:18	1
Trichlorofluoromethane	<0.50	0.50	0.23	ug/L			05/12/21 14:18	1
1,2,3-Trichloropropane	<0.50	0.50	0.17	ug/L			05/12/21 14:18	1
Trihalomethanes, Total	<0.50	0.50	0.079	ug/L			05/12/21 14:18	1
1,2,4-Trimethylbenzene	<0.50	0.50	0.17	ug/L			05/12/21 14:18	1
1,3,5-Trimethylbenzene	<0.50	0.50	0.16	ug/L			05/12/21 14:18	1
Vinyl chloride	<0.50	0.50	0.16	ug/L			05/12/21 14:18	1
Xylenes, Total	<0.50	0.50	0.086				05/12/21 14:18	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	78		70 - 130	manual and Angelia Salar	05/12/21 14:18	1
1,2-Dichlorobenzene-d4	114		70 - 130		05/12/21 14:18	1

Lab Sample ID: LCS 680-668236/3

Matrix: Water

Analysis Batch: 668236

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acetone	100	101		ug/L		101	70 - 130
Benzene	20.0	21.3		ug/L		107	70 - 130
Bromobenzene	20.0	21.2		ug/L		106	70 - 130
Bromoform	20.0	20.7		ug/L		103	70 - 130
Bromomethane	20.0	21.8		ug/L		109	70 - 130
Carbon tetrachloride	20.0	22.8		ug/L		114	70 - 130
Chlorobenzene	20.0	20.2		ug/L		101	70 - 130
Chlorobromomethane	20.0	20.2		ug/L		101	70 - 130
Chlorodibromomethane	20.0	21.6		ug/L		108	70 ₋ 130
Chloroethane	20.0	20.0		ug/L		100	70 - 130
Chloroform	20.0	20.4		ug/L		102	70 - 130
Chloromethane	20.0	21.6		ug/L		108	70 - 130
2-Chlorotoluene	20.0	21.0		ug/L		105	70 - 130
4-Chlorotoluene	20.0	21.2		ug/L		106	70 - 130
cis-1,2-Dichloroethene	20.0	20.7		ug/L		104	70 - 130

Eurofins TestAmerica, Savannah

Page 17 of 30

5/14/2021

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Job ID: 680-198546-1

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-668236/3

Matrix: Water

Analysis Batch: 668236

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Baton. 000200						
Analyte	Spike Added		LCS Qualifier U	nit C) %Rec	%Rec. Limits
cis-1,3-Dichloropropene		20.0		j/L	100	70 - 130
1,2-Dibromo-3-Chloropropane	20.0	17.7		g/∟ g/L	88	70 - 130
Dibromomethane	20.0	20.7	_]/∟]/L		70 - 130 70 - 130
1,2-Dichlorobenzene			_	_	103	
	20.0	21.1		g/L	106	70 - 130
1,3-Dichlorobenzene	20.0	20.8		g/L	104	70 - 130
1,4-Dichlorobenzene	20.0	21.1	_	g/L	106	70 - 130
Dichlorobromomethane	20.0	21.0		g/L "	105	70 - 130
Dichlorodifluoromethane	20.0	24.5	ug		122	70 - 130
1,1-Dichloroethane	20.0	21.0		j/L 	105	70 - 130
1,2-Dichloroethane	20.0	21.0		g/L	105	70 - 130
1,1-Dichloroethene	20.0	18.9	_	g/L	94	70 - 130
1,2-Dichloropropane	20.0	21.0		g/L	105	70 - 130
1,3-Dichloropropane	20.0	19.4	ug	J/L	97	70 - 130
2,2-Dichloropropane	20.0	20.6	นยู	g/L	103	70 - 130
1,1-Dichloropropene	20.0	20.0	นยู	g/L	100	70 - 130
1,3-Dichloropropene, Total	40.0	39.8	ug	g/L	99	70 - 130
Diisopropyl ether	16.0	16.7	ug	g/L	104	70 - 130
Ethylbenzene	20.0	20.7	ug	J/L	104	70 - 130
Ethylene Dibromide	20.0	19.6	ug	g/L	98	70 - 130
Freon 113	20.0	21.4	ug	j/L	107	70 - 130
Hexachlorobutadiene	20.0	24.2	ug	j/L	121	70 - 130
2-Hexanone	100	94.4	ug	j/L	94	70 - 130
sopropylbenzene	20.0	21.3	ug	g/L	107	70 - 130
1-Isopropyltoluene	20.0	21.0		j/L	105	70 - 130
Methylene Chloride	20.0	18.3		j/L	92	70 - 130
2-Butanone (MEK)	100	93.7		j/L	94	70 - 130
4-Methyl-2-pentanone (MIBK)	100	98.6		j/L	99	70 - 130
m-Xylene & p-Xylene	20.0	21.0		j/L	105	70 - 130
Naphthalene	20.0	19.4		y. − y/L	97	70 - 130
n-Butylbenzene	20.0	21.4	-	y. − y/L	107	70 - 130
N-Propylbenzene	20.0	21.7		y. – y/L	109	70 - 130
p-Xylene	20.0	20.8		g/L	104	70 - 130
sec-Butylbenzene	20.0	21.7		g/∟ g/L	108	70 - 130
Styrene	20.0	21.7		₃ /∟ 3/L	105	70 - 130 70 - 130
Tert-amyl methyl ether	16.0	15.2		j/∟ j/L	95	70 - 130
ert-Butyl alcohol	200	192	_	g/∟ g/L	96	70 - 130 70 - 130
ert-Butyl alcohol ert-Butylbenzene	20.0	20.9				70 - 130 70 - 130
Fert-butyl ethyl ether				3/L	104	
	16.0	15.7] /L	98	70 ₋ 130
1,1,1,2-Tetrachloroethane	20.0	22.0		g/L - //	110	70 - 130
1,1,2,2-Tetrachloroethane	20.0	20.4		g/L - //	102	70 - 130
Tetrachloroethene	20.0	21.1		j /L	106	70 - 130
Toluene	20.0	19.5		j /∟ ″	97	70 - 130
rans-1,2-Dichloroethene	20.0	20.6		g/L	103	70 - 130
rans-1,3-Dichloropropene	20.0	19.7	-	g/L	99	70 - 130
1,2,3-Trichlorobenzene	20.0	20.0	-	g/L	100	70 - 130
1,2,4-Trichlorobenzene	20.0	20.9		g/L	104	70 - 130
1,1,1-Trichloroethane	20.0	22.3	-	g/L	111	70 - 130
1,1,2-Trichloroethane	20.0	20.5	นยู	g/L	102	70 - 130
Trichloroethene	20.0	22.3	ug	g/L	111	70 - 130

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Job ID: 680-198546-1

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-668236/3

Matrix: Water

Analysis Batch: 668236

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Trichlorofluoromethane	20.0	20.3		ug/L		102	70 - 130
1,2,3-Trichloropropane	20.0	20.4		ug/L		102	70 - 130
Trihalomethanes, Total	80.0	83.7		ug/L		105	70 - 130
1,2,4-Trimethylbenzene	20.0	21.2		ug/L		106	70 - 130
1,3,5-Trimethylbenzene	20.0	21.1		ug/L		105	70 - 130
Vinyl chloride	20.0	21.2		ug/L		106	70 - 130
Xylenes, Total	40.0	41.8		ug/L		104	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	89		70 - 130
1,2-Dichlorobenzene-d4	110		70 - 130

Lab Sample ID: LCSD 680-668236/4

Matrix: Water

Analysis Batch: 668236

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit
Acetone	100	101	ug/L		101	70 - 130	0	20
Benzene	20.0	21.6	ug/L		108	70 - 130	1	20
Bromobenzene	20.0	21.1	ug/L		106	70 - 130	0	20
Bromoform	20.0	20.3	ug/L		101	70 - 130	2	20
Bromomethane	20.0	19.8	ug/L		99	70 - 130	10	20
Carbon tetrachloride	20.0	21.9	ug/L		109	70 - 130	4	20
Chlorobenzene	20.0	20.1	ug/L		101	70 - 130	0	20
Chlorobromomethane	20.0	20.3	ug/L		101	70 - 130	0	20
Chlorodibromomethane	20.0	21.4	ug/L		107	70 ₋ 130	1	20
Chloroethane	20.0	20.1	ug/L		100	70 - 130	0	20
Chloroform	20.0	20.5	ug/L		103	70 - 130	1	20
Chloromethane	20.0	22.1	ug/L		111	70 - 130	3	20
2-Chlorotoluene	20.0	21.1	ug/L		106	70 - 130	1	20
4-Chlorotoluene	20.0	20.8	ug/L		104	70 - 130	2	20
cis-1,2-Dichloroethene	20.0	20.4	ug/L		102	70 - 130	1	20
cis-1,3-Dichloropropene	20.0	19.9	ug/L		100	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	20.0	18.4	ug/L		92	70 - 130	4	20
Dibromomethane	20.0	20.6	ug/L		103	70 - 130	0	20
1,2-Dichlorobenzene	20.0	20.9	ug/L		105	70 - 130	1	20
1,3-Dichlorobenzene	20.0	21.0	ug/L		105	70 - 130	1	20
1,4-Dichlorobenzene	20.0	20.9	ug/L		104	70 - 130	1	20
Dichlorobromomethane	20.0	21.6	ug/L		108	70 - 130	3	20
Dichlorodifluoromethane	20.0	23.5	ug/L		117	70 - 130	4	20
1,1-Dichloroethane	20.0	21.0	ug/L		105	70 - 130	0	20
1,2-Dichloroethane	20.0	21.7	ug/L		108	70 - 130	3	20
1,1-Dichloroethene	20.0	19.7	ug/L		99	70 - 130	4	20
1,2-Dichloropropane	20.0	21.3	ug/L		107	70 - 130	1	20
1,3-Dichloropropane	20.0	19.3	ug/L		97	70 - 130	0	20
2,2-Dichloropropane	20.0	21.7	ug/L		108	70 - 130	5	20
1,1-Dichloropropene	20.0	22.3	ug/L		112	70 - 130	11	20
1,3-Dichloropropene, Total	40.0	39.2	ug/L		98	70 - 130	1	20

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Job ID: 680-198546-1

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-668236/4

Matrix: Water

Analysis Batch: 668236

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Balcii, 600230	Spike	I CSD	LCSD			%Rec.		RPD
Analyte	Added			Unit D	%Rec	Limits	RPD	Limit
Diisopropyl ether	16.0	16.9		ug/L	106	70 - 130	1	20
Ethylbenzene	20.0	21.0		ug/L	105	70 - 130	1	20
Ethylene Dibromide	20.0	19.7		ug/L	99	70 - 130	1	20
Freon 113	20.0	21.6		ug/L	108	70 - 130	1	20
Hexachlorobutadiene	20.0	24.0		ug/L	120	70 - 130	1	20
2-Hexanone	100	94.3		ug/L	94	70 - 130	0	20
Isopropylbenzene	20.0	21.7		ug/L	108	70 ₋ 130	2	20
4-Isopropyltoluene	20.0	21.2		ug/L	106	70 ₋ 130	1	20
Methylene Chloride	20.0	18.4		ug/L	92	70 - 130	0	20
2-Butanone (MEK)	100	96.0		ug/L	96	70 - 130	2	20
4-Methyl-2-pentanone (MIBK)	100	98.8		ug/L	99	70 - 130	0	20
m-Xylene & p-Xylene	20.0	20.7		ug/L	103	70 ₋ 130	1	20
Naphthalene	20.0	19.8		ug/L	99	70 - 130	2	20
n-Butylbenzene	20.0	21.3		ug/L	107	70 - 130	0	20
N-Propylbenzene	20.0	21.7		ug/L	108	70 - 130	0	20
o-Xylene	20.0	20.6		ug/L	103	70 - 130	1	20
sec-Butylbenzene	20.0	21.7		ug/L	109	70 - 130	0	20
Styrene	20.0	20.7		ug/L	103	70 - 130	2	20
Tert-amyl methyl ether	16.0	15.1		ug/L	94	70 - 130	1	20
tert-Butyl alcohol	200	191		ug/L	95	70 - 130	1	20
tert-Butylbenzene	20.0	20.9		ug/L	105	70 - 130	0	20
Tert-butyl ethyl ether	16.0	16.1		ug/L	101	70 - 130	3	20
1,1,1,2-Tetrachloroethane	20.0	22.0		ug/L	110	70 - 130	0	20
1,1,2,2-Tetrachioroethane	20.0	20.7		ug/L	103	70 - 130	1	20
Tetrachloroethene	20.0	21.2		ug/L	106	70 - 130	0	20
Toluene	20.0	19.9		ug/L	99	70 - 130	2	20
trans-1,2-Dichloroethene	20.0	20.9		ug/L	104	70 - 130	1	20
trans-1,3-Dichloropropene	20.0	19.3		ug/L	97	70 - 130	2	20
1,2,3-Trichlorobenzene	20.0	20.4		ug/L	102	70 - 130	2	20
1,2,4-Trichlorobenzene	20.0	20.5		ug/L	103	70 - 130	2	20
1,1,1-Trichloroethane	20.0	22.3	1	ug/L	112	70 - 130	0	20
1,1,2-Trichloroethane	20.0	19.9		ug/L	99	70 - 130	3	20
Trichloroethene	20.0	22.4		ug/L	112	70 - 130	1	20
Trichlorofluoromethane	20.0	21.8		ug/L	109	70 - 130	7	20
1,2,3-Trichloropropane	20.0	20.4	1	ug/L	102	70 - 130	0	20
Trihalomethanes, Total	0.08	83.8		ug/L	105	70 - 130	0	20
1,2,4-Trimethylbenzene	20.0	21.4		ug/L	107	70 - 130	1	20
1,3,5-Trimethylbenzene	20.0	21.2		ug/L	106	70 - 130	0	20
Vinyl chloride	20.0	21.6		ug/L	108	70 - 130	2	20
Xylenes, Total	40.0	41.3	1	ug/L	103	70 - 130	1	20

LCSD LCSD

Surrogate	%Recovery	Limits
4-Bromofluorobenzene	90	 70 - 130
1,2-Dichlorobenzene-d4	110	70 - 130

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Job ID: 680-198546-1

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-668421/9

Matrix: Water

Analysis Batch: 668421

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<10		10	5.0	ug/L			05/13/21 13:59	1
Benzene	< 0.50		0.50	0.082	ug/L			05/13/21 13:59	1
Bromobenzene	< 0.50		0.50	0.091	ug/L			05/13/21 13:59	1
Bromoform	< 0.50		0.50	0.17	ug/L			05/13/21 13:59	1
Bromomethane	<1.0		1.0	0.20	ug/L			05/13/21 13:59	1
Carbon tetrachloride	< 0.50		0.50	0.11	ug/L			05/13/21 13:59	1
Chlorobenzene	< 0.50		0.50	0.14	ug/L			05/13/21 13:59	1
Chlorobromomethane	<0.50		0.50	0.30	ug/L			05/13/21 13:59	1
Chlorodibromomethane	<0.50		0.50	0.13	ug/L			05/13/21 13:59	1
Chloroethane	<1.0		1.0	0.22	ug/L			05/13/21 13:59	1
Chloroform	< 0.50		0.50	0.20	ug/L			05/13/21 13:59	1
Chloromethane	< 0.50		0.50	0.15	ug/L			05/13/21 13:59	1
2-Chlorotoluene	<0.50		0.50	0.11	ug/L			05/13/21 13:59	1
4-Chlorotoluene	<0.50		0.50	0.13	ug/L			05/13/21 13:59	1
cis-1,2-Dichloroethene	<0.50		0.50	0.090	ug/L			05/13/21 13:59	1
cis-1,3-Dichloropropene	< 0.50		0.50	0.081	ug/L			05/13/21 13:59	1
1,2-Dibromo-3-Chloropropane	< 0.50		0.50	0.30	ug/L			05/13/21 13:59	1
Dibromomethane	< 0.50		0.50	0.16	ug/L			05/13/21 13:59	1
1,2-Dichlorobenzene	<0.50		0.50	0.16	ug/L			05/13/21 13:59	1
1,3-Dichlorobenzene	< 0.50		0.50	0.11	ug/L			05/13/21 13:59	1
1,4-Dichlorobenzene	< 0.50		0.50	0.13	ug/L			05/13/21 13:59	1
Dichlorobromomethane	< 0.50		0.50	0.079	ug/L			05/13/21 13:59	1
Dichlorodifluoromethane	< 0.50		0.50	0.34	ug/L			05/13/21 13:59	1
1,1-Dichloroethane	< 0.50		0.50	0.078	ug/L			05/13/21 13:59	1
1,2-Dichloroethane	< 0.50		0.50	0.086	ug/L			05/13/21 13:59	1
1,1-Dichloroethene	< 0.50		0.50	0.15	ug/L			05/13/21 13:59	1
1,2-Dichloropropane	< 0.50		0.50	0.096	ug/L			05/13/21 13:59	1
1,3-Dichloropropane	< 0.50		0.50	0.10	ug/L			05/13/21 13:59	1
2,2-Dichloropropane	< 0.50		0.50	0.20	ug/L			05/13/21 13:59	1
1,1-Dichloropropene	< 0.50		0.50	0.095	ug/L			05/13/21 13:59	1
1,3-Dichloropropene, Total	< 0.50		0.50	0.081	ug/L			05/13/21 13:59	1
Diisopropyl ether	< 0.50		0.50	0.28	ug/L			05/13/21 13:59	1
Ethylbenzene	< 0.50		0.50	0.099	ug/L			05/13/21 13:59	1
Ethylene Dibromide	< 0.50		0.50	0.20	ug/L			05/13/21 13:59	1
Freon 113	<0.50		0.50	0.15	ug/L			05/13/21 13:59	1
Hexachlorobutadiene	<0.50		0.50	0.26	ug/L			05/13/21 13:59	1
2-Hexanone	<10		10	5.0	ug/L			05/13/21 13:59	1
Isopropylbenzene	< 0.50		0.50	0.15	ug/L			05/13/21 13:59	1
4-Isopropyltoluene	< 0.50		0.50	0.21				05/13/21 13:59	1
Methylene Chloride	< 0.50		0.50	0.20				05/13/21 13:59	1
2-Butanone (MEK)	<10		10		ug/L			05/13/21 13:59	1
4-Methyl-2-pentanone (MIBK)	<10		10		ug/L			05/13/21 13:59	1
m-Xylene & p-Xylene	< 0.50		0.50	0.15				05/13/21 13:59	1
Naphthalene	<1.0		1.0	0.43	ug/L			05/13/21 13:59	1
n-Butylbenzene	<0.50		0.50	0.17				05/13/21 13:59	1
N-Propylbenzene	<0.50		0.50	0.17				05/13/21 13:59	1
o-Xylene	<0.50		0.50	0.086	ug/L			05/13/21 13:59	1
sec-Butylbenzene	< 0.50		0.50	0.14				05/13/21 13:59	1

Client: Weston Solutions, Inc.
Project/Site: Black & Decker

Job ID: 680-198546-1

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-668421/9

Matrix: Water

Analysis Batch: 668421

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	<0.50		0.50	0.089	ug/L			05/13/21 13:59	1
Tert-amyl methyl ether	< 0.50		0.50	0.20	ug/L			05/13/21 13:59	1
tert-Butyl alcohol	<10		10	1.6	ug/L			05/13/21 13:59	1
tert-Butylbenzene	<0.50		0.50	0.14	ug/L			05/13/21 13:59	1
Tert-butyl ethyl ether	< 0.50		0.50	0.26	ug/L			05/13/21 13:59	1
1,1,1,2-Tetrachloroethane	< 0.50		0.50	0.24	ug/L			05/13/21 13:59	1
1,1,2,2-Tetrachloroethane	<0.50		0.50	0.13	ug/L			05/13/21 13:59	1
Tetrachloroethene	<0.50		0.50	0.18	ug/L			05/13/21 13:59	1
Toluene	< 0.50		0.50	0.086	ug/L			05/13/21 13:59	1
trans-1,2-Dichloroethene	<0.50		0.50	0.090	ug/L			05/13/21 13:59	1
trans-1,3-Dichloropropene	<0.50		0.50	0.11	ug/L			05/13/21 13:59	1
1,2,3-Trichlorobenzene	<0.50		0.50	0.14	ug/L			05/13/21 13:59	1
1,2,4-Trichlorobenzene	<0.50		0.50	0.12	ug/L			05/13/21 13:59	1
1,1,1-Trichloroethane	< 0.50		0.50	0.15	ug/L			05/13/21 13:59	1
1,1,2-Trichloroethane	< 0.50		0.50	0.16	ug/L			05/13/21 13:59	1
Trichloroethene	< 0.50		0.50	0.13	ug/L			05/13/21 13:59	1
Trichlorofluoromethane	< 0.50		0.50	0.23	ug/L			05/13/21 13:59	1
1,2,3-Trichloropropane	<0.50		0.50	0.17	ug/L			05/13/21 13:59	1
Trihalomethanes, Total	< 0.50		0.50	0.079	ug/L			05/13/21 13:59	1
1,2,4-Trimethylbenzene	<0.50		0.50	0.17	ug/L			05/13/21 13:59	1
1,3,5-Trimethylbenzene	<0.50		0.50	0.16				05/13/21 13:59	1
Vinyl chloride	< 0.50		0.50	0.16				05/13/21 13:59	1
Xylenes, Total	< 0.50		0.50	0.086				05/13/21 13:59	1

MB MB

Surrogate	%Recovery	Qualifier Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene	78	70 - 130	05/13/21 13:59	1
1,2-Dichlorobenzene-d4	114	70 - 130	05/13/21 13:59	1

Lab Sample ID: LCS 680-668421/4

Matrix: Water

Analysis Batch: 668421

Client Sample ID: Lab Control Sample Prep Type: Total/NA

-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acetone	100	98.5		ug/L		99	70 - 130
Benzene	20.0	21.8		ug/L		109	70 - 130
Bromobenzene	20.0	20.9		ug/L		104	70 - 130
Bromoform	20.0	21.4		ug/L		107	70 - 130
Bromomethane	20.0	21.8		ug/L		109	70 - 130
Carbon tetrachloride	20.0	23.9		ug/L		119	70 - 130
Chlorobenzene	20.0	20.6		ug/L		103	70 - 130
Chlorobromomethane	20.0	20.3		ug/L		102	70 - 130
Chlorodibromomethane	20.0	21.6		ug/L		108	70 - 130
Chloroethane	20.0	20.5		ug/L		103	70 - 130
Chloroform	20.0	20.8		ug/L		104	70 - 130
Chloromethane	20.0	20.8		ug/L		104	70 - 130
2-Chlorotoluene	20.0	20.9		ug/L		104	70 - 130
4-Chlorotoluene	20.0	21.2		ug/L		106	70 - 130
cis-1,2-Dichloroethene	20.0	19.5		ug/L		97	70 - 130

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Job ID: 680-198546-1

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-668421/4

Matrix: Water

Analysis Batch: 668421

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch. 000421	Spike	LCS	LCS		%Rec.	
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
cis-1,3-Dichloropropene	20.0	20.3	ug/L	101	70 - 130	
1,2-Dibromo-3-Chloropropane	20.0	18.0	ug/L	90	70 - 130	
Dibromomethane	20.0	20.8	ug/L	104	70 ₋ 130	
1,2-Dichlorobenzene	20.0	20.9	ug/L	105	70 - 130	
1,3-Dichlorobenzene	20.0	20.8	ug/L	104	70 - 130	
1,4-Dichlorobenzene	20.0	21.0	ug/L	105	70 - 130	
Dichlorobromomethane	20.0	21.9	ug/L	109	70 ₋ 130	
Dichlorodifluoromethane	20.0	24.1	ug/L	121	70 - 130	
1,1-Dichloroethane	20.0	19.5	ug/L	98	70 ₋ 130	
1,2-Dichloroethane	20.0	22.1	ug/L	110	70 - 130	
1,1-Dichloroethene	20.0	19.4	ug/L	97	70 - 130	
1,2-Dichloropropane	20.0	21.1	ug/L	106	70 - 130	
1,3-Dichloropropane	20.0	19.5	ug/L	98	70 - 130	
2,2-Dichloropropane	20.0	22.2	ug/L	111	70 - 130	
1,1-Dichloropropene	20.0	22.5	ug/L	112	70 - 130	
1,3-Dichloropropene, Total	40.0	39.9	ug/L	100	70 - 130	
Diisopropyl ether	16.0	16.7	ug/L	104	70 - 130	
Ethylbenzene	20.0	20.2	ug/L	101	70 - 130	
Ethylene Dibromide	20.0	20.0	ug/L	100	70 - 130	
Freon 113	20.0	21.4	ug/L	107	70 - 130	
Hexachlorobutadiene	20.0	23.6	ug/L	118	70 - 130	
2-Hexanone	100	90.5	ug/L	91	70 - 130	
Isopropylbenzene	20.0	20.9	ug/L	105	70 - 130	
4-Isopropyltoluene	20.0	21.0	ug/L	105	70 - 130	
Methylene Chloride	20.0	18.5	ug/L	92	70 - 130	
2-Butanone (MEK)	100	78.3	ug/L	78	70 - 130	
4-Methyl-2-pentanone (MIBK)	100	97.2	ug/L	97	70 - 130	
m-Xylene & p-Xylene	20.0	20.2	ug/L	101	70 - 130	
Naphthalene	20.0	18.8	ug/L	94	70 - 130	
n-Butylbenzene	20.0	21.3	ug/L	107	70 - 130	
N-Propylbenzene	20.0	21.5	ug/L	107	70 - 130	
o-Xylene	20.0	20.3	ug/L	101	70 - 130	
sec-Butylbenzene	20.0	21.5	ug/L	108	70 - 130	
Styrene	20.0	20.3	ug/L	102	70 - 130 70 - 130	
Tert-amyl methyl ether	16.0	14.8	ug/L	93	70 - 130 70 - 130	
tert-Butyl alcohol	200	184	ug/L	92	70 - 130 70 - 130	
tert-Butylbenzene	20.0	20.7	ug/L	104	70 - 130 70 - 130	
Tert-butyl ethyl ether	16.0	15.5	ug/L	97	70 - 130	
1,1,1,2-Tetrachloroethane	20.0	21.9	ug/L	110	70 - 130	
1,1,2,2-Tetrachloroethane	20.0	20.1	ug/L	100	70 - 130	
Tetrachloroethene	20.0	20.7	ug/L	103	70 - 130	
Toluene	20.0	19.5	ug/L	97	70 - 130 70 - 130	
trans-1,2-Dichloroethene	20.0	21.3	ug/L	107	70 - 130	
trans-1,3-Dichloropropene	20.0	19.6	ug/L	98	70 - 130	
1,2,3-Trichlorobenzene	20.0	19.4	ug/L ug/L	97	70 - 130	
1,2,4-Trichlorobenzene	20.0	20.0	ug/L	100	70 - 130	
1,1,1-Trichloroethane	20.0	22.7	ug/L	113	70 - 130 70 - 130	
1,1,2-Trichloroethane	20.0	20.2	ug/L	101	70 - 130	
Trichloroethene	20.0	20.2		112	70 - 130 70 - 130	
THOMOTOCKIENE	20.0	22.4	ug/L	112	10-130	

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Job ID: 680-198546-1

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-668421/4

Matrix: Water

Analysis Batch: 668421

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Trichlorofluoromethane	20.0	22.6		ug/L		113	70 - 130
1,2,3-Trichloropropane	20.0	19.5		ug/L		97	70 - 130
Trihalomethanes, Total	80.0	85.7		ug/L		107	70 - 130
1,2,4-Trimethylbenzene	20.0	21.3		ug/L		106	70 - 130
1,3,5-Trimethylbenzene	20.0	21.0		ug/L		105	70 - 130
Vinyl chloride	20.0	21.1		ug/L		105	70 - 130
Xylenes, Total	40.0	40.4		ug/L		101	70 - 130

LCS LCS

Surrogate	%Recovery Q	ualifier	Limits
4-Bromofluorobenzene	90		70 - 130
1,2-Dichlorobenzene-d4	109		70 - 130

Lab Sample ID: LCSD 680-668421/5

Matrix: Water

Analysis Batch: 668421

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Baton. 000421	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	RPD	Limit
Acetone	100	93.0		ug/L	93	70 - 130	6	20
Benzene	20.0	21.3		ug/L	106	70 - 130	3	20
Bromobenzene	20.0	20.2		ug/L	101	70 - 130	3	20
Bromoform	20.0	19.9		ug/L	100	70 - 130	7	20
Bromomethane	20.0	21.7		ug/L	108	70 - 130	1	20
Carbon tetrachloride	20.0	22.8		ug/L	114	70 - 130	5	20
Chlorobenzene	20.0	19.7		ug/L	98	70 - 130	5	20
Chlorobromomethane	20.0	18.8		ug/L	94	70 - 130	8	20
Chlorodibromomethane	20.0	20.0		ug/L	100	70 - 130	8	20
Chloroethane	20.0	18.9		ug/L	95	70 - 130	8	20
Chloroform	20.0	20.5		ug/L	102	70 - 130	2	20
Chloromethane	20.0	21.1		ug/L	106	70 - 130	1	20
2-Chlorotoluene	20.0	19.9		ug/L	99	70 - 130	5	20
4-Chlorotoluene	20.0	19.7		ug/L	99	70 - 130	7	20
cis-1,2-Dichloroethene	20.0	21.2		ug/L	106	70 - 130	9	20
cis-1,3-Dichloropropene	20.0	19.8		ug/L	99	70 - 130	3	20
1,2-Dibromo-3-Chloropropane	20.0	17.5		ug/L	88	70 - 130	3	20
Dibromomethane	20.0	19.8		ug/L	99	70 - 130	5	20
1,2-Dichlorobenzene	20.0	20.2		ug/L	101	70 - 130	4	20
1,3-Dichlorobenzene	20.0	20.0		ug/L	100	70 - 130	4	20
1,4-Dichlorobenzene	20.0	20.1		ug/L	101	70 - 130	4	20
Dichlorobromomethane	20.0	21.8		ug/L	109	70 - 130	0	20
Dichlorodifluoromethane	20.0	19.7		ug/L	98	70 - 130	20	20
1,1-Dichloroethane	20.0	20.8		ug/L	104	70 - 130	6	20
1,2-Dichloroethane	20.0	20.9		ug/L	105	70 - 130	5	20
1,1-Dichloroethene	20.0	19.2		ug/L	96	70 ~ 130	1	20
1,2-Dichloropropane	20.0	20.8		ug/L	104	70 - 130	1	20
1,3-Dichloropropane	20.0	18.7		ug/L	94	70 - 130	4	20
2,2-Dichloropropane	20.0	20.4		ug/L	102	70 - 130	8	20
1,1-Dichloropropene	20.0	20.1		ug/L	100	70 ~ 130	11	20
1,3-Dichloropropene, Total	40.0	38.5		ug/L	96	70 - 130	4	20

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Job ID: 680-198546-1

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-668421/5

Matrix: Water

Analysis Batch: 668421

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	1 000				0/ 🗖		
Analyte	Added			11 4	_	0/ 5	%Rec.		RPD
Diisopropyl ether	16.0		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethylbenzene	20.0	16.6 18.9		ug/L		104	70 - 130	1	20
Ethylene Dibromide	20.0	19.4		ug/L		95	70 - 130	6	20
Freon 113	20.0	20.4		ug/L		97	70 ₋ 130	3	20
Hexachlorobutadiene				ug/L		102	70 ₋ 130	5	20
2-Hexanone	20.0	22.8		ug/L		114	70 - 130	3	20
z-nexanone Isopropylbenzene	100 20.0	83.3		ug/L		83	70 - 130	8	20
, , , ,		19.8		ug/L		99	70 ₋ 130	5	20
4-Isopropyltoluene	20.0	19.8		ug/L		99	70 ₋ 130	6	20
Methylene Chloride	20.0	17.7		ug/L		88	70 - 130	4	20
2-Butanone (MEK)	100	77.7		ug/L		78	70 - 130	1	20
4-Methyl-2-pentanone (MIBK)	100	94.1		ug/L		94	70 - 130	3	20
m-Xylene & p-Xylene	20.0	19.0		ug/L		95	70 - 130	6	20
Naphthalene	20.0	18.0		ug/L 		90	70 - 130	4	20
n-Butylbenzene	20.0	20.2		ug/L 		101	70 - 130	5	20
N-Propylbenzene	20.0	20.2		ug/L		101	70 - 130	6	20
o-Xylene	20.0	19.3		ug/L		96	70 - 130	5	20
sec-Butylbenzene	20.0	20.3		ug/L		102	70 - 130	6	20
Styrene	20.0	19.2		ug/L		96	70 - 130	6	20
Tert-amyl methyl ether	16.0	14.7		ug/L		92	70 - 130	1	20
tert-Butyl alcohol	200	183		ug/L		91	70 - 130	1	20
tert-Butylbenzene	20.0	19.8		ug/L		99	70 - 130	4	20
Tert-butyl ethyl ether	16.0	15.5		ug/L		97	70 - 130	0	20
1,1,1,2-Tetrachloroethane	20.0	21.3		ug/L		107	70 - 130	3	20
1,1,2,2-Tetrachloroethane	20.0	18.9		ug/L		95	70 - 130	6	20
Tetrachloroethene	20.0	19.4		ug/L		97	70 - 130	6	20
Toluene	20.0	19.6		ug/L		98	70 - 130	1	20
rans-1,2-Dichloroethene	20.0	19.1		ug/L		96	70 - 130	11	20
trans-1,3-Dichloropropene	20.0	18.7		ug/L		94	70 - 130	4	20
1,2,3-Trichlorobenzene	20.0	19.1		ug/L		95	70 - 130	2	20
1,2,4-Trichlorobenzene	20.0	19.5		ug/L		97	70 - 130	3	20
1,1,1-Trichloroethane	20.0	22.2		ug/L		111	70 - 130	2	20
1,1,2-Trichloroethane	20.0	19.3		ug/L		97	70 - 130	4	20
Trichloroethene	20.0	21.9		ug/L		109	70 - 130	2	20
Trichlorofluoromethane	20.0	23.1		ug/L		116	70 - 130	2	20
1,2,3-Trichloropropane	20.0	19.8		ug/L		99	70 - 130	1	20
Trihalomethanes, Total	80.0	82.2		ug/L		103	70 - 130	4	20
1,2,4-Trimethylbenzene	20.0	20.0		ug/L		100	70 - 130	6	20
1,3,5-Trimethylbenzene	20.0	20.1		ug/L		101	70 - 130	4	20
Vinyl chloride	20.0	21.0		ug/L		105	70 - 130	0	20
Xylenes, Total	40.0	38.3		ug/L		96	70 - 130	5	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	90		70 - 130
1,2-Dichlorobenzene-d4	109		70 - 130

QC Association Summary

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Job ID: 680-198546-1

GC/MS VOA

Analysis Batch: 668236

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-198546-1	RFW-20	Total/NA	Water	524.2	
680-198546-2	RFW-21	Total/NA	Water	524.2	
680-198546-3	HAMP-22	Total/NA	Water	524.2	
680-198546-4	HAMP-23	Total/NA	Water	524.2	
680-198546-5	Trip Blank	Total/NA	Water	524.2	
MB 680-668236/8	Method Blank	Total/NA	Water	524.2	
LCS 680-668236/3	Lab Control Sample	Total/NA	Water	524.2	
LCSD 680-668236/4	Lab Control Sample Dup	Total/NA	Water	524.2	

. . .

Analysis Batch: 668421

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-198546-5 - RA	Trip Blank	Total/NA	Water	524.2	
MB 680-668421/9	Method Blank	Total/NA	Water	524.2	
LCS 680-668421/4	Lab Control Sample	Total/NA	Water	524.2	
LCSD 680-668421/5	Lab Control Sample Dup	Total/NA	Water	524.2	

Lab Chronicle

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Job ID: 680-198546-1

Client Sample ID: RFW-20

Date Collected: 05/04/21 09:10 Date Received: 05/06/21 11:30 Lab Sample ID: 680-198546-1

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Prep Type Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 524.2 5 mL 5 mL 668236 05/12/21 18:32 Y1S TAL SAV Instrument ID: CMSAB

Client Sample ID: RFW-21

Date Collected: 05/04/21 08:15 Date Received: 05/06/21 11:30 Lab Sample ID: 680-198546-2

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount **Amount** Number or Analyzed Analyst Lab Total/NA 524.2 Analysis 5 mL 5 mL 668236 05/12/21 21:14 Y1S TAL SAV Instrument ID: CMSAB

Client Sample ID: HAMP-22

Date Collected: 05/05/21 09:25 Date Received: 05/06/21 11:30

Matrix:

Lab Sample ID: 680-198546-3

Matrix: Water

Dil Batch Batch Initial Final Batch Prepared Prep Type Type Method Run Factor **Amount** Amount Number or Analyzed Analyst Lab Total/NA Analysis 524.2 5 mL 5 mL 668236 05/12/21 21:37 Y1S TAL SAV Instrument ID: CMSAB

Initial

Amount

5 mL

Final

Amount

5 mL

Dil

Factor

Run

Client Sample ID: HAMP-23

Date Collected: 05/05/21 09:20

Date Received: 05/06/21 11:30

Prep Type

Total/NA

Lab Sample ID: 680-198546-4 Matrix: Water

 Batch
 Prepared

 Number
 or Analyzed
 Analyst
 Lab

 668236
 05/12/21 22:00
 Y1S
 TAL SAV

Client Sample ID: Trip Blank

Batch

Analysis

Type

Batch

524.2

Instrument ID: CMSAB

Method

Date Collected: 05/04/21 07:00

Date Received: 05/06/21 11:30

Lab Sample ID: 680-198546-5

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	524.2 nt ID: CMSAB		1	5 mL	5 mL	668236	05/12/21 15:27	Y1S	TAL SAV
Total/NA	Analysis Instrumer	524.2 nt ID: CMSAB	RA	1	5 mL	5 mL	668421	05/13/21 14:46	Y1S	TAL SAV

Laboratory References:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins TestAmerica, Savannah

Page 27 of 30

Chain of Custody Record

Analysis Turnaround Time JAR DAYS I Jahrent from Below Sample Type Georaby Time Georaby Top Again Top Cont Georaby Top Top Top Top Top Top Top To	Client Contact	Regulatory Program: Dw Project Manager:	NPDES NCRA Juner: Site Contact Contact Date:		TAL-8210
For the form the control of time and ti	We stem	Tel/Email:		-	01
Sample Notwice to March Note		Analysis Turnaround Time			1
Sample Disposal (A fee may be assessed if samples are trained congertions) Date files			7A.	and Magazin	Cort an Isa Oniv
Sample S		*AT if different from Below	The second secon		Walk-in Client
Sample Sample (Codes for the sample in the Sample of Received by Coder Temp CC) Observed by Company Describing Company Description		2 Weeks	1/,		ab Samolino
Sample in the Sample in the Sample of Received to Latourough by Sample of Received to Latourough by Sample of Sample		1 weck	λ)	2000 1200	
Sample in the Codes for the sample in the Delevated by Company Delevative Del	Mr Strod Pri	2 days	O Osv		Job / SDG No.
Sample and the sample beautiful to the sample in the Becoved by Choler Temp (C) Obsid. S. I. Corrd Date/Inne Received by Company Company Date/Inne Received in Laboratory by Company Company Date/Inne Received in Laboratory by Company Company Date/Inne Received in Laboratory by Company Company Date/Inne Received in Laboratory by Company Company Date/Inne		Yeb (<u>خ</u> ۱/s		
Codes for the sample in the Uninown Recursed by Conject in the Date/Time Received by Conject in Dat	Conversion (descriptions)	Sample Cecomp.	# com MS		
Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont becover by the may be assessed if samples are retained longer than 1 mont becover by the may be assessed if samples are retained longer than 1 mont becover by the may be assessed if samples are retained longer than 1 mont becover by the may be assessed if samples are retained longer than 1 mont becover by the month of the may be assessed if samples are retained longer than 1 month and the month of the may be assessed if samples are retained longer than 1 month and the month of	- 1	IIIIe Cadab	Cont.		Sample Specific Notes
Todas for the sample in the Sample Disposal (A fee may be assessed if samples are retained longer trian 1 mont in the Sample in the Sample Disposal (A fee may be assessed if samples are retained longer trian 1 mont in the Sample in the Sample Disposal (A fee may be assessed if samples are retained longer trian 1 mont in the Sample in the Sample Disposal (A fee may be assessed if samples are retained longer trian 1 mont in the Sample in the Sample Disposal (A fee may be assessed if samples are retained longer trian 1 mont in the Sample In the Sample of Sample Disposal (A fee may be assessed if samples are retained longer trian 1 mont in the Sample of Sample Disposal (A fee may be assessed if samples are retained longer trian 1 mont in the Sample of Sample Disposal (A fee may be assessed if samples are retained longer trian 1 mont in the Sample of Sample Disposal (A fee may be assessed if samples are retained longer trian 1 mont in the Sample of Sample Disposal (A fee may be assessed if samples are retained longer trian 1 mont in the Sample of Sample Disposal (A fee may be assessed if samples are retained longer trian 1 mont in the Sample of Sample Disposal (A fee may be assessed if samples are retained longer trian 1 mont in the Sample of Sample Disposal (A fee may be assessed if a fee ma	C 0) - 3 - C			
Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont	7-1	7887			
Sample on the Sample in the Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont of the sample in the Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont of the sample in the Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont of the sample in the Sample Disposal (A fee may be assessed if samples are retained forger than 1 mont of the sample in	22	5			
Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont sample in the Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont of Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont of Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont of Samples are retain	FC	2			
Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont te Codes for the sample in the Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont of the sample in the Sample Disposal by Lab Archive for Monthly Conder Temp (C): Obsid. S. I Control Samples are retained to Company Company Date/Time: Date/Time Proceived by Proceived by Company Date/Time: Da		00/2 77			CONTRACTOR OF THE PROPERTY OF
Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont sample in the Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont set of the sample in the Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont set of the sample in the Section of Cooler Temp. (C): Obside S. I. Cortrol S. Archive for Sectioned by Company. Date Ime Received by Company. Date/Time: Date/Time					
Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont sample in the Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont sample in the Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont of the sample in the Section of the samples are retained longer than 1 mont of the sample in the Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont of the sample in the samp					
Sample Disposal (A fee may be assessed if samplas are retained longer than 1 mont under the sample in the sample in the sample in the sample in the sample Disposal by Lab Archive for Moures Date/Time Structure Received by Company Company Date/Time Date/Time Received by Company Date/Time Date/Time Date/Time Received in Laboratory by Company Date/Time	AND THE PROPERTY OF THE PROPER				
Sample Disposal (A fee may be assessed if samples are retained longer trian 1 mont unknown Unknown Unknown Betun to Clerk Cooler Temp. (*C): Obsid., s. t. Confor. s. f. Therm ID No					
Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont le Codes for the sample in the Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont le Codes for the sample in the Secure to Code in the sample in the Secure of Sample Disposal by Lab Archive for Hours Samples are retained longer than 1 mont le Code in the sample in					The state of the s
Sample Disposal (A fee may be assessed if samples are retained longer than 1 ment Unknown Unknown Beturn to Client Date I me Sample in the Cooler Temp. (**C): Obsid. ** Lord ** Latern ID No Archive for Months Company: Date I me Received by Company: Date I me Received by Company: Date I me Date I					
Sample Disposal (A fee may be assessed if samples are retained longer than 1 mont to Codes for the sample in the Return to Client Disposal by Lab Archive for Months Archive for Date/Time Sample for Date/Time Received by Company Date/Time Date/Time Received in Laboratory by Company Date/Time Date/Tim					
Sample Disposal (A fee may be assessed if samples are retained fonger than 1 mont to Clent bisposal by Lab Archive for Months Unknown Return to Clent Disposal by Lab Archive for Months Cooler Temp. (**C): Obsid. **S. Confrd **S. Therm ID No					The second of th
Custody Seal No. Company Compa	Jsed: 1= ice, 2= HCl; 3= H2804; 4=HNO3;	5=NaOH; 8= Other			and the state of the second se
Custody Seat No. Company; Date/Time Received in Laboratory by Lab Company; Date/Time Received in Laboratory by Company; Date/Time Received in Laboratory by Company; Date/Time Received in Laboratory by Company; Date/Time Date/T	ard Identification: les from a listed EPA Hazardous Waste? Pleas	List any EPA Waste Codes for the sam	THE PERSON NAMED IN	sed if samples are retained	longer than 1 month)
Custody Seat No. Company:	Participation of the participa	200 C 100 C	The first is a second control of the first in the first i		200 C C
Company; Com	Michigan Supering Sup			1	Months
Si Mact. Yes No Custody Seat No. Company. Date/Time.	uctions/LC Meduirements & Comments:				
Company, Date Line Received by Company, Date Time. Company, Date Time Received in Laboratory by Company, Date Time.	intact. Yes	Custody Seal No.:	Cooler Tenip. ("C): Obs'd:	A C	herm ID No.
Company: Date/Time Received by Company. Date/Time: Company: Date/Time: Received in Laboratory by Company: Date/Time:	That the state of	Date	0003	de demande de la compression della compression d	
Company: Date/Time Received in Laboratory by Company:	by.	Date	-		
	by				Заіе/Тіте:
			and the animal and the state of	The state of the s	. Michael control of defendance and control of the

Login Sample Receipt Checklist

Client: Weston Solutions, Inc.

Job Number: 680-198546-1

Login Number: 198546

List Number: 1 Creator: White, Wade List Source: Eurofins TestAmerica, Savannah

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Accreditation/Certification Summary

Client: Weston Solutions, Inc.

Project/Site: Black & Decker

Laboratory: Eurofins TestAmerica, Savannah

The accreditations/certifications listed below are applicable to this report.

Authority Program Identification Number Expiration Date
Maryland State 250 12-31-21