R-585-7-1-2

ORIGINAL (Rec)

SITE INSPECTION OF BLACK AND DECKER, INCORPORATED PREPARED UNDER

TDD NO. F3-9101-19 EPA DSN MD-370 FACILITY ID NO. MDD003065877 CONTRACT NO. 68-01-7346

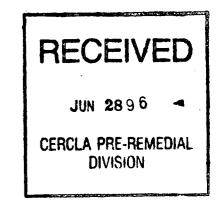
FOR THE

HAZARDOUS SITE CONTROL DIVISION U.S. ENVIRONMENTAL PROTECTION AGENCY

OCOTBER 9, 1991

NUS CORPORATION SUPERFUND DIVISION

SUBMITTED BY


T.

LINDA CIARLETTA PROJECT MANAGER **REVIEWED BY**

PAUL PERSHIG SECTION SUPERVISOR

APPROVED BY

GARTH GLENN RÉGIONAL MANAGER, FIT 3

Site Name: Black and Decker, Incorporated G .

(Rea)

TDD No.: F3-9101-19

TABLE OF CONTENTS

SECTION

SECTION	:	PAG
1.0		
1.1	AUTHORIZATION	
1. 2	SCOPE OF WORK	1-1
1. 3	SUMMARY	1-1
		1-1
2.0	THE SITE	
2.1	LOCATION	2-1
2.2	SITE LAYOUT	
2.3		2-5
2.4	SITE USE HISTORY	2-6
2.5	PERMIT AND REGULATORY ACTION HISTORY	2-8
2.6	REMEDIAL ACTION TO DATE	
3.0	ENVIRONMENTAL SETTING	3-1
3.1	WATER SUPPLY	
3.2	SURFACE WATERS	
3.3	HYDROGEOLOGY	
3.4	CLIMATE AND METEOROLOGY	
3.5	LAND USE	
3.6	POPULATION DISTRIBUTION	2 14
3.7	CRITICAL ENVIRONMENTS	2-14
		3-14
4.0	WASTE TYPES AND QUANTITIES	4-1
5.0		5-1-
5.1	SUMMARY	
5.2	PERSONS CONTACTED	
5.3	SAMPLELOG	
5.4	SITE OBSERVATIONS	
5.5	PHOTOGRAPH LOG	
5. 6		
6.0	REFERENCES FOR SECTIONS 1.0 THROUGH 5.0	6-1
7.0		7-
8.0		
8.1	SUMMARY	
8.2		8-1

And the second se į and the state of the second second

an man data i talagan managan

......

··· ···· ·

à.

APPENDICES A 1.0 QUALITY ASSURANCE SUPPORT DOCUMENTATION A-1 B 1.0 LABORATORY DATA SHEETS B-1 C 1.0 PERMITINFORMATION AND RELATED CORRESPONDENCE C-1 D 1.0 1979 SLUDGE ANALYSIS RESULTS D-1 E 1.0 1984 ARESULTS OF BLACK AND DECKER PRODUCTION E-1 F-1 VELL SAMPLING BY CARROLL COUNTY F-1 F 1.0 1984 MARYLAND DEPARTMENT OF HEALTH AND MELTAL HYGIENE SITE COMPLAINT AND COMPLIANCE INSPECTION REPORT G-1 G 1.0 GERAGHTY AND MILLER MARCH 1985 REPORT G-1 H 1.0 1984 HOTABLE WATER SUPPLY SAMPLING AT I-1 BLACK AND DECKER J-1 K 1.0 AUGUST 1985 RCRA INSPECTION REPORT K-1 L 1.0 1984 HOTABLE WATER SUPPLY SAMPLING AT I-1 M 1.0 1984 ADD SEPT ORDER J-1 K 1.0 AUGUST 1985 RCRA INSPECTION REPORT K-1 L 1.0 GERAGHTY AND MILLER SEPTEMBER 1985 REPORT I-1 M 1.0 1986 AND 1989 HAZARDOUS WASTE REPORT I-1 M 1.0 1986 AND 1986 REPORT K-1 Q 1.0 1986 AND 1986 REPORT P-1 Q 1.0 SEM 1986 REPORT		Site Name: <u>Black and Decke</u>	
A1.0 QUALITY ASSURANCE SUPPORTA-1B1.0 LABORATORY DATA SHEETSB-1C1.0 PERMIT INFORMATION AND RELATEDC-1C1.0 PERMIT INFORMATION AND RELATEDC-1C1.0 1939 SLUDGE ANALYSIS RESULTSD-1E1.0 1984 RESULTS OF BLACK AND DECKER PRODUCTIONE-1F1.0 1984 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE SITE COMPLAINT AND COMPLIANCE INSPECTION REPORTF-1G1.0 GERAGHTY AND MILLER MARCH 1985 REPORTG-1H1.0 1984 HOME WELL SAMPLING RESULTSH-1I1.0 1984 OTABLE WATER SUPPLY SAMPLING AT BLACK AND DECKERH-1I1.0 1984 CONSENT ORDERJ-1K1.0 AUGUST 1985 RCRA INSPECTION REPORTK-1L1.0 GERAGHTY AND MILLER SEPTEMBER 1985 REPORTL-1M1.0 1984 AND 1989 HAZARDOUS WASTE REPORTK-1L1.0 GERAGHTY AND MILLER SEPTEMBER 1985 REPORTL-1M1.0 1984 AND 1989 HAZARDOUS WASTE REPORTSM-1N1.0 1985 AND 1986 HOME WELL SAMPLING RESULTSN-1O1.0 1986 AND 1989 HAZARDOUS WASTE REPORTC-1M1.0 1986 AND 1989 HAZARDOUS WASTE REPORTC-1R1.0 1986 AND 1989 HOME WELL SAMPLING RESULTSN-1O1.0 1986 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1986 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1986 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1980 SURFACE WATER AND OUTFALL SAMPLINGS-1RESULTS1.1 0 COMPARTSON OF 1989 AND		TDD No.: <u>F3-9101-19</u>	
DOCUMENTATIONB1.0 LABORATORY DATA SHEETSB-1C1.0 PERMIT INFORMATION AND RELATEDC-1C1.0 1979 SLUDGE ANALYSIS RESULTSD-1E1.0 1979 SLUDGE ANALYSIS RESULTSD-1E1.0 1984 RESULTS OF BLACK AND DECKER PRODUCTION WELL SAMPLING BY CARROLL COUNTYE-1F1.0 1984 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIREIS DIF COMPLAINT AND COMPLIANCE INSPECTION REPORTF-1G1.0 GERAGHTY AND MILLER MARCH 1985 REPORTG-1H1.0 1984 HOME WELL SAMPLING RESULTSH-1I1.0 1984 CONSENT ORDERJ-1K1.0 AUGUST 1985 RCRA INSPECTION REPORTK-1L1.0 GERAGHTY AND MILLER SEPTEMBER 1985 REPORTL-1M1.0 1984 AND DECKERJ-1J1.0 1984 AND MILLER SEPTEMBER 1985 REPORTL-1M1.0 1985 AND 1986 HOME WELL SAMPLING RESULTSN-1N1.0 1985 AND 1986 HOME WELL SAMPLING RESULTSN-1Q1.0 WESTON APRIL 1989 REPORTD-1P1.0 BCM 1986 REPORTP-1Q1.0 WESTON APRIL 1989 REPORTQ-1R1.0 1988 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1986 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1988 AND 1989 HOME WELL S	APPENDICES		
C1.0 PERMIT INFORMATION AND RELATED CORRESPONDENCEC-1D1.0 1979 SLUDGE ANALYSIS RESULTSD-1E1.0 1984 RESULTS OF BLACK AND DECKER PRODUCTION WELL SAMPLING BY CARROLL COUNTYE-1F1.0 1984 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE SITE COMPLAINT AND COMPLIANCE INSPECTION REPORTF-1G1.0 GERAGHTY AND MILLER MARCH 1985 REPORTG-1H1.0 1984 HOME WELL SAMPLING RESULTSH-1I1.0 1984 POTABLE WATER SUPPLY SAMPLING AT BLACK AND DECKERI-1K1.0 AUGUST 1985 RCRA INSPECTION REPORTK-1L1.0 GERAGHTY AND MILLER SEPTEMBER 1985 REPORTL-1M1.0 1986 AND 1989 HAZARDOUS WASTE REPORTL-1M1.0 1986 AND 1989 HAZARDOUS WASTE REPORTSM-1N1.0 1986 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE SAMPLING RESULTSN-1Q1.0 WESTON APRIL 1989 REPORTP-1Q1.0 WESTON APRIL 1989 REPORTP-1Q1.0 WESTON APRIL 1989 REPORTQ-1R1.0 1986 AND 1986 HOME WELL SAMPLING RESULTSR-1S1.0 1990 SURFACE WATER AND OUTFALL SAMPLINGS-1R1.0 1980 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1990 SURFACE WATER AND OUTFALL SAMPLINGS-1T1.0 COMPARISON OF 1989 AND 1990 GROUNDWATERT-1SAMPLING RESULTST-1SAMPLING RESULTS	A .		A-1
CORRESPONDENCED1.0 1979 SLUDGE ANALYSIS RESULTSD-1E1.0 1984 RESULTS OF BLACK AND DECKER PRODUCTION WELL SAMPLING BY CARROLL COUNTYE-1F1.0 1984 MARYLAND DEPARTMENT OF HEALTH AND INSPECTION REPORTF-1G1.0 GERAGHTY AND MILLER MARCH 1985 REPORTG-1H1.0 1984 HOME WELL SAMPLING RESULTSH-1I1.0 1984 CONSENT ORDERI-1K1.0 AUGUST 1985 RCRA INSPECTION REPORTK-1L1.0 GERAGHTY AND MILLER SEPTEMBER 1985 REPORTL-1M1.0 1986 AND 1989 HAZARDOUS WASTE REPORTL-1M1.0 1986 AND 1986 HOME WELL SAMPLING RESULTSN-1O1.0 1986 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE SAMPLING RESULTSN-1P1.0 BCM 1986 REPORTP-1Q1.0 WESTON APRIL 1989 REPORTQ-1R1.0 1986 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1990 SURFACE WATER AND OUTFALL SAMPLINGS-1T	8	1.0 LABORATORY DATA SHEETS	B-1
B1.01984 RESULTS OF BLACK AND DECKER PRODUCTION WELL SAMPLING BY CARROLL COUNTYE-1F1.01984 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE SITE COMPLAINT AND COMPLIANCE INSPECTION REPORTF-1G1.0GERAGHTY AND MILLER MARCH 1985 REPORTG-1H1.01984 HOME WELL SAMPLING RESULTSH-1I1.01984 POTABLE WATER SUPPLY SAMPLING ATI-1BLACK AND DECKERJ-1J-1K1.01984 CONSENT ORDERJ-1K1.01985 RCRA INSPECTION REPORTK-1L1.0GERAGHTY AND MILLER SEPTEMBER 1985 REPORTL-1M1.01985 AND 1989 HAZARDOUS WASTE REPORTL-1N1.01986 AND 1989 HAZARDOUS WASTE REPORTSM-1N1.01986 AND 1989 HAZARDOUS WASTE REPORTSN-1O1.01986 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE SAMPLING RESULTSN-1Q1.0WESTON APRIL 1989 REPORTQ-1R1.01988 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.01988 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.01988 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.01988 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.01990 SURFACE WATER AND OUTFALL SAMPLINGS-1R1.01988 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.01990 SURFACE WATER AND OUTFALL SAMPLINGS-1T1.0COMPARISON OF 1989 AND 1990 GROUNDWATER<	c		C-1
F1.0 1984 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE SITE COMPLAINT AND COMPLIANCEF-1G1.0 GERAGHTY AND MILLER MARCH 1985 REPORTG-1H1.0 1984 HOME WELL SAMPLING RESULTSH-1I1.0 1984 POTABLE WATER SUPPLY SAMPLING AT BLACK AND DECKERI-1J1.0 1984 CONSENT ORDERJ-1K1.0 AUGUST 1985 RCRA INSPECTION REPORTK-1L1.0 GERAGHTY AND MILLER SEPTEMBER 1985 REPORTL-1M1.0 1984 CONSENT ORDERJ-1K1.0 AUGUST 1985 RCRA INSPECTION REPORTK-1L1.0 GERAGHTY AND MILLER SEPTEMBER 1985 REPORTL-1M1.0 1988 AND 1989 HAZARDOUS WASTE REPORTSM-1N1.0 1986 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE SAMPLING RESULTSN-1Q1.0 WESTON APRIL 1989 REPORTQ-1R1.0 1988 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1988 AND 1989 HOME WELL SAMPLING RESULTSR-1Q1.0 WESTON APRIL 1989 REPORTQ-1R1.0 1988 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1980 AND 1989 AND 1990 GROUNDWATERT-1SAMPLING RESULTS<	D	1.0 1979 SLUDGE ANALYSIS RESULTS	D-1
MENTAL HYGIENE SITE COMPLAINT AND COMPLIANCE INSPECTION REPORTGG1.0 GERAGHTY AND MILLER MARCH 1985 REPORTG-1H1.0 1984 HOME WELL SAMPLING RESULTSH-1I1.0 1984 POTABLE WATER SUPPLY SAMPLING AT BLACK AND DECKERI-1J1.0 1984 CONSENT ORDERJ-1K1.0 AUGUST 1985 RCRA INSPECTION REPORTK-1L1.0 GERAGHTY AND MILLER SEPTEMBER 1985 REPORTL-1M1.0 1988 AND 1989 HAZARDOUS WASTE REPORTSM-1N1.0 1986 AND 1986 HOME WELL SAMPLING RESULTSN-1O1.0 1986 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE SAMPLING RESULTSP-1Q1.0 WESTON APRIL 1989 REPORTQ-1R1.0 1986 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1980 SURFACE WATER AND OUTFALL SAMPLINGS-1R1.0 1980 ND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1980 AND 1989 HOME WELL SAMPLING RESULTSR-1I1.0 1980 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1980 AND 1980 AND 1990 GROUNDWATERT-1 <tr <td="">SAMPL</tr>	E		E-1
H1.01984 HOME WELL SAMPLING RESULTSH-1I1.01984 POTABLE WATER SUPPLY SAMPLING AT BLACK AND DECKERI-1J1.01984 CONSENT ORDERJ-1K1.01984 CONSENT ORDERJ-1K1.0AUGUST 1985 RCRA INSPECTION REPORTK-1L1.0GERAGHTY AND MILLER SEPTEMBER 1985 REPORTL-1M1.01988 AND 1989 HAZARDOUS WASTE REPORTSM-1N1.01985 AND 1986 HOME WELL SAMPLING RESULTSN-1O1.01986 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE SAMPLING RESULTSO-1P1.0BCM 1986 REPORTP-1Q1.0WESTON APRIL 1989 REPORTQ-1R1.01988 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.01990 SURFACE WATER AND OUTFALL SAMPLING RESULTSS-1T1.0COMPARISON OF 1989 AND 1990 GROUNDWATER SAMPLING RESULTST-1	F	MENTAL HYGIENE SITE COMPLAINT AND COMPLIANCE	F-1
I1.01984 POTABLE WATER SUPPLY SAMPLING AT BLACK AND DECKERI-1 BLACK AND DECKERJ1.01984 CONSENT ORDERJ-1K1.0AUGUST 1985 RCRA INSPECTION REPORTK-1L1.0GERAGHTY AND MILLER SEPTEMBER 1985 REPORTL-1M1.01988 AND 1989 HAZARDOUS WASTE REPORTSM-1N1.01985 AND 1986 HOME WELL SAMPLING RESULTSN-1O1.01986 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE SAMPLING RESULTSO-1P1.0BCM 1986 REPORTP-1Q1.0WESTON APRIL 1989 REPORTQ-1R1.01988 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.01905 SURFACE WATER AND OUTFALL SAMPLING RESULTSS-1T1.0COMPARISON OF 1989 AND 1990 GROUNDWATERT-1	G	1.0 GERAGHTY AND MILLER MARCH 1985 REPORT	G-1
BLACK AND DECKERJ1.0 1984 CONSENT ORDERJ-1K1.0 AUGUST 1985 RCRA INSPECTION REPORTK-1L1.0 GERAGHTY AND MILLER SEPTEMBER 1985 REPORTL-1M1.0 1988 AND 1989 HAZARDOUS WASTE REPORTSM-1N1.0 1985 AND 1986 HOME WELL SAMPLING RESULTSN-1O1.0 1986 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE SAMPLING RESULTSO-1P1.0 BCM 1986 REPORTP-1Q1.0 WESTON APRIL 1989 REPORTQ-1R1.0 1988 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1990 SURFACE WATER AND OUTFALL SAMPLING RESULTSS-1T1.0 COMPARISON OF 1989 AND 1990 GROUNDWATERT-1	н	1.0 1984 HOME WELL SAMPLING RESULTS	H-1
K1.0 AUGUST 1985 RCRA INSPECTION REPORTK-1L1.0 GERAGHTY AND MILLER SEPTEMBER 1985 REPORTL-1M1.0 1988 AND 1989 HAZARDOUS WASTE REPORTSM-1N1.0 1985 AND 1986 HOME WELL SAMPLING RESULTSN-1O1.0 1986 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE SAMPLING RESULTSO-1P1.0 BCM 1986 REPORTP-1Q1.0 WESTON APRIL 1989 REPORTQ-1R1.0 1988 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1980 SURFACE WATER AND OUTFALL SAMPLINGS-1T1.0 COMPARISON OF 1989 AND 1990 GROUNDWATERT-1	I		I-1
L1.0 GERAGHTY AND MILLER SEPTEMBER 1985 REPORTL-1M1.0 1988 AND 1989 HAZARDOUS WASTE REPORTSM-1N1.0 1985 AND 1986 HOME WELL SAMPLING RESULTSN-1O1.0 1986 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE SAMPLING RESULTS0-1P1.0 BCM 1986 REPORTP-1Q1.0 WESTON APRIL 1989 REPORTQ-1R1.0 1988 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1990 SURFACE WATER AND OUTFALL SAMPLING RESULTSS-1T1.0 COMPARISON OF 1989 AND 1990 GROUNDWATERT-1	ł	1.0 1984 CONSENT ORDER	J-1
M1.0 1988 AND 1989 HAZARDOUS WASTE REPORTSM-1N1.0 1985 AND 1986 HOME WELL SAMPLING RESULTSN-1O1.0 1986 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE SAMPLING RESULTS0-1P1.0 BCM 1986 REPORTP-1Q1.0 WESTON APRIL 1989 REPORTQ-1R1.0 1988 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1988 AND 1989 HOME WELL SAMPLING RESULTSR-1T1.0 COMPARISON OF 1989 AND 1990 GROUNDWATERT-1	к	1.0 AUGUST 1985 RCRA INSPECTION REPORT	K-1
N1.0 1985 AND 1986 HOME WELL SAMPLING RESULTSN-1O1.0 1986 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE SAMPLING RESULTS0-1P1.0 BCM 1986 REPORTP-1Q1.0 WESTON APRIL 1989 REPORTQ-1R1.0 1988 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1990 SURFACE WATER AND OUTFALL SAMPLINGS-1T1.0 COMPARISON OF 1989 AND 1990 GROUNDWATERT-1	L	1.0 GERAGHTY AND MILLER SEPTEMBER 1985 REPORT	L-1
O1.0 1986 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE SAMPLING RESULTS0-1P1.0 BCM 1986 REPORTP-1Q1.0 WESTON APRIL 1989 REPORTQ-1R1.0 1988 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1990 SURFACE WATER AND OUTFALL SAMPLING RESULTSS-1T1.0 COMPARISON OF 1989 AND 1990 GROUNDWATER SAMPLING RESULTST-1	м	1.0 1988 AND 1989 HAZARDOUS WASTE REPORTS	M-1
MENTAL HYGIENE SAMPLING RESULTSP1.0 BCM 1986 REPORTQ1.0 WESTON APRIL 1989 REPORTQ1.0 WESTON APRIL 1989 REPORTR1.0 1988 AND 1989 HOME WELL SAMPLING RESULTSS1.0 1990 SURFACE WATER AND OUTFALL SAMPLINGS1.0 1990 SURFACE WATER AND OUTFALL SAMPLINGT1.0 COMPARISON OF 1989 AND 1990 GROUNDWATERT1.0 COMPARISON OF 1989 AND 1990 GROUNDWATER	N	1.0 1985 AND 1986 HOME WELL SAMPLING RESULTS	N-1
Q1.0 WESTON APRIL 1989 REPORTQ-1R1.0 1988 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1990 SURFACE WATER AND OUTFALL SAMPLINGS-1T1.0 COMPARISON OF 1989 AND 1990 GROUNDWATERT-1	0		0-1
R1.0 1988 AND 1989 HOME WELL SAMPLING RESULTSR-1S1.0 1990 SURFACE WATER AND OUTFALL SAMPLING RESULTSS-1T1.0 COMPARISON OF 1989 AND 1990 GROUNDWATER SAMPLING RESULTST-1	Ρ	1.0 BCM 1986 REPORT	P-1
S 1.0 1990 SURFACE WATER AND OUTFALL SAMPLING S-1 RESULTS T 1.0 COMPARISON OF 1989 AND 1990 GROUNDWATER T-1 SAMPLING RESULTS	Q .	1.0 WESTON APRIL 1989 REPORT	Q-1
RESULTS T 1.0 COMPARISON OF 1989 AND 1990 GROUNDWATER T-1 SAMPLING RESULTS	R	1.0 1988 AND 1989 HOME WELL SAMPLING RESULTS	R-1
SAMPLING RESULTS	S		S-1
U 1.0 NPDES DISCHARGE PERMIT U-1	Т		T-1
	U	1.0 NPDES DISCHARGE PERMIT	U-1
		iii	

iii

Site Name: Black and Decker, Incorp**olyment** TDD No.: F3-9101-19 (Reg)

-

, **,** ,

APPENDICES

:

V	1.0 CORRESPONDENCE ABOUT SPILL IN MARCH 1977	V-1
W .	1.0 WESTON SOIL BORING LOGS	W-1
x	1.0 WESTON WELL BOREHOLE LOGS	X-1
Y	- 1.0 1990 HAZARDOUS WASTE MANIFEST	· Y-1
Z	1.0 HOME WELL SURVEYS	Z-1

PLATES

1.	FOUR-MILE-RADIUS MAP

.

iv

SECTION 1

1.0 INTRODUCTION

1.1 Authorization

NUS Corporation performed this work under Environmental Protection Agency Contract No. 68-01-7346. This specific report was prepared in accordance with Technical Directive Document No. F3-9101-19 for the Black and Decker, Incorporated site, located in Hampstead, Carroll County, Maryland.

1.2 Scope of Work

NUS FIT 3 was tasked to conduct a site inspection of the subject site.

1.3 Summary

The 286-acre Black and Decker facility is located directly south of Hampstead, Carroll County, Maryland. The major environmental concern at the site is contamination of groundwater by trichloroethene (TCE) and tetrachloroethene (PCE).

The plant, which is owned by Black and Decker (U.S.), Incorporated, currently functions as the principal distribution center on the East Coast for Black and Decker tools and appliances. A small-portion of the on-site activities involves steel sintering using heat-treating furnaces and degreasing tool components utilizing TCE, 1,1,1-trichloroethane (1,1,1-TCEA), and other solvents. On-site sewage and wastewater treatment plants discharge effluent into two on-site lagoons.

From 1952 until 1987, the Black and Decker facility manufactured power hand tools. Numerous oils and solvents utilized in the manufacturing processes were stored on site in above-ground and underground storage tanks. Allegedly, several areas on the subject property were used for disposal of waste materials and off-specification tool products. In April 1984, TCE and PCE contamination was detected in the groundwater at the Black and Decker facility during a sampling investigation of a local gasoline spill. The Maryland Department of Health and Mental Hygiene (MD DHMH) inspected the facility and conducted sampling several times in 1984. On September 17, 1984, Black and Decker entered into a Consent Order with MD DHMH. In compliance with this order, the company performed an investigation of groundwater conditions at the facility. Twenty-one monitoring wells were installed on Black and Decker's property by Geraghty and Miller (consultants) in April 1985. Further evaluation of the contaminated groundwater was recommended by the consultant. MD DHMH conducted home well sampling in the area surrounding the subject facility. Varying levels of PCE and TCE contamination were detected in several wells.

As a result of PCE contamination, Black and Decker installed filters in a downgradient dairy barn well in 1987.

A soil investigation was requested by MD DHMH and performed by BCM Eastern, Incorporated in August 1986. BCM installed an air stripper for on-site potable water treatment in December 1986.

Black and Decker contracted Roy F. Weston, Incorporated (consultants) in 1987 to perform an environmental investigation of the facility. Weston installed 17 monitoring wells on the property as part of this investigation. Seven areas were identified as possible sources of groundwater and/or soil contamination: the previous storage tank areas, a past plant landfill area, two past heat-treating residue and waste deposition areas, a past off-specification product disposal area, an area of past used-product burning, and the on-site lagoons. An underground storage tank area was determined to be a continuing source of groundwater contamination. The investigation also identified separate plumes of groundwater contamination: TCE was determined to be the primary groundwater contaminant in the eastern half of the plant, and PCE was the predominant groundwater contaminant in the western section of the plant. A work plan for soil and groundwater remediation was submitted to Maryland Department of the Environment, Hazardous and Solid Waste Management Administration (MDE HSWMA) in December 1989 by Weston. Information indicates that this work plan has not yet been approved by MDE.

Residents within a four-mile radius of the facility obtain their drinking water from a public supplier of domestic wells. The City of Hampstead Water Department obtains its potable supply from 10 wells located around the city and within the study area. The supplier serves about 2,800 people. Residents not served by the public supplier are assumed to maintain private domestic wells. Approximately 750 employees at Black and Decker depend on 5 on-site production wells for their potable water supply. These wells are connected to an air stripper for groundwater treatment. A total population of about 9,475 people depends on groundwater from within the study area for its-potable supply. The nearesthome well is about 100 feet northeast of the site.

Surface water drainage from the site is mainly toward a tributary of Deep Run west and southwest of the facility. Deep Run enters the North Branch of the Patapsco River. A small northeastern portion of the site drains eastwardly into a tributary of Piney Run. Piney Run flows southeastwardly into Western Run. Piney Run and Western Run are natural trout streams; Deep Run and the North Branch of the Patapsco River are recreational stocked trout streams.

FIT 3 conducted a site inspection of Black and Decker on February 26 and 27, 1991. Activities included sampling on-site soils, sediment, groundwater, and surface water and off-site groundwater, surface water, and sediment. A detailed Quality Assurance Review and a Toxicological Evaluation of the sample results from this inspection can be found in sections 7.0 and 8.0, respectively.

.

SECTION 2

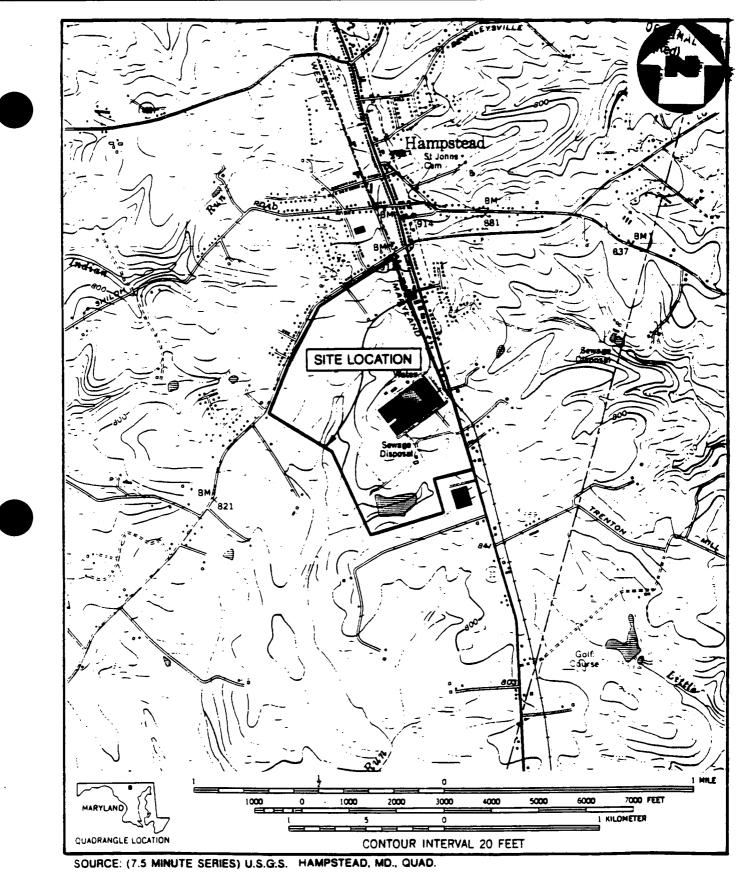
.

Site Name: Black and Decker, Incorporated TDD No.: F3-9101-19

ifa;

2.0 THE SITE

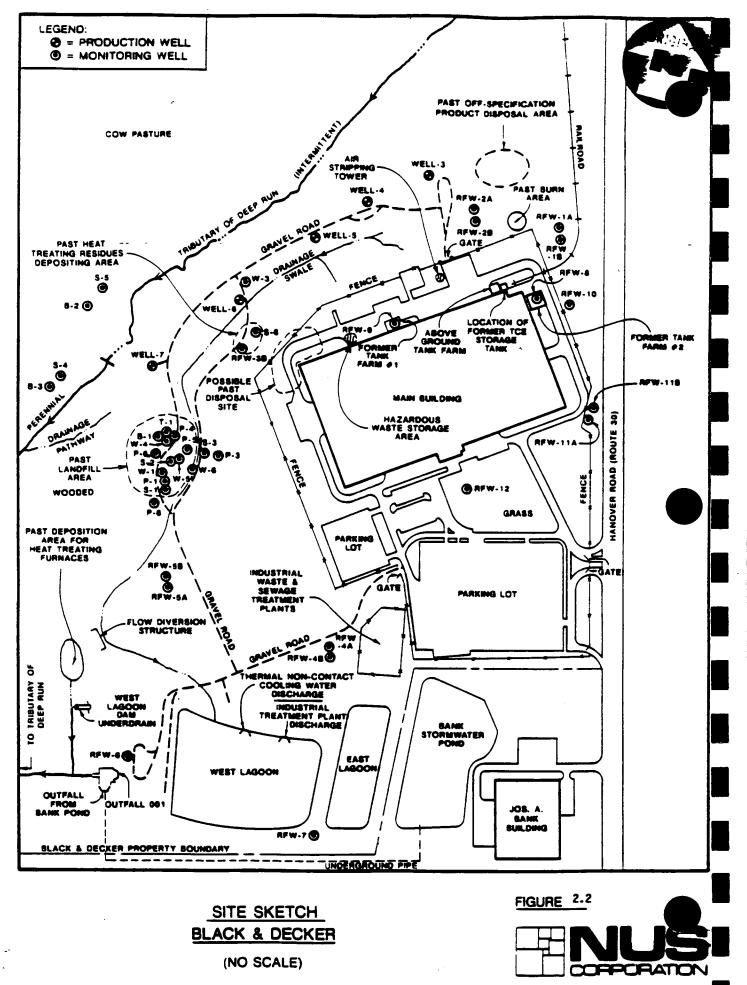
2.1 Location


The Black and Decker site is located in Carroll County, Maryland (see figure 2.1, page 2-2). The site can be found at the intersection of 39° 35' 36" north latitude and 76° 50' 58" west longitude on the Hampstead, Maryland 7.5 minute series United States Geological Survey (U.S.G.S.) topographic quadrangle map. As measured from the northwestern corner of the Hampstead, Maryland topographic map, the site is 3.56 inches east and 5.75 inches south.¹

2.2 Site Layout

The 286-acre Black and Decker property is located directly south of the town of Hampstead, Maryland, directly west of Route 30. Approximately 140 acres of the northern and western sections of the property are leased to local dairy farmers for pasture land. The main facility is situated on the remaining 146 acres.^{1,2}


The major feature of the main facility is a 17-acre rectangular building; its length is oriented in a northeastern to southwestern direction (see figure 2.2, page 2-3). It is secured by fencing and guarded gate. Hanover Road (Route 30) is directly east of the building. Access to the facility is through the monitored gate that is off Hanover Road and southeast of the building. Parking areas are also within the fenced portion of the property, immediately south and southeast of the building. A railroad leads into the northernmost corner of the building, 1,2,3


Several significant areas are located around the Black and Decker building. The former location of tank farm no. 1 is adjacent to the northwestern edge of the building. The tank farm consisted of 13 underground storage tanks that contained oils and solvents. Tank farm no. 2 was east of the northernmost corner of the building and consisted of five underground storage tanks that contained various oils used in Black and Decker's manufacturing process. An above-ground tank farm is west of the northernmost corner of the building. A liquid nitrogen storage tank and a methanol storage tank can be found in this tank farm. TCE storage tanks were previously located in this area; all of these tanks have been removed. A hazardous waste storage area is located southwest of tank farm no. 1, along the northwestern edge of the building, according to LaVere Grimes, Black and Decker's facilities manager. An area of possible past disposal of heat-treating residues is adjacent to the westernmost corner of the building. An air-stripping tower is located northwest of the bu-iding 1 2 3.4,5,6,7

1 /

SCALE 1: 24000

Site Name: Black and Decker, Incorporated TDD No.: F3-9101-19

The st

Wooded land surrounds the Black and Decker main facility on the northern, western and southwestern sides. Access to these areas is unrestricted. A gravel road, exiting from a gate northwest of the facility building, travels through the wooded areas and re-enters the fenced portion of the property through a gate south of the building. Five water supply wells (nos. 3, 4, 5, 6, and 7) are located at intervals along the northwestern section of the road. Well nos. 1 and 2 are sealed and no longer used by the facility. Black and Decker's industrial waste and sewage treatment plants are located within a fenced area directly south of the entry point of the gravel road into the southern - gate and several hundred feet south of the facility building.^{2,3,5}

Two lagoons are located about 1/4 mile south of the main facility; access to the lagoons is unrestricted. The easternmost lagoon (east lagoon) is approximately two acres in size and six feet deep. The westernmost lagoon (west lagoon) is about 8 acres in size and 13 to 14 feet deep. Effluent from the industrial treatment plant and thermal non-contact cooling water from the facility discharge into the west lagoon via two separate discharge pipes. The east lagoon is clay lined, and the west lagoon is partially clay lined. A clay liner is between the two lagoons; an overflow pipe that is continuously open connects the east lagoon to the west lagoon. Effluent from the west lagoon dam is located northwest of the culvert; the underdrain releases seepage coming through the west lagoon dam. An area previously used for the deposition of heat-treating furnaces is directly north of the dam underdrain. Surface water runoff from this area joins drainage from the underdrain; the resulting stream flows into the outfall discharge stream coming from the concrete culvert.^{2,3,4,5,6}

Several other significant features are located on Black and Decker's property outside the restricted main building area. Two areas of concern are several hundred feet north of the building: an area used in the past for burning off-specification products, plastic parts, and other materials and a second area used for disposal of off-specification products. Heat-treating residues were allegedly buried in an area between the building and water supply well no. 6. In the past, off-specification products were disposed in a landfill located west of the facility building in addition to the disposal areas mentioned previously.^{2,3,4,5,6}

A drainage swale originates directly north of the Black and Decker building and flows in southwestward direction. The swale continues west of the facility, flowing southwardly. The swale then makes a 90-degree angle at a flow diversion structure and flows southeastwardly into the west lagoon. The flow diversion structure controls the direction of water flow in the swale toward the west lagoon. 2,3,4,5,6,7,8

Thirty-eight monitoring wells are on Black and Decker's property at various locations. 2.3.4

A tributary of Deep Run flows in a southwestward direction northwest and west of the main facility. A drainage pathway, several hundred feet in length, flows from the past landfill area into this tributary.^{2,3}

A clothier warehouse, the Joseph A. Bank building, is located off the southeastern corner of the Black and Decker property on Hanover Road. A storm water pond located behind this building discharges via an underground pipe into the concrete culvert below the west lagoon. This effluent combines with the outfall no. 001 discharge (which is in the same culvert) to form a small stream.^{2,3,4,5}

2.3 <u>Ownership History</u>

The subject site is solely owned by Black and Decker (U.S.), Incorporated. The northern and western sections of the property (140 acres) are leased to dairy farmers for pasture land.^{4,5}

Black and Decker purchased the property in separate tracts at various times. The first tract of property, 185 acres, was purchased in 1951 from Charles J. Miller. A second tract was purchased in 1952 from Herbert R. Wooden, and a third tract was bought from Ada and Nellie B. Wooden in 1960. According to Mr. Grimes, the second and third purchases were probably small parcels of land northeast of the facility between the railroad tracks and Hanover Road. A fourth purchase was made in 1967 of 138 acres north of the facility. This tract was purchased from Olin Henry Hoffman, according to the Maryland preliminary assessment report.^{4,5,9}

The Black and Decker facility building was built on the first tract of land in 1952. Several other buildings were constructed on this tract after 1952. Thirty-nine acres of the original 185 acres, a building, and a storm water pond were sold to Joseph A. Bank in 1986.^{4,5,9}

Information concerning ownership before Mr. Miller, the Woodens, and Mr. Hoffman is unavailable.^{4,5}

2.4 Site Use History

The subject facility currently functions as the principal distribution center on the East Coast for Black and Decker, Incorporated. About 80 percent of the activities at the Hampstead facility relate to the distribution of Black and Decker products (i.e., power hand tools and small electrical appliances). A small portion of the activities involves light assembly packaging and the manufacture of gears, according to Mr. Grimes. - Heat-treating furnaces are used in the-sintering of steel to-form-gearcomponents. Cleaning and treatment of power tool accessories for rust prevention are also conducted at the plant. TCE, 1,1,1-TCEA, and various other solvents are used as degreasers in manufacturing and cleaning processes.^{4,5}

The Black and Decker facility was origina!ly constructed in 1952 for the manufacture of power hand tools. Additions to the main building and several other buildings were built in later years. Numerous oils, solvents, and paints utilized in Black and Decker's manufacturing processes were stored on site in above-ground and underground storage tanks. MDE information from the early to mid-1980s indicates that waste products from the manufacturing processes were shipped off site as hazardous waste during this specific time period (see appendix M for hazardous waste reports). Waste disposal practices before 1982 are unknown. The use of most of these oils and solvents was discontinued when the facility changed its emphasis from manufacturing to distribution. The underground tanks have been excavated, cleaned, and filled with sand. The above-ground tanks are no longer used; TCE and 1,1,1-TCEA are stored in drums on site, according to Mr. Grimes.^{4,5,6,9}

A phase-out of tool manufacturing began in 1983 at the facility. Plant activities were refocused on product distribution; the conversion from manufacturing to distribution was completed in July 1987.⁶

According to a report by Roy F. Weston, Incorporated, Black and Decker's consultant, Black and Decker employees recall that several areas on the subject property were used for disposal of debris and off-specification tool products during the history of manufacturing operations. The manufacturing processes involved the utilization of numerous paints, solvents, and oils.⁶

Two lagoons on Black and Decker's property have been used by the facility since 1978 for wastewater treatment. The east lagoon is currently utilized as a surge basin for contact cooling water from manufacturing processes at the facility. Boiler blow-down water and effluent from the sewage treatment plant are also discharged into this lagoon. An overflow pipe that is continuously open connects the east lagoon to the west lagoon. When the level reaches a certain depth in the east lagoon, the wastewater is pumped into the industrial chemical treatment plant. Effluent from this plant is discharged into the west lagoon. Thermal non-contact cooling water and drainage from the on-site swaleway also flow into the west lagoon. Water from the west lagoon is recycled for use as non-contact cooling water in the Black and Decker facility, according to the Weston report. The west lagoon also functions as a source of fire-protection water for the facility in emergencies. Excess water from the west lagoon is discharged via NPDES-permitted outfall no.001.^{4,5,6}

In the past, industrial sewage from various manufacturing operations was piped into the east lagoon for subsequent treatment. These operations included cleaning and etching aluminum castings with phosphoric acid, paint stripping using a caustic solution (pH, 12), metal treating with an acid solution, application of a dry coating with heat treatment, and metal grinding using a water-soluble lubricant.¹⁰

Information concerning wastewater disposal before 1978 is unavailable.

Sludge produced from sewage and industrial treatment processes is currently removed off site as nonhazardous waste. The sludge was generated as hazardous waste in the past; modifications to the treatment system enabled the facility to classify the sludge as nonhazardous. Sludge in the lagoons has not reached a level necessitating removal, according to Mr. Grimes.^{4,5}

The storm water pond, located south of the facility on the Bank property, receives surface runoff from the surrounding area, in addition to rainwater from Black and Decker's southern roof drains and surface runoff from Black and Decker's parking areas and driveways. The pond currently functions as a water source for fire protection for the Bank property. Black and Decker constructed the pond sometime after 1978 to prevent overflow of the west lagoon due to storm runoff.^{4,5}

Before Black and Decker's purchases, the site was utilized as dairy farming land.^{4,5}

Site Name: Black and Decker, Incorporated Select AL

2.5 Permit and Regulatory Action History

Black and Decker filed a Notification of Hazardous Waste Activity in September 1980 listing the following as the wastes handled: F001 (halogenated solvents), F010 (bath residues from heat-treating operations with cyanide used in the process), F011 (spent cyanide solutions), F012 (wastewater treatment sludge from heat-treating operations with cyanide used in the process), F011 (spent cyanide used in the process), F018, U002 (acetone), U054, U080 (dichloromethane), U123 (methanoic acid), U220 (toluene), U226--- (1,1,1-TCEA), U228 (TCE), and U239 (xylene).¹⁰

Several of these waste codes have been deleted from the hazardous waste listing; substance descriptions for these codes are unavailable in recent editions of the CFR. The facility was assigned EPA I.D. No. MDD003065877 (see appendix C).^{11,12}

Black and Decker submitted a Part A Hazardous Waste Permit Application to EPA in November 1980. A complete description of the facility's water recycle system was included with this application (see appendix C). Process codes S04 (surface impoundment) and T04 (treatment other than tank, surface impoundment, or incinerator) were listed on the application at capacities of 4,000,000 gallons and 1,000,000 gallons, respectively. The facility's NPDES Permit No. MD-0001881, Oil Operations Permit No. 79-OP-0185, and Water Appropriation Permit No. CL66GAP029 were also listed on the application. No waste codes were identified on the application. On June 4, 1981, EPA informed Black and Decker that the Part A application did not demonstrate that the facility required a federal permit and returned the application. Information indicates that the company kept its generator I.D. No. MDD003065877.13,14

A Notice of Violation and corrective order were issued to Black and Decker by MD DHMH in February 1978 for minor air emission violations. According to Mr. Grimes, the company developed a line of water-based paints to use on its products within the following year in order to comply with the order.^{5,15}

On November 16, 1978, MD DHMH issued an order to Black and Decker requesting information concerning the facility's waste disposal methods and emergency plans. According to Mr. Grimes, Black and Decker provided a Preparedness, Prevention, and Contingency (PPC) Plan to MD DHMH in compliance with this order.^{5,16,17}

In July 1979, Metcalf and Eddy, Incorporated, environmental consultants for Black and Decker completed a report concerning the sludge generated in the facility's wastewater treatment system. Analysis of the sludge indicated chromium levels up to 4,380 ppm and lead levels up to 13,500 ppm. Sampling of water mixed with bottom sludge from one of the Black and Decker lagoons in December 1979 revealed concentrations of chromium at 18.9 ppm and lead at 93.3 ppm (see appendix D for report and analysis results). Metcalf and Eddy recommended modification of the treatment system producing the sludge. Available information indicates that modifications-were made, enabling the facility to dispose the sludge as nonhazardous waste.^{18,19}

In April 1984, the Carroll County Health Department sampled the five production wells at Black and Decker to determine the impact of a gasoline spill at a Hampstead service station. Elevated levels of TCE (up to 72 ppb), PCE (up to 1900 ppb), and other chlorinated hydrocarbons were detected in the groundwater at the facility (see appendix E). As a result, MD DHMH inspected the facility on May 2, 1984 and filed a site complaint against Black and Decker for water pollution and controlled hazardous substances violations including leaking hazardous waste containers, lack of a hazardous waste containment structure, and potential drainage of hazardous wastes into surface runoff. MD DHMH also conducted a compliance monitoring inspection on May 7, 1984. Sampling was conducted by state representatives during each of these May inspections. Analysis results indicated volatile organic compound (VOC) contamination in soils and surface water at various locations on the Black and Decker property, including concentrations of PCE at 72 ppb in underdam drainage from the west lagoon (see appendix F for MD DHMH reports and appendix G for the Geraghty and Miller, Incorporated consultant report, which includes MD DHMH sampling results).7,20,21

Sampling of the wells at several residences downgradient of the subject facility was conducted in May and November 1984 by county representatives. The Leister dairy barn well, which is about 110 feet deep, was found to contain up to 4 ppb PCE. The Richards dairy farm well was found to contain 15 ppb 1,2-dichloroethane (1,2-DCEA). Several nearby homes and a shallow dug well (60 feet deep) used in the Leister farmhouse contained no significant levels of VOCs (see appendix H).^{22,23}

In June 1984, samples collected from potable water supplies for employees at the Black and Decker facility revealed up to 6ppb TCE and 3ppb PCE, in addition to several other VOCs (see appendix I).²⁴

24 2 ··· 42

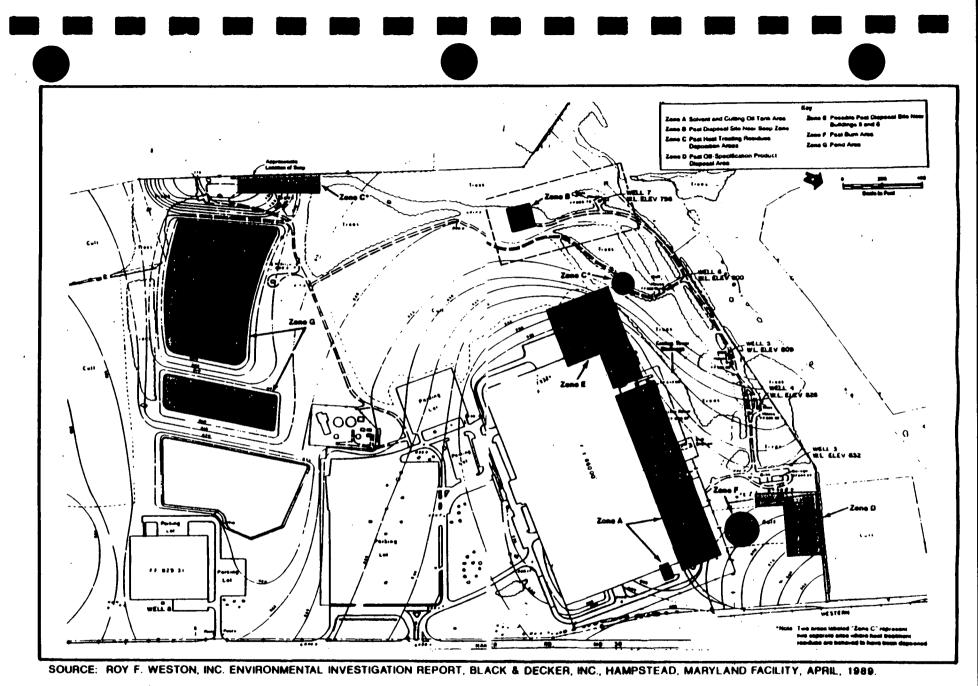
On September 17, 1984, Black and Decker entered into a Consent Order with MD DHMH. In compliance with the order, the company performed an investigation of groundwater conditions at its Hampstead facility. Phase I of this investigation, completed by Geraghty and Miller, Incorporated in March 1985, involved a compilation of past sampling data and included a summary of the geology and hydrogeology at the facility and the construction details of the production wells (see appendices G and J).^{22,25}

A RCRA Compliance Evaluation Inspection was conducted at the facility on August 16, 1985. A containment structure for hazardous waste storage had been constructed since the MD DHMH inspection. RCRA inspectors noted storage of hazardous waste over 90 days in an inspection report (see appendix K). The report included November 1984 sludge sample results from Black and Decker's holding pond revealing lead concentrations of 330 ppm.²⁶

In September 1985, Phase II of the groundwater investigation was completed by Geraghty and Miller. The investigation focused primarily on the area south of PW-7 as a source of PCE contamination. Information collected from Black and Decker employees indicated that this area was used by the company as a disposal area in the past. Three source areas of buried substances (allegedly off-specification equipment) were identified utilizing geophysical surveys (see appendix L for report). Twenty-one monitoring wells were installed by Geraghty and Miller in April 1985 on Black and Decker's property. The majority of the wells were located in the vicinity of the three identified source areas (see appendix L, figure 4). Groundwater sampling of the wells revealed levels of PCE up to 1,400 ppb in MW B-1 and W-4; PCE concentrations were found to increase with the groundwater depth. Geraghty and Miller also collected samples from three seeps west of the landfill disposal area. PCE levels up to 310 ppb were detected. Further evaluation of the source areas and a recovery system for contaminated groundwater were recommended by Geraghty and Miller.²⁷

On September 5, 1985, MD DHMH performed an inspection at Black and Decker to determine compliance with Toxic Substances Control Act (TSCA) regulations. Three non-leaking transformers with PCB-contaminated oils were identified at the facility. Information from Mr. Grimes and from 1988 and 1989 hazardous waste reports indicates that the electrical transformers were drained of PCB-contaminated oil and replaced with non-PCB oil (see appendix M for hazardous waste reports).5.28.29.30

]# ______;


MD DHMH conducted home well sampling in the areas surrounding Black and Decker on several occasions in 1985 and 1986 (see appendix N). Varying levels of PCE and TCE were detected in several wells. The Leister dairy barn contained up to 9 ppb PCE. A TCE level of 2 ppb was detected in wells at 4321 Hampshire Road and at the Mosner and Harner residences. MD DHMH also collected surface water samples downstream of the subject facility on Deep Run; no contaminants were identified (see appendix O).31,32,33

In August 1986, BCM Eastern, Incorporated (consultants) performed a soil boring investigation at Black and Decker; the investigation was requested by MD DHMH. The purpose of the study was to determine whether contaminant sources could be detected in the source areas identified by Geraghty and Miller in 1985 and whether groundwater remediation could be expedited by excavation and/or treatment of the soil in the landfill source areas. Soil borings and subsurface sampling were conducted in each of the three source areas identified by Geraghty and Miller and verified by BCM with geophysical surveys. No significant levels of TCE or PCE contamination were found in any of the areas (see appendix P for report and results). BCM installed an air-stripper tower at the facility in December 1986.^{34,35}

Black and Decker contracted Weston in 1987 to perform an environmental investigation of the subject facility. The first phase was conducted in November and December 1987 and utilized environmental sampling, test pit excavations, and geophysical surveying in an effort to identify potential sources of groundwater contamination.^{6,9}

According to an April 1989 Weston report, seven areas were identified as possible sources of groundwater and/or soil contamination based on discussions with Black and Decker employees and previous investigations (see figure 2.3, page 2-12, and appendix Q).⁶

Zone A, the storage tank areas, consisted of tank farm no. 1, tank farm no. 2, and the above-ground storage tank area. Tank farm no. 1 consisted of 13 underground tanks containing oils and solvents; tank farm no. 2 consisted of 5 underground tanks that contained processing oils and waste oils (see appendix Q, table 3-1, for inventories of tank farm nos. 1 and 2). The above-ground storage tank area consisted of two 5,000-gallon above-ground tanks containing TCE and a solvent called UCAR. The underground tanks in the tank farms were excavated, cleaned, and backfilled, according to the Weston report. No further information is available on the closure of the underground tanks. The old TCE storage tank was also removed; a new diked TCE storage tank and tanks for methanol and liquid nitrogen were located in this area at the time of the Weston investigation.⁶

WESTON PHASE 1 AREAS OF INVESTIGATION MAP

BLACK & DECKER

(SCALE ABOVE)

FIGURE2.3

OR:G: MAL

iner;

Zone B was identified in the western portion of the property as an alleged site of past plant refus disposal. Fill material was found during Weston's test pit excavations in this area.⁶

Zone C consisted of two areas. The northern area may have received residues from the heat-treating furnaces. The southern area received debris from the furnaces in addition to furnace fragments and brick.⁶

Zone D was identified as an area of past off-specification product disposal. Fill material, including power tool parts, was encountered during Weston's excavations in this zone.⁶

Zone E was allegedly used for deposition of heat-treating residues. This area has been filled and regraded several times during construction at the plant. No fill material was found during soil borings in Zone E.⁶

Zone F was possibly used in the past as a burn area for off-specification products, plastic parts, and other materials before their disposal. Fill material was not encountered in Weston's excavations in Zone F.⁶

Zone G included the east lagoon, which serves as a surge-detention basin for wastewater, and the west lagoon, a receiving pond for treated wastewater and noncontact cooling water.⁶

Analytical results from each of these seven areas indicated that zones B, C, D, E, F and the aboveground storage tank area in zone A were not current sources of groundwater contamination at the Black and Decker facility. Significant levels of TCE (up to 2.4 ppm), PCE (up to 380 ppm), and petroleum hydrocarbons (TPH) (up to 150,000 ppm) were detected in soils from underground tank farm nos. 1 and 2. Sampling of sediment and surface water in the lagoons revealed elevated levels of VOCs, including TCE (up to 480 ppb), PCE (up to 16 ppb), and toluene (up to 8,300 ppb). Elevated levels of several inorganic compounds were also detected (see table 3-13, appendix Q). Further characterization of the lagoons and the underground tank farms was recommended by Weston.⁶

Fest)

Weston's Phase II investigation attempted to further characterize the extent of organic contaminants in the Zone A underground storage tank areas, evaluate the local hydrogeology to identify the probable contaminant migration pathways, and assess the groundwater quality at the Black and Decker facility. A total of 17 monitoring wells were installed: 13 on the western half of the property and 4 on the eastern half (see appendix Q).⁶

Sampling of tank farm_no..1.soils revealed elevated concentrations of TPH (up to 14,000-ppm), toluene (up to 4,600 ppm), ethylbenzene (up to 120 ppm), xylene (up to 310 ppm), PCE (up to 1 ppm), and TCE (up to 0.03 ppm) (see appendix Q, table 4-1). According to Weston, these results, in addition to TCLP results, indicated that TPH and VOCs were present below concentrations necessary to significantly impact groundwater on site. However, a preliminary report prepared by MDE HSWMA in February 1990 states that these contaminants are present in significant quantities in the soil to affect groundwater and should be remediated.^{6,9}

TPH, PCE, TCE, 1,1,1-TCEA, and benzene were detected in soils from tank farm no. 2 at concentrations up to 93,000 ppm, 70 ppm, 1.6 ppm, 0.52 ppm, and 1.5 ppm, respectively. Weston concluded that contaminants were present at significant concentrations and quantities to potentially migrate into groundwater on site. Soil remediation was recommended for this area. According to the Weston report, the lagoons did not present a source of continuing groundwater contamination.⁶

The Phase II groundwater quality investigation confirmed that the major contaminants of concern in groundwater at Black and Decker are PCE and TCE. Concentrations of PCE up to 3,100 ppb and TCE up to 1,700 ppb were detected during groundwater sampling in late 1988. Separate plumes of PCE and TCE contamination were identified; TCE was determined to be the primary groundwater contaminant in the eastern half of the plant, and PCE was the predominant groundwater contaminant in the western section of the plant. A groundwater recovery plan was recommended by Weston to treat contaminated groundwater on site and to prevent off-site migration of contaminated groundwater.⁶

A work plan for soil and groundwater remediation was submitted to MDE HSWMA in December 1989 by Weston. At the time of the FIT 3 site visit, this plan had not yet been approved by MDE.^{4,9} MD DHMH sampled several area home wells in 1988. TCE was detected up to 2 ppb; various othe volatile organic compounds were also identified (see appendix R). Sampling of the Leister barn well indicated PCE contamination at 5 ppb in August 1989 and 4 ppb in May 1990 (see appendix R). 35

In January 1990, MD DHMH conducted a generator/treatment, storage, or disposal (TSD) facility inspection at Black and Decker. Several violations were noted, including lack of hazardous waste storage area inspections, lack of an updated spill plan and compliance with the current spill plan, and lack of personnel training.³⁶

MDE HSWMA sampled two recently constructed production wells in the town of Hampstead's well field during July 1990. The closest well is located 1,350 feet east of the subject site. No contamination was detected in either well. Installation of two monitoring wells between Black and Decker's property and the well field was proposed by Weston under MDE's guidance. MDE information indicates that installation of these wells has been postponed due to access problems.1,37,38,39,40

MDE HSWMA conducted surface water and outfall discharge sampling at Black and Decker in July and August 1990. TCE levels of 1,300 ppb and 7 ppb were detected in the contaminated waste holding basin and in the discharge stream, respectively. A PCE concentration of 63 ppb was also detected in the stream (see appendix S).^{41,42}

Groundwater sampling by Weston at Black and Decker in August 1990 indicated continued elevated TCE and PCE levels. TCE was detected at 12,000 ppb in MW RFW-12 and 40 ppb in PW-6. PCE concentrations of 1,600 ppb in MW B-1 and 3,100 ppb in PW-7 were detected (see appendix T).⁴³

Black and Decker holds NPDES Permit No. MD0001881 and state discharge permit no. 88-DP-0022 for effluent from the west lagoon. Information concerning the original date of issue of the NPDES permit is unavailable; the current permit expires on March 7, 1993. Two other outfalls are noted in the permit (see appendix U). These outfalls are for storm water discharge only.⁴⁴

According to MDE Air Management Administration information, Black and Decker holds registrations for two boilers, the on-site air stripper, and the heat-treating furnace. The respective registration permit numbers are 4-0063, 4-0062, 9-0049, and 6-0119.^{45,46}

Site Name: Black and Decker, Incorporated TDD No.: F3-9101-19

2.6 <u>Remedial Action to Date</u>

In May 1977, Black and Decker informed the Department of Natural Resources of Maryland of a spill that occurred at its facility on March 15, 1977. Mechanical failure of a process water transfer pump caused an uncontrolled discharge to Deep Run of about 40,000 gallons of process water. Flow was diverted into the on-site lagoon, and the pump was repaired. A sample of the process water discharge was collected, it was within the discharge permit limitations (see appendix V for results).⁸ – ...

In May 1984, Black and Decker installed carbon filters on the facility potable water supply system as a result of VOC groundwater contamination detected in the plant's on-site production wells. An air stripper was installed by BCM engineers in December 1986 and connected to the five on-site production wells. The treated water is the plant's sole potable water supply.⁵

Black and Decker installed four in-line granular-activated charcoal filter (GAC) units in the Leister dairy barn in October 26,1987 under MDE direction. The filter installation was a result of an agreement with Black and Decker to provide potable water to the farm due to PCE contamination.⁴⁷

Eighteen underground storage tanks were excavated, cleaned, and backfilled in the early to mid-1980s, according to Mr. Grimes. Further information concerning closure of these tanks is unavailable. An old TCE storage tank was also removed; a new diked TCE storage tank was constructed in its place.^{4,6}

In 1988 and 1989, PCB-contaminated oil was drained from non-leaking electrical transformers on site and removed as hazardous waste.^{5,28,29,30}

SECTION 3

TDD No.: F3-9101-19

2

3.0 ENVIRONMENTAL SETTING

3.1 Water Supply

Residents in the study area are served by municipal and private water supplies. The City of Hampstead Water Department (CHWD) is the only public water supplier in the study area. This system serves a population of approximately 2,800 people within the corporate limits of the city of Hampstead. Water is obtained from 10 wells that are located around-the city. Eleven other wells are not currently in use. The yields for these wells range from 21 to 80 gallons per minute (gpm). The locations of these wells in relation to the site are given in the following table 1,48,49

Well	Distance (feet)	Direction	Depth (f ee t)
TW-N-3	3,000	east	161
TW-L	2,800	east-northeast	161
PW no. 23	2,100	northeast	102
PW no. 22	1,350	northeast	132
PW no. 15	1,800	north-northeast	not available
PW-C-2	3,000	west-northwest	162
PW-1	4,800	northwest	203
PW-A3	3,400	northwest	200
PW-13	3,000	north-northeast	not available
TW-7	5,300	northwest	123
TW-5	5,500	northwest	223
TW-3	5,500	northwest	115
PW-25	6,500	north-northwest	148.5
PW no. 24	6,400	north-northwest	173.5
PW no. 12	8,400	north-northwest	not available
PW no. 11	8,700	north-northwest	not available
PW no. 10	8,800	north-northwest	not available
PW no. 21	9,900	northwest	not available
PW no. 20	9,800	northwest	not available
18	12,900	northwest	not available
19	12,800	northwest	not available

Site Name: <u>Black and Decker, Incorporated</u> TDD No.: <u>F3-9101-19</u>

Apportionment data for these sources are unavailable. The state of Maryland does not collect the production data for individual wells in the CHWD system. The total production for 6 of the wells that CHWD is permitted to draw from was 237,717 gallons per day (gpd) for the year 1990. No other production data are currently available from the state. The 10 wells that are currently producing are nos. PW-7, 11, 12, 13, 18, 19, 20, 21, 22, and 23. CHWD has no interconnections and does not sell or purchase water from any other source.^{1,48,49}

The remainder of the population within the study area (approximately 5,925 people) is assumed to rely on private wells for drinking water. This figure is based on a count of homes outside public water service, multiplied by 3.02 persons per home. The nearest home well is about 100 feet northeast of the site. The private wells range in depth from hand-dug wells, which are most likely less than 50 feet deep, to drilled wells approximately 200 feet deep (see appendix Z). These wells produce from the Wissahickon Formation; the median yield of wells in this unit is 16 gpm. No surface water intakes are located within 15 downstream miles of the site.^{1,48,50,51}

The total population dependent on groundwater within the study area is approximately 9,475 people. This figure includes the population utilizing private wells, the population served by CHWD, and the employees at the Black and Decker plant. The populations dependent on groundwater sources for potable supply within the study area are as follows: 1,4,48,49,51

Radius from Site	Population
0 to 1/4 mile	0 residents, 750 Black and Decker employees
1/4 to 1/2 mile	297
1/2 to 1 mile	1,855
1 to 2 miles	1,848
2 to 3 miles	2,140
3 to 4 miles	2,585

Site Name: <u>Black and Decker, Incorporated</u> TDD No.: <u>F3-9101-19</u>

3.2 <u>Surface Waters</u>

The direction of surface water drainage varies in different portions of the site. Surface water runoff from the northeastern corner of the property drains in an eastward direction for 0.6 stream mile into an intermittent tributary of Piney Run. The stream becomes perennial and joins Piney Run 0.3 stream mile downstream. Piney Run flows southeastwardly approximately 7.6 stream miles into Western Run. Piney Run and Western Run are classified by the state of Maryland as Class III streams (natural trout streams).^{1,4,52}

Surface water runoff from the remainder of the Black and Decker property eventually flows into a tributary of Deep Run. Storm water drains collect runoff from the area immediately surrounding the main building. The drains north of the main building empty into the facility's drainage swale (see figure 2.2, page 2-3), which flows into the west lagoon. Most of the drains south of the main building lead to the east lagoon. The Bank building storm water pond receives rain water from Black and Decker's southern roof drains and surface runoff from Black and Decker's parking areas and driveways. Water from the east lagoon is pumped into the facility's industrial waste treatment plant and is discharged into the west lagoon after treatment is complete. The west lagoon discharges via outfall no. 001, forming a stream, which flows about 0.2 stream mile into a tributary of Deep Run west of the facility. Effluent from the Bank building storm water pond discharges via at underground pipe into the concrete culvert below the west lagoon; it combines with the outfall no. 001 discharge to form a small stream.^{1,4}

Surface water from the remainder of the property flows into the on-site drainage swale, the stream formed by outfall discharge, or a tributary of Deep Run. The drainage swale leads to the west lagoon. A flow diversion structure in the swale controls the direction of water flow in the swale. In normal situations, overflow in the swale would flow to the ground surface near the former deposition area for heat-treating furnaces. The stream formed by the outfall discharge is described above. The tributary of Deep Run, which is intermittent northwest of the facility and becomes perennial west of the facility, flows in a southward direction, joining Deep Run 1.7 stream miles downstream. Deep Run flows in a southward direction approximately five stream miles before entering the North Branch of the Patapsco River.^{1,4}

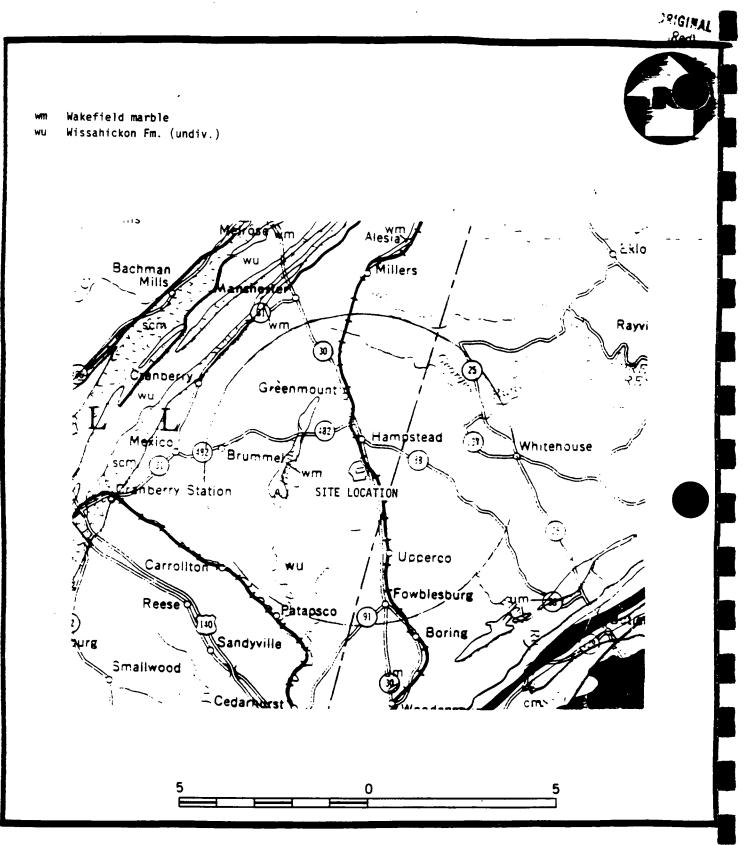
Deep Run and the North Branch of the Patapsco River are classified by MDE as Class IV streams (recreational stocked trout streams).⁵²

Site Name: <u>Black and Decker, Incorporatues</u> TDD No.: F<u>3-9101-19</u>

JRIGINAL (Res)

No wetlands more than five acres in size exist within one stream mile downstream of the site. Several wetland areas less than five acres can be found within this distance.⁵³

3.3 Hydrogeology


The geologic and hydrogeologic conditions in the study area were researched as part of the site inspection. A preliminary literature review was conducted to determine surface and subsurface geologic conditions, soil character, and the status of groundwater transport and storage.

3.3.1 Geology

The site is located in the Eastern Division of the Piedmont Upland Physiographic Province of northeastern Maryland (see figure 3.1, page 3-5). The Piedmont Upland Province is characterized by gently rolling hills drained by many small perennial streams that form a dendritic drainage pattern. The maximum relief in the study area is approximately 550 feet. The geological units beneath the site are of late Precambrian age. The stratigraphic relationships of these units and other Piedmont metamorphic units in the region are complex and not well understood.^{1,54,55}

Underlying the site is the late Precambrian age Wissahickon Formation (undivided). This unit is composed of muscovite-chlorite-albite schist, muscovite-chlorite schist, chloritoid schist, and quartzite. The Wissahickon is intensely folded and cleaved. The cleavage pattern is platy, highly abundant, and well developed. Bedding is fissile to thin and steeply dipping. Jointing in this unit is poorly formed, steeply dipping, and irregular, with wide spacing. Cleavage and joints tend to be open. The thickness of this unit is not known.^{54,55}

The Precambrian age Wakefield marble crops out 1.2 miles west-northwest of the site in an elongate, northeast-southwest-trending outcrop approximately 1.3 miles in length. This unit is composed of predominantly white, fine-grained marble consisting of calcite and dolomite; subordinate white, pink, and green variegated marble may also be present. Jointing in this unit is similar to that in the Wissahickon. It is poorly formed, irregular, steeply dipping, and open. Gravel or clay-filled solution cavities may be present.^{54,55}

source: Weaver, K.N., Cleaves, E.T., Edwards, J., Glaser, J.D., Maryland Geological Survey. Geologic Map of Maryland. 1968.

GEOLOGIC MAP BLACK AND DECKER SITE Carroll County, Maryland

Site Name: Black and Decker, Incorporated TDD No.: F3-9101-19

' =C j

3

3.3.2 Soils

The soils that occur at the site belong to six soil series that are typical of the Piedmont Upland in Maryland (see figure 3.2, page 3-7). Site-specific data may be obtained from the soil boring logs (see appendices P and W). The soils at the site appear to be generally undisturbed except for the impact caused during the construction of the facilities. The most prevalent series is the Manor loam, which occurs on slopes ranging from 0 to 15-percent, with moderate to severe erosion. The Manor loam series consists of deep, very well-drained soils of level to steeply sloping uplands. It typically consists of an organic horizon that is a dark brown loam, one to four inches thick. The subsoil is red to yellowish-brown loam and may contain quartzite, mica, or schist fragments and is 17 to 30 inches thick. The substratum is an extremely micaceous, variegated loam saprolite. The permeability of this series is moderately rapid to rapid (two to 6.3 inches per hour) throughout all horizons in the profile. The soil reaction is very strongly acid to strongly acid (pH, 4.0 to 5.5) from 0 to 23 inches below the surface and very strongly acid (pH, 4.0 to 5.0) from 23 to 90 inches below the surface.^{6, 22, 27, 34, 56}

The Glenelg loam is the next most prevalent soil series under the site and occurs on 0 to 15 percent slopes, with moderate to severe erosion. The Glenelg loam series is a deep, well-drained soil of level to steep uplands. The surface organic horizon is brown to dark brown loam, 5 to 11 inches thick. The subsoil is brown to strong brown silty clay loam, 13 to 28 inches thick. The substratum is typically a variegated, micaceous, loam-textured saprolite. The permeability for this series is moderate (0.63 to two inches per hour) throughout the entire profile from 0 to 50 inches below the surface. The soil reaction ranges from strongly acid (pH, 5.1 to 5.5) in the surface layer to very strongly acid (pH, 4.5 to 5.0) in the subsurface horizons.⁵⁶

The Glenville silt loam series (GvB, three to eight percent slopes) occurs on level to gently sloping land in upland depressions and along footslopes of drainageways. It is moderately well drained with a fragipan. The surface layer is dark grayish-brown silt loam, 8 to 10 inches thick. The subsoil is brownish-yellow, light, silty clay loam, 33 to 44 inches thick. A fragipan commonly occurs at a depth of 28 to 48 inches. The substratum is light yellowish-brown, highly micaceous saprolite, with a loam texture. The permeability of this series is moderate (0.63 to two inches per hour) and moderately slow (0.2 to 6.3 inch per hour) in the surface layer and the subsoil, respectively. The fragipan permeability is slow (less than 0.2 inch per hour), and the substratum permeability is moderate (0.63 to two inches per hour). The soil reaction is very strongly acid (pH, 4.5 to 5.0) throughout all the horizons.⁵⁶

* - *AL Peul

	···· · · · · · · · · · · · · · · · · ·	and the second
GIA	Glenelg loam (0-3% slopes)	
G1B2	Glenelg loam (3-8% slopes)	
G1C2	Glenelg loam (8-15% slopes)	
M1B2	Manor loam (0-8% slopes)	
M1B3	Manor loam (3-8% slopes)	CeB2 Chester silt loam (3-8% slopes
M1C2	Manor loam (8-15% slopes)	BaA Baile silt loam (3-8% slopes)
M1C3	Manor loam (8-15% slopes)	CnB Comus silt loam (3-8% slopes)
GvB	Glenville silt loam (3-8% slopes)	

Source: United States Department of Agriculture. Soil Conservation Service. Soil Survey of Carroll County, Maryland. October, 1969.

SOILS MAP BLACK AND DECKER SITE Carroll County, Maryland

Site Name: Black and Decker, Incorporated TDD No.: F3-9101-19

> 97001442 ______2

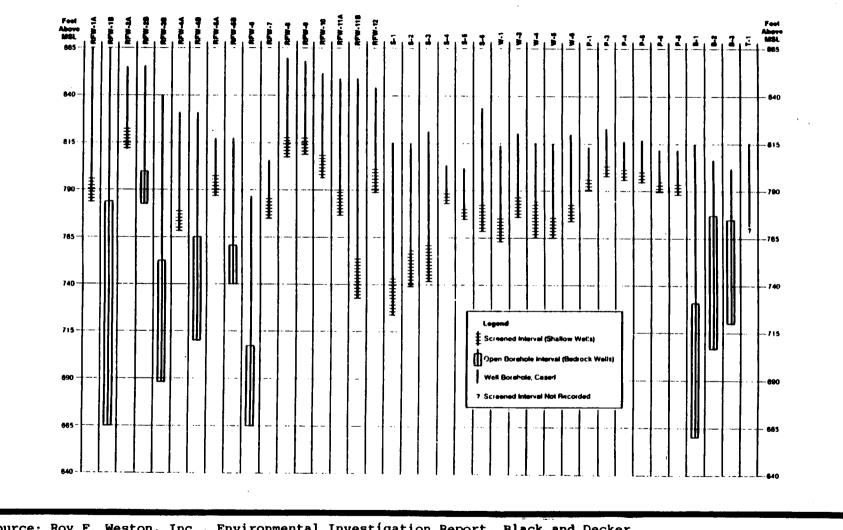
The Chester silt loam series (CeB2, three to eight percent slopes) is a deep, well-drained soil of level to sloping uplands. It commonly occurs at the crests of ridges. The organic surface layer is dark brown silt loam, 8 to 10 inches thick. The subsoil is yellowish-red clay loam that becomes more silty and micaceous with depth. This horizon is 28 to 45 inches thick. The substratum is a variegated loam saprolite. The permeability of this series is moderate (0.63 to two inches per hour), respectively, for the surface layer and the subsoil. The substratum permeability ranges from moderately rapid to rapid (two to 6.3 inches per hour). The soil reaction is strongly acid (pH, 5.1 to 5.5) in the surface layer, very strongly acid to strongly acid (pH, 4.5 to 5.5) in the subsoil, and very strongly acid (pH, 4.5 to 5.0) in the substratum.⁵⁶

The Baile silt loam series (BaA, three to eight percent slopes) consists of poorly drained soils of upland depressions and at the footslopes of drainageways. The surface organic layer is dark gray silt loam, seven to nine inches thick. The subsoil is gray, mottled heavy silt loam, 26 to 39 inches thick. The substratum is greenish-gray, highly micaceous saprolite of loam texture. The permeability of this series is moderately slow to moderate (0.2 to 0.63 in the per hour) in the surface layer and slow (less than 0.2 inch per hour) throughout the remainder of the profile. The soil reaction ranges from very strongly acid to strongly acid (pH, 4.5 to 5.5) in all horizons.⁵⁶

The Comus silt loam series (CnB, local alluvium, zero to three percent slopes) is a deep, well-drained soil of flood plains and depressions. These soils may occasionally flood during wet seasons. The organic surface layer is dark grayish-brown silt loam, 10 to 12 inches thick. The subsoil is yellowish-brown silt loam, 24 to 42 inches thick. The substratum is weakly stratified yellowish-brown silt loam. The permeability is moderate (0.63 to two inches per hour) in the surface layer and moderately rapid to rapid (two to 6.3 inches per hour) in the subsoil. No permeability measurement for the substratum is available. The soil reaction ranges from strongly acid (pH, 5.1 to 5.5) in the surface layer to very strongly acid (pH, 4.5 to 5.0) in the subsoil.⁵⁶

Site Name: <u>Black and Decker, Incorporated</u> TDD No.: <u>F3-9101-19</u>

· =;


3.3.3 Groundwater

All the lithologic units in the study area are water bearing. Groundwater occurs under water-table conditions. The recharge of groundwater is through the infiltration of precipitation. Precipitation that is not absorbed flows as runoff to streams and wetlands or is returned to the atmosphere through evaporation. No wetlands more than five acres in size are located within three downstream miles of the site. Groundwater discharge is to pumping wells and to the baseflow in-streams and rivers. Groundwater storage and movement occur within the fracture-induced secondary porosity of the crystalline rocks and the primary intergranular porosity of the overlying saprolite. Because of the lack of discrete hydrologic units, the geologic units in the study area are considered to be hydrologically interconnected.^{54,55}

The Wakefield marble is an important aquifer despite its small geographic extent. Solution cavities and the widening of joints by dissolution of the marble contribute to greater secondary porosity than in the surrounding Wissahickon Formation. The yields of 27 wells drilled into the Wakefield marble range from 0 to several hundred gpm, with an average of 106 gpm. The maximum reported yield is 575 gpm. The average well depth of 35 wells drilled into this is 139 feet. Specific capacity has been measured as 8.2 gpm per foot of drawdown in one well in this unit. The static water level at the tim that these data were collected was 34.0 feet below top of casing in one well.⁵⁵

The Wissahickon Formation is a reliable source of groundwater in small to moderate supplies and is an important aquifer in the region. Yields from 120 wells drilled into this unit range from 0 to 300 gpm, with a median of 16 gpm. The depths of these wells range from 21 to 645 feet and average approximately 100 feet.⁵⁵

A hydrogeologic investigation was conducted at the site in 1988. Monitoring wells were installed such that the potentiometric surface of groundwater in the Wissahickon Formation bedrock and the overlying saprolite mantle could be measured (see figure 3.3, page 3-10). Data from the monitoring wells indicate that the saprolite ranges in depth from 30 to 96 feet below surface.^{6,27,34}

Source: Roy F. Weston, Inc., Environmental Investigation Report, Black and Decker, Incorporated, Hampstead, Maryland Facility. April 1989.

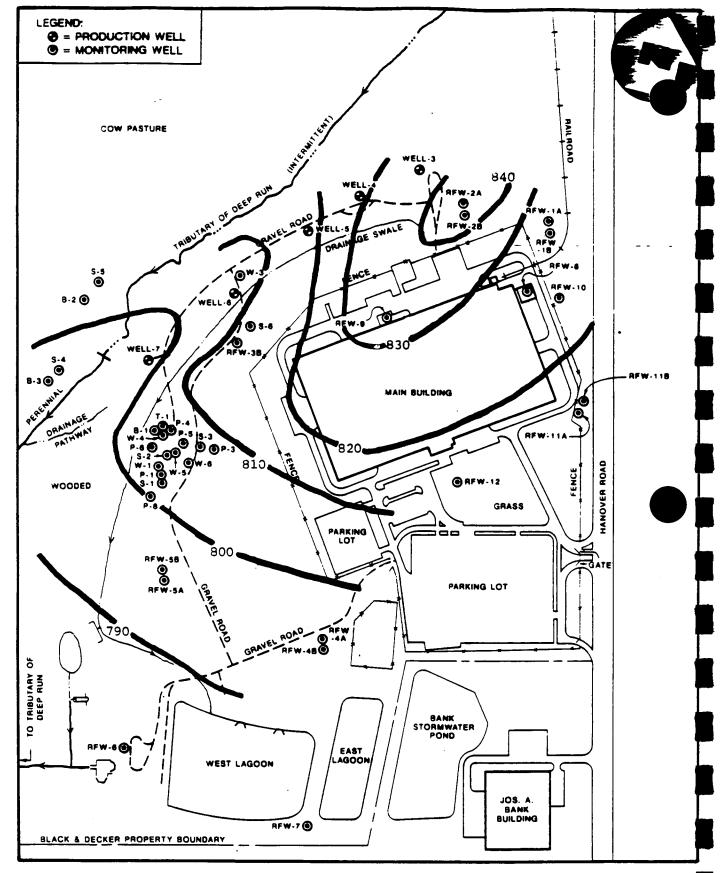
FIGURE 3.3

1. A

MONITORING WELL CHARACTERISTICS BLACK AND DECKER SITE Carroll County, Maryland

Site Name: Black and Decker, Incorporated TDD No.: F3-9101-19

The yields that were obtained from the shallow wells were generally greater than 10 gpm. Within the underlying bedrock, the yields ranged from less than 0.5 to 60 gpm. Typically, groundwate entered these wells from one or two fractures or quartz-filled veins. The fractures commonly occur within 50 feet of the bedrock-saprolite interface. Well logs for all monitoring wells located at the site are located in appendices L and X. Seven production wells are located at the site (see table 1, appendix G). The locations for production well nos. 8 and 9 are unavailable at this time. These wells are cased with open borehole completions. These wells range in depth from 125 to 302 feet. The range of depths of the cased portions of these wells is from 58 to 123 feet <u>6</u>,22.27.34.


Data from monitoring wells were used to construct groundwater contour elevation maps for water obtained from the saprolite zone (see figure 3.4, page 3-12) and from water obtained from the bedrock (see figure 3.5, page 3-13). The results indicate that, in both sets of wells, the groundwater elevation surface tends to mirror the topography of the land surface. Thus, the two units are hydrologically interconnected. In addition, the site appears to occupy a groundwater divide. This groundwater ridge has a northeast-southwest trend that approximates topography at the site. The flow of groundwater under the site is predominantly to the southwest, with an eastward flow direction under a small portion of the northeastern corner of the site. The depth to groundwater, as determined from monitoring wells, is an average of approximately 13.4 feet below ground surface, with a range of 8 to 20 feet 6.27.34

No wetlands more than five acres in size are located within the study area.⁵³

3.4 Climate and Meteorology

The subject site is located within the humid continental climate of the United States. The annual temperature for Baltimore, Maryland, which is located approximately 25 miles southeast of the site, is 55.3°F. The average monthly temperatures range from 33.2°F in December to 78.7°F in July. The average annual precipitation for Baltimore, Maryland is 51.03 inches. The average monthly precipitation ranges from 1.31 inches in July to 6.72 inches in December. The mean annual lake evaporation for the area of the site is approximately 19.03 inches. The net annual precipitation for the site is approximately 19.03 inches. The net annual precipitation for the site area is approximately 19.03 inches. A 2-year, 24-hour rainfall will produce approximately 3.2 inches of rain.^{57,58,59,60}

Source: Roy F. Weston, Inc., Environmental Investigation Report, Black and Decker, Incorporated, Hampstead, Maryland Facility. April 1989.

DEEP GROUNDWATER CONTOUR ELEVATION MAP BLACX AND DECKER SITE Carroll County, Maryland FIGURE

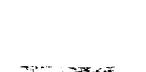
CORPORATION

Site Name: Black and Decker, Incorporated TDD No.: F3-9101-19

29:61.941 Fact

3.5 Land Use

The site is surrounded by a combination of residential, commercial, and farming areas. Black and Decker leases the land directly north and west of the facility to local dairy farmers. The town of Hampstead, Maryland lies immediately north of the subject site. A shopping center is located east of the facility. The Joseph A. Bank building, which is adjacent to the southeastern corner of the property, is a clothier warehouse and distribution center. General land use south of the property is primarily rural residential.^{1,4,5}


Dairy and agricultural farming areas surround the site within the three-mile radius. Several small rural towns can also be found in this area. State Route 30 bisects the three-mile radius directly east of the Black and Decker facility and is aligned north to south. State Route 89 runs along the northwestern border of the property in a northeast to southwest direction. The Carroll and Baltimore County line bisects the radius approximately 0.6 mile east of the site.^{1,4,5}

3.6 **Population Distribution**

The estimated population within a 1/4-mile radius of the site is 0 persons; within a 1/4- to 1/2-mile radius and a 1/2- to 1-mile radius, the estimated populations are 297 and 1,855 persons, respectively. The estimated population within a 1- to 2-mile radius of the subject site is 1,848 persons. Within a 2- to 3-mile radius of the subject site, the population is 2,140 persons; within a 3- to 4-mile radius of the site, the population is 2,140 persons; within a 4-mile radius of the site is approximately 8,725 persons. These figures are based on a house count of homes in the area multiplied by the number of persons per household for Carroll County, Maryland and on information from CHWD 1.48.51

3.7 <u>Critical Environments</u>

Except for occasional transient individuals, no federally listed or proposed endangered or threatened species are known to exist in the study area.⁶¹

.

•

.

. _

SECTION

Site Name: Black and Decker, Incorporated TDD No.: F3-9101-19

> <u>ין</u> ביי

4.0 WASTE TYPES AND QUANTITIES

The subject facility manufactured power hand tools from 1952 to 1987. Numerous paints, oils, and solvents were utilized in Black and Decker's manufacturing processes. In correspondence to MD DHMH, Black and Decker reported using 20,000 gallons per year of TCE and 7,200 gallons per year of 1,1,1-TCEA.^{6,62}

According to reports from several Black and Decker consultants, various waste materials were disposed in scattered areas on the facility property. Off-specification products were buried in an area north of the plant (see figure 2.3, page 2-12, zone D); fill and debris were encountered in excavations in this zone. Heat-treating furnace parts and residues were allegedly deposited in areas west and south of the plant (zones E and C). Plant refuse was landfilled in an area west of the plant (zone B); scrap metal, bricks, and burnt wood were found during test pits excavated in this zone. Another area (zone F) was possibly used as a burn area for waste materials.^{6,22,27}

Two on-site lagoons have been used by the facility for wastewater treatment since 1978. The surge basin or east lagoon is six feet deep and two acres in size; it can hold four million gallons. The west lagoon is 13 to 14 feet deep and 8 acres in size; it can hold 10 to 12 million gallons.^{4,5,6}

Information from recent hazardous waste reports and manifests and a state inspection report indicates that the wastes currently generated include TCE (F001), 1,1,1-TCEA (F001), mineral spirits (D001), and used oils (D001) (see appendices M and Y). These waste codes were derived from recent hazardous waste reports and may not represent all wastes present on site. Waste quantities generated in 1989 were as follows: TCE, 14,950 pounds; 1,1,1-TCEA, 4,000 pounds; solvents, 2,000 pounds; and used oil, 1,200 pounds. According to an MDE report, wastes generated in the past included waste barium compounds, polychlorinated biphenyls, and toluene, in addition to the above-mentioned waste substances. Information concerning waste generation and handling before 1982 is unavailable.8,29,30,36,63

FIT 3 sampling in February 1991 revealed elevated levels of organic compounds in on-site groundwater, including 1,1-dichloroethene (up to 7 ppb), 1,1-dichloroethane (up to 8 ppb), total 1,2-dichloroethene (up to 29 ppb), 1,1,1-TCEA (up to 37 ppb), TCE (up to 12,000 ppb), and PCE (up to 1,800 pb). Sampling of surface water from the west lagoon, outfall no. 001, and the Banks building outfall indicated levels of TCE at 18 ppb, 15 ppb, and 7 ppb, respectively. Elevated levels of TCE and PCE were detected in surface water (TCE, 6 ppb and PCE, 89 ppb) and sediment (TCE, 5 ppb and PCE, 46 ppb) obtained from the west lagoon underdrain. Samples from Deep Run Tributary revealed levels of TCE (7 ppb) and PCE (5 ppb) in surface water and TCE (2 ppb) in sediments.

4-1

DR: S' #AL Site Name: Black and Decker, Incorporated TDD No.: F3-9101-19

ेत्वद्र,

Sampling of domestic wells east of the subject site indicated elevated levels of 1,1,1-TCEA (4 ppb), TCE (up to 2 ppb), and PCE (0.9 ppb). The Leister dairy barn well was found to contain 4 ppb PCE.

SECTION 5-

OFIG IRed

5.0 FIELD TRIP REPORT

5.1 <u>Summary</u>

On Tuesday and Wednesday, February 26 and 27, 1991, NUS FIT 3 members Linda Ciarletta, Janis Hottinger, Thomas Smith, Steven Sottung, Paul Davis, John Pugh, Ronald Dabravalskie, Thomas Ferrie, and Mary Williams performed a site inspection of the Black and Decker site in Carroll County, Hampstead, Maryland. Weather conditions on both days were partly sunny, with temperatures in the mid-30s. On Tuesday, February 26, 1991, FIT 3 was accompanied by Lynnette Elser, of EPA, and Phyllis Buff, of MDE. FIT 3 was accompanied on both days by J. David Cairns, Black and Decker's consultant from Roy F. Weston, Incorporated. Access to the site and permission to take photographs were granted by LaVere Grimes, the facility manager.

The total number of samples obtained was 34 aqueous, 13 solids, and 8 filtered, including blanks and duplicates (see figures 5.1 and 5.2, pages 5-5 and 5-6). Photographs were taken on site (see figures 5.4 and 5.5, pages 5-10 and 5-11, and the photograph log, section 5.5).

5.2 Persons Contacted

5.2.1 Prior to Field Trip

Lynnette Elser Site Investigation Officer U.S. EPA 841 Chestnut Building Ninth and Chestnut Streets Philadelphia, PA 19107 (215) 597-8333

Phyllis Buff Groundwater Investigation Division MDE 2500 Broening Highway Baltimore, MD 21224 (301) 631-3493

John Riley Hampstead Water Department 1034 Carroll Street Hampstead, MD 21074 (301) 374-2761 LaVere Grimes Black and Decker Facility Manager Black and Decker (U.S.), Incorporated Facilities Group 626 Hanover Pike Hampstead, MD 21074 (301) 239-5555

Arlene Weiner Groundwater Investigation Division MDE 2500 Broening Highway Baltimore MD 21224 (301) 631-3493

George Vaughn Home Owner 511 Houcksville Road Hampstead, MD 21074 (301) 374-9218

Site Name: Black and Decker, Incorporated TDD No.: F3-9101-19

4

5.2.1 Prior to Field Trip (continued)

John Vaughn Home Owner 513 Houcksville Road Hampstead, MD 21074 (301) 374-1366

Nick Scholtes Home Owner 601 Hanover Road Hampstead, MD 21074 (301) 374-9282

Robert Basler Home Owner 4321 Hampshire Road Hampstead, MD 21074 (301) 374-6436 Stanley Gilmore Home Owner 716 Houcksville Road Hampstead, MD 21074 (301) 374-9218

Carroll County Christian Center, Incorporated 802 South Main Street Hampstead, MD 21074 (301) 374-2000

Carroll Leister Home Owner 717 Houcksville Road Hampstead, MD 21074 (301) 374-9218

5.2.2 At the Site

Lynnette Elser Site Investigation Officer U. S. EPA 841 Chestnut Building Ninth and Chestnut Streets Philadelphia, PA 19107 (215) 597-8333

LaVere Grimes Black and Decker Facility Manager Black and Decker (U.S.), Incorporated Facilities Group 626 Hanover Pike Hampstead, MD 21074 (301) 239-5555 J. David Cairns Geologist Roy F. Weston, Incorporated Weston Way West Chester, PA 19380 (215) 430-7255

Phyllis Buff Groundwater Investigation Division MDE 2500 Broening Highway Baltimore, MD 21224 (301) 631-3493

5.2.3 Water Supply Well Information

The following off-site wells were sampled during the site inspection. For the locations of these wells, see figure 5.3 (page 5-7). Well questionnaires were completed for all the home wells (see appendix Z).

TDD NUMBER	F3-9101-19
EPA NUMBER	MQ-370

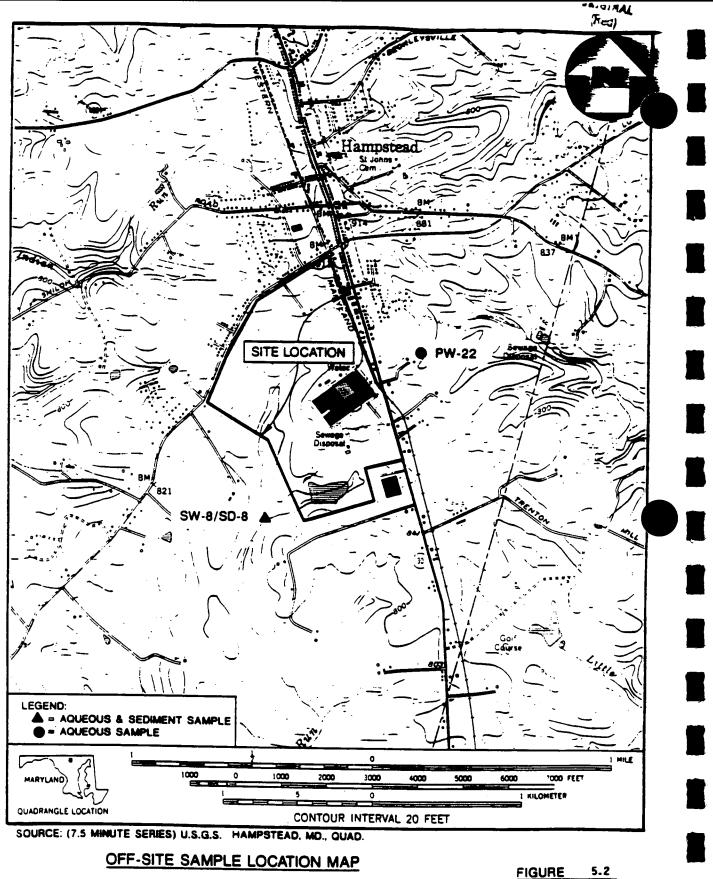
5.3 SAMPLE LOG

SITE NAME BLUCK + Decker

TF Organic	IAFFIC REPO	ATS High Hazard	SAMPLE IDENTIFIER	PHASE	SAMPLE DESCRIPTION	· · · · ·	TARGET USE	рн	FELD MEASUREMENTS
(10072-	MCE078		PW-22	AQ	Clear, adortess	Hampoteod Water Opt. Well hand No. 22 Pre-treatment	public potable Supply		
									in the second

RET. BRAN

.


F3-9101-19 TOD NUMBER HQ-370 EPA NUMBER

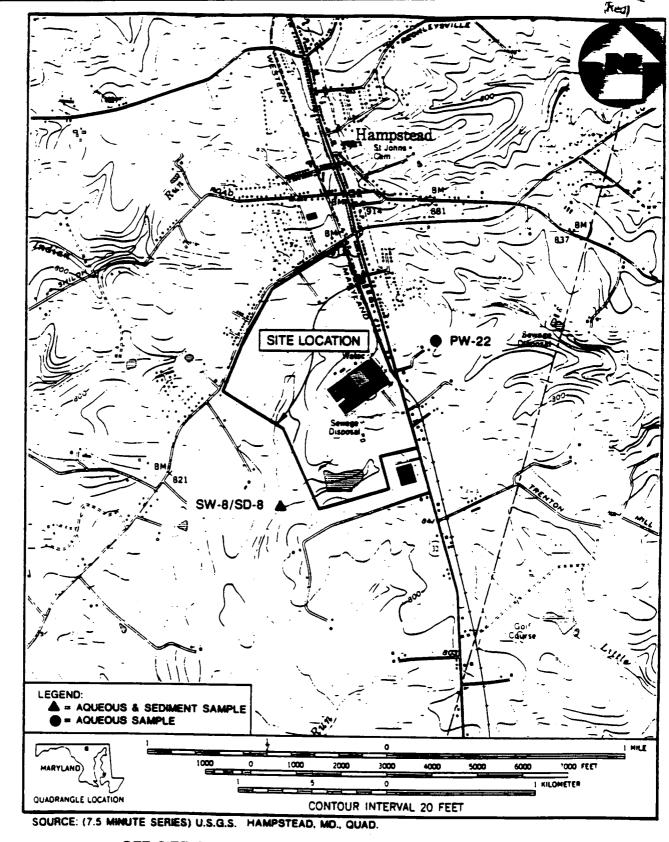
5.3 SAMPLE LOG

SITE NAME BLUCK + Deckor

T F Organic	AFFIC REPO	RTS High Hazard	SAMPLE IDENTIFIER	PHASE	SAMPLE DESCRIPTION	SAMPLE LOCATION	TARGET USE	рн	FIELD MEASUREMENTS
CDN24	NCED 34		MW-2A	AQ	Rust coloriel Oderhuss Diptintowalis 1251.	Kochity, 6" alter casing, 4" Inner Pic casing Wal Doth: 36 Ft.	Orra groundwater weed an portante supply, well lacked		
CDNAS	MCCODI,		MW- 2B	AQ	Morkess Norkess Dight to write, 1214	10tal Aptr. 77fi	orta giziurdwater wed as potoble supply well lucked		
CON26	MCEDJK		MW- 8	AQ	Light Moun Apth to advites 316A oily sheen on top	Former tank Farm #I pries	area crouncluster used as potroite sinply well lacked		
Conar	MCEDON		HW-9	AQ	gray benen with white film color 1000 Deth Eweler: 23A.	A 2 area, Adjuicht Onerth westurn Elder of building G" cuter (16114), 4" PK (19114) (1804) Total Didth: 505A.	area grainduater und as patable supply well locked		
(DN28	Acenze		MW-BI	AQ	Rust-colored with Sectiment Odor 14:55 Apt in Juvalin 12 17.	B-1, What of building, 6" metal cooling Total Doptin . 113ft.	are potable supply as potable supply well lated		
CONA	MCED29		MW-12	AQ	Chor, color 1955 Teph bush 2011	RFW 12, In grazy and outside front day of aniking, 4" pix casing Total Depty. SIFt.	are providenter used as potable supply well locked		
(101130)	M(ED 3)		MW-10	AQ	Dupliante of HW-8	Sume an MW-8	-yeme an NW-S		,
	MCED3		MW-JAF	AQ	Same as HW-2A	Sameas Hu JA	same as the 2A		
	MCED32		MW-ƏBF	AQ	Same as HW:38	Survey NW 2B	same as Alu-2B		

Ir "C'ad

SCALE 1: 24000



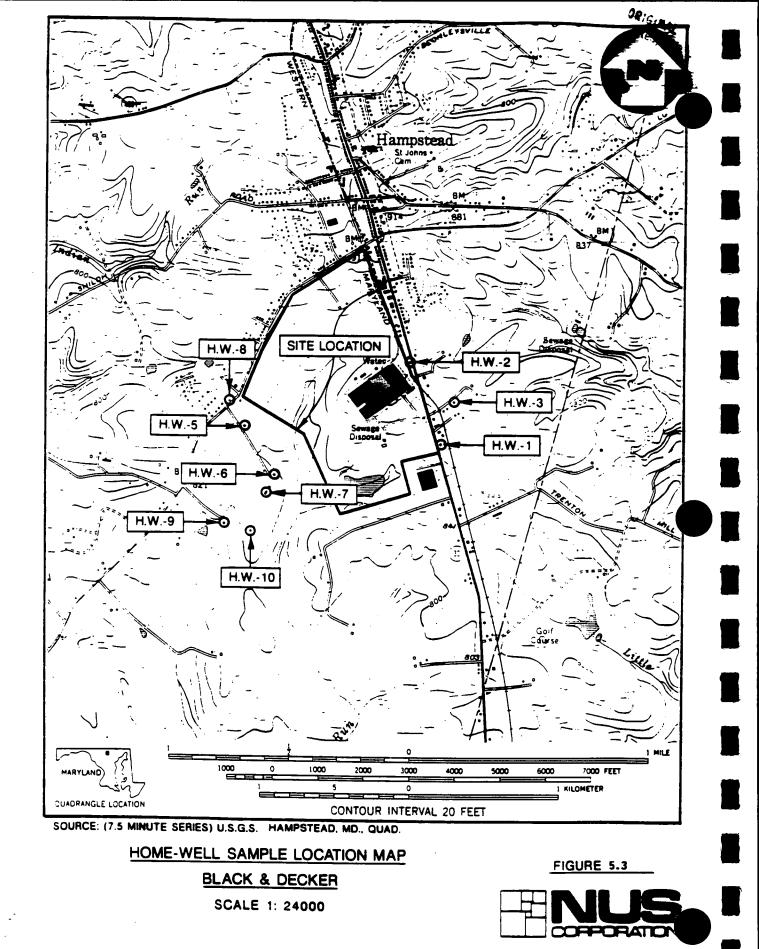
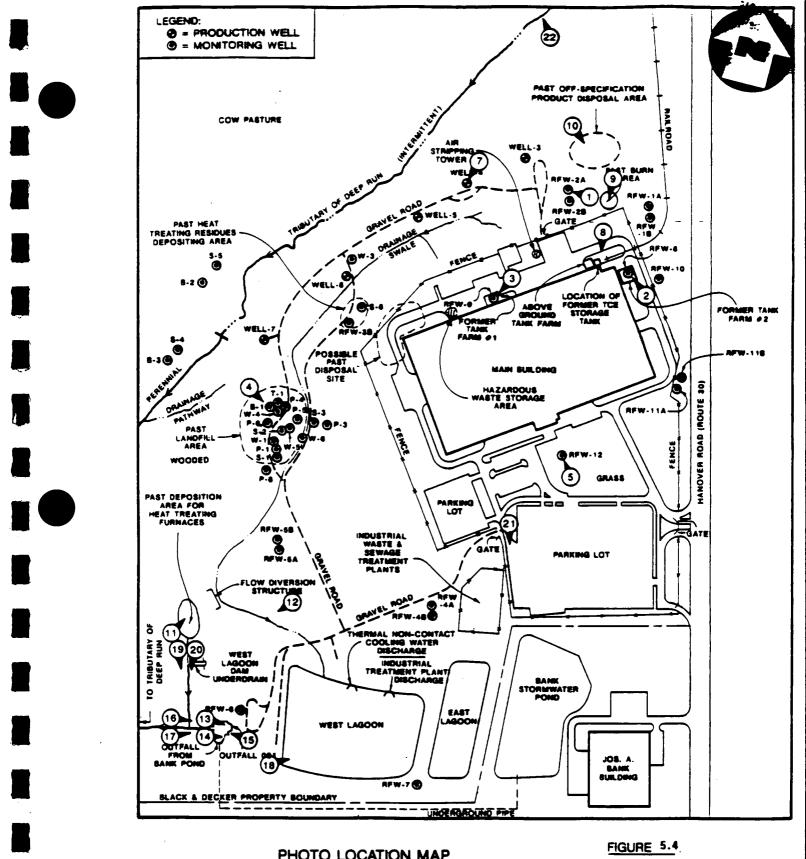


FIGURE 5.2

SCALE 1: 24000 ·


"MAL

5.4 <u>Site Observations</u>

- The OVA was set on the X1 scale. The background reading was 1.2 ppm. No readings above background were recorded.
- The HNU was set on the 0 to 20 scale; the 0 to 200 scale was used when necessary. The background reading was 0.2 to 0.4 ppm. A reading of 4.0 to 5.0 ppm above background was recorded at MW-B1. A reading of 120 ppm above background was recorded at MW-12.
- The mini-alert was set on the X1 position; no readings above background were recorded.
- Access to the facility building and the areas immediately surrounding the building was restricted by a six-foot-high fence and a front gate monitored by security personnel.
- Fencing secured the industrial waste and sewage treatment plants.
- Access to the remaining portions of the site was unrestricted. Barbed-wire fencing surrounded these sections; however, the majority of the fenceline was in need of repair.
- A concrete pad was located adjacent to the northern corner of the facility's main building. A TCE storage tank was formerly situated on this pad. The ground sloped downward from the concrete pad to a stormwater drain.
- The treatment plant discharge into the west lagoon was noted to have a strong chlorine odor.
- A drainage swale is located northwest of the main building and flows in a southwestward direction. The swale continues west of the facility, flowing in a southward direction. The swale then makes a 90-degree angle at a flood-control structure and flows southeastwardly into the west lagoon. The swale was dry at the time of the FIT 3 site visit.
- The land immediately surrounding the facility was lightly wooded with some meadows. The outer boundaries of the property consist of dairy pastures.

- A concrete culvert in the southwestern corner of the property received effluent from two separate discharge pipes. The discharges from these pipes joined to form a stream that flowed off site and into a tributary of Deep Run.
- Effluent from the west lagoon dam underdrain formed a stream that joined the stream from the outfall discharge approximately 60 feet west of the concrete culvert.
- A tributary of Deep Run flows in a southwestward direction northwest of the subject facility. The tributary is intermittent north of the facility and becomes perennial west of the facility.
- A drainage ditch joined the perennial section of the Deep Run tributary southwest of the facility building.
- The monitoring wells sampled by FIT 3 were located at various points surrounding the facility.
- The monitoring wells were capped and locked. A consultant from Weston unlocked the wells for sampling. The wells had six-inch steel outer casings. Some of the wells had four-inch polyvinyl chloride inner casings. Details of the wells are as follows:

Monitoring Well Identification	Height of Stickup (inch es)	Total Depth (feet) (from top of casing)	Depth to Water (feet) (from top of casing)	Inner Casing Diameter (inches)	Volume Purged (gailons)
MW-2A	18	36	12	4	48
MW-2B	24	77	12	none	288
MW-8	24	56	31.5	4	48
MW-9	24	50.5	23	4	55
MW-B1	19	113	12	none	446
MW-12	none	51	20	4	60

F3-9101-19 TDD NUMBER

SAMPLE LOG 5.3

SITE NAME BLUCK + Decker

HO-370 EPA NUMBER _

TR	IAFFIC REPO	RTS High Hazard	SAMPLE IDENTIFIER	PHASE	SAMPLE DESCRIPTION	SAMPLE LOCATION	TARGET USE	рН	FIELD MEASUREMENTS
(NN36	N(ED42	·	Pw-7	AQ	(Hor, Color Hous	Black + Duckin Well hind in 7 Distriction	Black + Decker employers' produke supply	·· <u> </u>	
CDN36	MCEJ43		Piv B	AQ	Duplicate of 160-1	same livation a: PUC 7	rame an Aur4		
	MCED44		Blark-F	AQ	1 illured Bland.			. —	
CDN37	MCEDUES		AQ-BIK-1	AQ	Field blank for Fist	field blank. hist Augor sampling	·		
C101V39	NCED44C		5-1 (30")	·50L	Subeurface soil. 30". Ary, medium brzinn, few ize kc.	30Ft from concrete pool of fermin 71E storage tonk.	on-site restricted access		
CONYU	NCED417		5-2(36")	50L	Subsurface soil. 36". Dry, coarse Light ind	North of Excility Duiking In past burnarea	on-site unrestricted acteurs		
CONYI	MCEP48		5-3 (3')	50L	Subsurface soil 31. 1000ely particlic lay Fed with brown	North of toulity Duiking In post off specification product disposed area	on-site unre-trattel occress		
(DN42	HIEDLA		5-4(2')	SOL	Subsurface soil. Brown/Hack Must chy	2 Ft. Into suitembridiant in past dependencembrid for hait-maning himans	on-site Unrestricted access		
CDrU43	MCEDSU		5- Port (2')	.50L	Subartice foil d' Chylann, raddish trawn no ize Le,	In woodel a rea Northwest of Wist kyrovi	on-site unrestricted access		

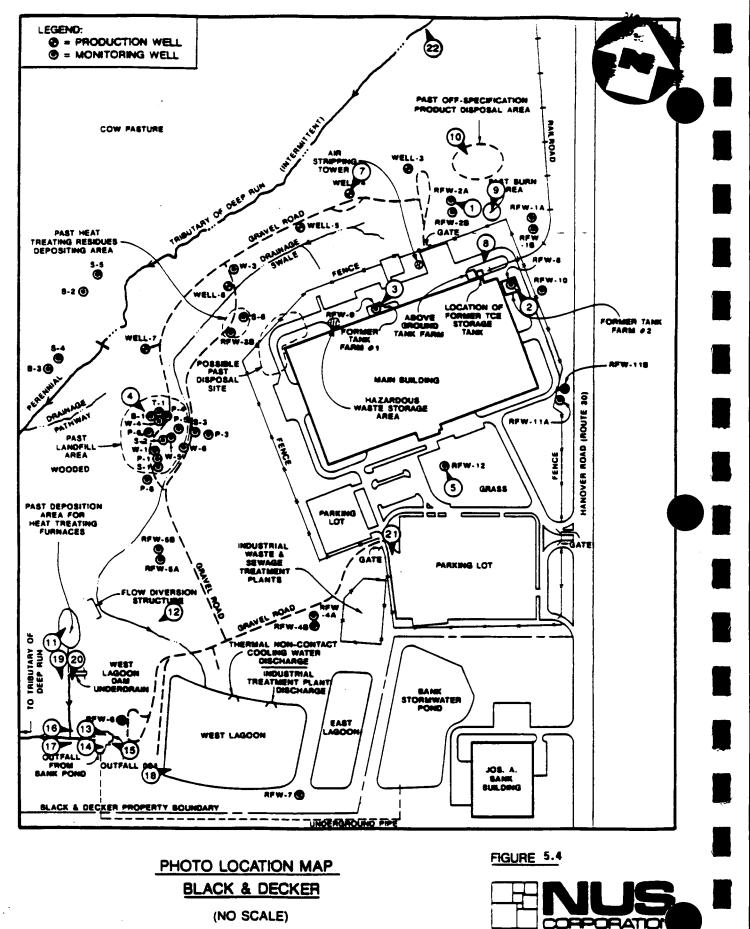
5.4 Site Observations

- The OVA was set on the X1 scale. The background reading was 1.2 ppm. No readings above background were recorded.
- The HNU was set on the 0 to 20 scale; the 0 to 200 scale was used when necessary. The background reading was 0.2 to 0.4 ppm. A reading of 4.0 to 5.0 ppm above background was recorded at MW-B1. A reading of 120 ppm above background was recorded at MW-12.
- The mini-alert was set on the X1 position; no readings above background were recorded.
- Access to the facility building and the areas immediately surrounding the building was
 restricted by a six-foot-high fence and a front gate monitored by security personnel.
- Fencing secured the industrial waste and sewage treatment plants.
- Access to the remaining portions of the site was unrestricted. Barbed-wire fencing surrounded these sections; however, the majority of the fenceline was in need of repair.
- A concrete pad was located adjacent to the northern corner of the facility's main building. A TCE storage tank was formerly situated on this pad. The ground sloped downward from the concrete pad to a stormwater drain.
- The treatment plant discharge into the west lagoon was noted to have a strong chlorine odor.
- A drainage swale is located northwest of the main building and flows in a southwestward direction. The swale continues west of the facility, flowing in a southward direction. The swale then makes a 90-degree angle at a flood-control structure and flows southeastwardly into the west lagoon. The swale was dry at the time of the FIT 3 site visit.
- The land immediately surrounding the facility was lightly wooded with some meadows. The outer boundaries of the property consist of dairy pastures.

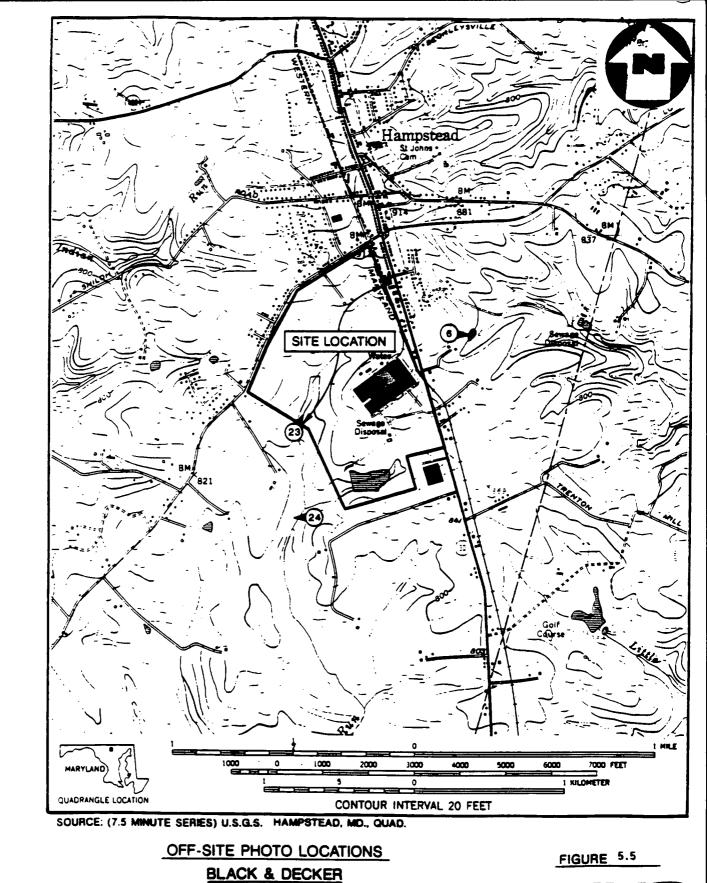
TOD NUMBER	F3-9101-19
FPA NUMBER	MO-370

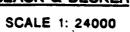
5.3 SAMPLE LOG

SITE NAME BLUCK + Decker


0

. . . .


4


		21	50	1	h	D-	370	

TR	AFFIC REPO		SAMPLE IDENTIFIER	PHASE	SAMPLE DESCRIPTION	SAMPLE LOCATION	TARGET USE	рН	FIELD MEASUREMENTS
Organic	Inorganic	High Hazard							
(20163)	accolò	_	5 d -5.	SOL	Duphrate of 521-41	same location as 52-4	Same as SI-4		
consy	WE.D61		SW-6	AQ	murty brown alor 101,5	Intermittent per transf Rep Run tribulary upgrodient of site	on-site unstruit acc. ess In dainy fusture		
CON56	MCEDGZ		52-6	501	clayey Some small peobles	Same location as slu-b	on-site unrestudiaccess in daving pasture		
CDN66	NCE1063	_	5W-7	AQ	Clear, adortoss	15 ft. down stream of antwork of perennic) tribution of Dep Run + on-site draway pthoney	on-oité unretrictioccess in dainy pasture		
C.ON57	MCEDUH		5d-7	501	dork with with organic matter	Some location as SW-7	On-bite unietical access in dainy pasture		
CDN58	MCEDIG		SW-8	AQ	Chear, advortess	20 ft. downethin from confluence of on site outful stream ton site to butany	OFF-site. unretucted access in dairy pasture		
CON59	NCEDEb		58-8	501-	med brown some petbles and organic matter	Eame location as 500-8	off-site uniotritoccess In dainy posture		· · · · · · · · · · · · · · · · · · ·
CON60	NCEDET		Hw-1	AQ	clear, colortess	Scholte rendence. Goi Hanover Rd. Hampsteed, MD 21074	Potable supply		
CDN361	NCEPLS		Hw-2	AQ	Clear, outr less	Carroll Cunty Chustian 802 S. Main Hampsted, H17 21074	potable supply		

5-10

TOD NUMBER	F3-9101-19
EPA NUMBER	MO- 370

5.3 SAMPLE LOG

SITE NAME BLUCK + Decker

TF Organic	AFFIC REPC	IRTS High Hazard	SAMPLE IDENTIFIER	PHASE	SAMPLE DESCRIPTION		TARGET USE	рН	FELD MEASUREMENTS
(10177-	M.E078		PW-22	AQ	Clear, adortess	Hampoteod Water Opt. Well hand No. 22 Pre-treatment	public potable Supply		
)	
									·····
									(19) 41
				-	· · · · · · · · · · · · · · · · · · ·				

1 40.00 - 51 - 54

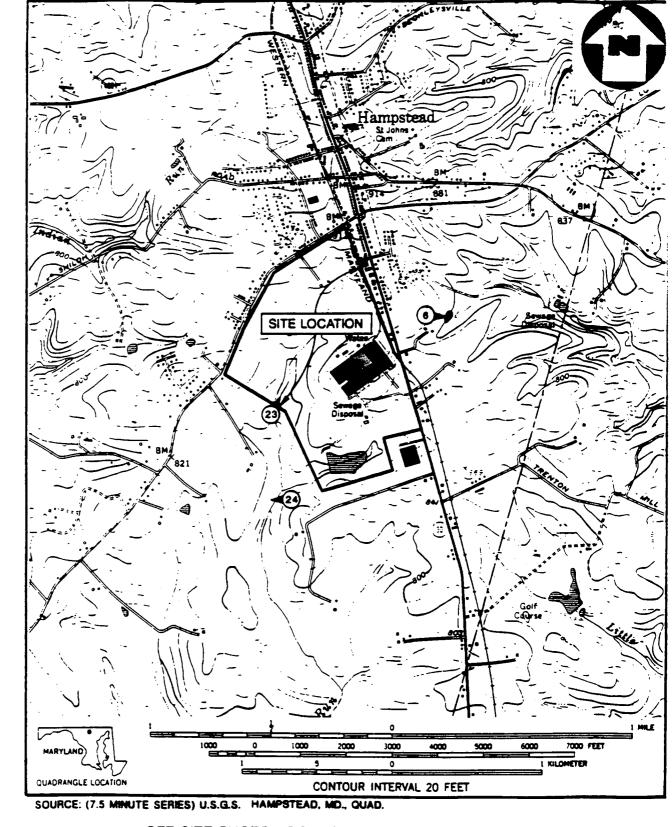


FIGURE 5.5

	AFFECTED VIONITORED 1	at state az sitenyimete HD 370 ¹ strat
Check as additionables SURFACE VELL COMMUNITY 2 3 2 0 0 INFORMUNITY C 2 0 0 III. GROUNDWATER	AFFECTED MONITORED _ 0	74067
Check as additicable) SURFACE VELL ENDANGERED OMMUNITY	AFFECTED MONITORED _ 0	
COMMUNITY		ommunity well
		.26 million otable supply wells
		on site
GROUNDWATER USE IN VICINITY (Check one)		
ONLY SOURCE FOR DRINKING OTher sources available? COMMERCIAL, INDUSTRIAL, IRRIG (No other water sources available?		IGATION D NOT USED, UNUSABLE
2 POPULATION SERVED BY GROUND WATER 9475	03 DISTANCE TO NEAREST DRINKING WATER W	ELL <0.1 (m)
DEPTH TO GROUNDWATER OS DIRECTION OF GROUNDWATER FLOW	N 06 DEPTH TO AQUIFER 07 POTENTIAL OF CONCERN OF AQUIFER	
18.5 to 35.0 southwest and northea		
DESCRIPTION OF WELLS (Including usage, depth, and location relative to popula		
N YES COMMENTS Infiltration of precipitation	Pumping streams ves comments at the NO	of wells and discharge to ; intermittent streams occur site.
V. SURFACE WATER		
SURFACE WATER USE IN VICINITY (Check one)		
Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state	AICALLY C. COMMERCIAL, INDUSTRIA	D. NOT CUARENTLY USED
2 AFFECTED/POTENTIALLY AFFECTED BODIES OF WATER		
Piney Run	AFFECTED	DISTANCE TO SITE
Deep Run	U	(mi) 1.9 (mi)
	&	(mi)
DEMOGRAPHIC AND PROPERTY INFORMATION	F	
		NEAREST POPULATION
ONE (1) MILE OF SITE TWO (2) MILES OF SITE	THREE (3) MILES OF SITE	<0.1 (mi)
2152 4000		
2152 B. 4000	C. NO. OF PERSONS	

.

EPA	PART 5 - WATER, D	EMOGRAPHIC, AN	D ENVIRONMI	INTAL DATA	et state MD	62 S
VI. ENVIRONMENTAL INFORM	ATION					
01 PERMEABILITY OF UNSATURATED	ZONE (Check one)					
□ ▲ 10 ⁻⁶ – 10 ⁻⁸ cm/sec	☐ 8. 10-4 - 10-6 cm	/ sec 🔀 c. 1	0-4 – 10-3 cm/s	ec 🗌 D GREA	TER THAN 10-3 C	:m/sec
02 PERMEABILITY OF BEDROCK (Chec	k one)					
(Less than 10 ⁻⁶ cm/sec)	B. RELATIVELY (10-4 - 10-6	IMPERMEABLE (m/sec)	C RELAT	TIVELY PERMEABLE - 10 ⁻⁶ cm/sec)	0. VERY PE	
03 DEPTH TO BEDROCK 22.0 to 50.0 (ft)	04 DEPTH OF CONTAMINATE	D SOIL ZONE	05 SOIL	4.0 to 5.5		
06 NET PRECIPITATION 0	7 ONE-YEAR 24-HOUR RAINFA 3.2		08 SLOPE SITE SLOPE 4	birection of site mainly % southwest		RRAIN A
09 FLOOD POTENTIAL SITE IS IN N/A	YEAR FLOOD PLAIN	N/A	RRIER ISLAND, COA	STAL HIGH HAZARD AREA.	RIVERINE FLOODV	
11 DISTANCE TO WETLANDS (5-ocre m	inimum)	1	12 DISTANCE TO C	RITICAL HABITAT (of endan	gered species)	
ESTUARINE	OTHE	R		<u>. </u>	N/A	(
▲. N/A	(mi) 8. <u>>1</u>					
AN/A	,, v	(mi)		SPECIES.		
The site generally slo the northeastern corne	pes toward the wes r of the property s	st and southwes slopes eastward	it toward a Ny.	tributary of Dee	p Run. A sm	nall
The site generally slo the northeastern corne	pes toward the wes r of the property s	st and southwes slopes eastward	t toward a ly.	tributary of Dee	p Run. A sm	nall
The site generally slo the northeastern corne	pes toward the wes r of the property s	st and southwes slopes eastward	t toward a ly.	tributary of Dee	p Run. A sm	nall
The site generally slo the northeastern corne	pes toward the we r of the property s	st and southwes slopes eastward	t toward a ly.	tributary of Dee	p Run. A sm	nall
The site generally slo the northeastern corne	pes toward the wes	st and southwes slopes eastward	t toward a ly.	tributary of Dee	p Run. A sm	na]]
The site generally slo the northeastern corne	pes toward the westrong the property s	st and southwes slopes eastward	t toward a ly.	tributary of Dee	p Run. A sm	nall
The site generally slo the northeastern corne	pes toward the west	st and southwes slopes eastward	t toward a lly.	tributary of Dee	p Run. A sm	nall
The site generally slo the northeastern corne	pes toward the west	st and southwes slopes eastward	t toward a lly.	tributary of Dee	p Run. A sm	nall
The site generally slo the northeastern corne	pes toward the wes	st and southwes slopes eastward	t toward a lly.	tributary of Dee	p Run. A sm	nall
the northeastern corne	r of the property s	slopes eastward	ly.	tributary of Dee	p Run. A sm	nalī
The site generally slo the northeastern corne	r of the property s	slopes eastward	ly.	tributary of Dee	p Run. A sm	nalī
the northeastern corne	PM (Cite specific references, e.g.	slopes eastward	иц, перопа)	tributary of Dee	p Run. A sm	na]]
the northeastern corne	PM (Cite specific references, e.g.	slopes eastward	иц, перопа)	tributary of Dee	p Run. A sm	na 1 1

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 6 - SAMPLE AND FIELD INFORMATION

I. IDENTIFICATION

az strendentel

V	EPA		ISPECTION REPORT PLE AND FIELD INFORMATION	OT STATE MD	az sírt notindel				
II. SAMPLES TAKE	N								
SAMPLE TYPE	01 NUMBER OF	02 SAMPLES SENT TO			3 ESTIMATED DATE RESULTS AVAILABLE				
GROUNDWATER	30	Organics: Aquat	tec, Incorporated		currently				
SURFACE WATER	8	Inorganics: GP	Environmental Service		available				
VASTE									
1.A .									
LUNOFF									
PILL		Organics: Aqua	tec, Incorporated						
01L	13		Environmental Service		currently				
EGETATION					available				
21HE9									
II. FIELD MEASURE	EMENTS TAKEN								
J1 TYPE	· · ·	02 COMMENTS							
HNU		A background re	eading of 0.2 to 0.4 ppm was	s recorded. A r	eading of 4.0 to				
		5.0 ppm above t	5.0 ppm above background was recorded at MM-B1. A reading of 120 ppm above						
		background was	recorded at MW-12.						
Radiation Al	lert		ove background were recorded						
OVA		A background re background we	A background reading of 1.2 ppm was recorded. No readings above background were obtained.						
V. PHOTOGRAPHS	AND MAPS								
	GROUND		02 IN CUSTODY OFNUS FIT	3					
03 M4P5	34 LOCATION OF MAPS	· · · · · · · · · · · · · · · · · · ·	(Name or o	rganization or individua					
YES	NUS FIT	3							
<u>□</u> №0		······································	······································		·				
. OTHER FIELD DA	ATA COLLECTED (Provide	narrative description)	.=						
N/A									
,,,									
				<u></u>					
VI. SOURCES OF IN		c references, e.g., state files, samp	e analysis, reports)						
		c references, e.g., state files, samp	e analysis, reports)						
VI. SOURCES OF IN See referen		c references, e.g., state files, samp	e analysis, reports)						
		c references, e.g., state files, samp	re analysis, reports)	<u>.</u>					

?	EPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 7 - OWNER INFORMATION

81

STATE	02 SITE NUMBER
MO	77.0,

ł

ncorporated		D & B NUMBER G4 SIC CODE ZIP CODE	10 NAME N/A 12 STREET ADDRESS (P.O. Box, AFD # Etc.) 14 C.TY	15 STATE	<u> </u>	3 8 NUMB
1	37			16 (7) 77	<u> </u>	13 SIC CO
1	37	ZIP CODE		16. (7).7	.	
1	J 37 .	ZIP CODE	4 L. Y			ZIP CODE
		21074		())) <u> </u>		
	02	O & B NUMBER	10 NAME	I	11	3 & 8 NUM
	ł		N/A			
		04 SIC CODE	12 STREET ADDRESS (P.O. Bos, RFD #, Etc.)			13 SIC C
06 STATE	07	ZIP CODE	14 CITY	- 15 STATE	16	ZIP CODE
	02	D & 8 NUMBER	10 NAME N/A	L	11	0 & 8 NUM
		04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD # Etc.)		1	13 SIC CI
	1	110.0005		15 57375	Lis	
UB STATE	07		04 CIT	1))(4)2		
	02	D & S NUMBER	10 NAME		11	
			N/A			T
		04 SIC CODE	12 STREET AODRESS (P.O. Bos. RFD #. Etc.)			13 540 0
06 STATE	07	ZIP CODE	14 CITY	15 STATE	16	ZIP CODE
ent first)	<u> </u>		IV. HEALIY OWNER(S) (If applicable.	list mast recent first)	<u> </u>	
	02		10 NAME	-	11	
			Olin Henry Hoffman			_
-		04 SIC CODE	12 STREET ADDRESS (P.O. Box. RFD. #, Etc.) UNKNOWN			13 SIC CO
J6 STATE	07	ZIP CODE	14 CITY	15 STATE	16	ZIP CODE
	02		10 NAME		11	
			N/A			
		04 SIC CODE	12 STREET ADDRESS (P.O. Bos, RFD #, Etc.)			13 SIC CO
06 STATE	07	ZIP CODE	14 CITY	IS STATE	16	ZIP CODE
	02	D & B NUMBER	10 NAME	I	11	D&BNUM
		04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD #, Etc.)			13 SIC CO
OS STATE	07			15 STATE	16	
	1 ″′		1		1	
	06 STATE 06 STATE 06 STATE 06 STATE 06 STATE 06 STATE	02 06 STATE 07 02 06 STATE 07 02 04 STATE 07 02 05 STATE 07 02 04 STATE 07 02	06 STATE 07 ZIP CODE 02 0.8.8 NUMBER 04 54C CODE 06 STATE 07 ZIP CODE 02 D.6.8 NUMBER 04 SIC CODE 02 D.6.8 NUMBER 04 SIC CODE 04 SIC CODE 04 SIC CODE 06 STATE 07 ZIP CODE 04 SIC CODE 04 SIC CODE 06 STATE 07 ZIP CODE 02 D.6.8 NUMBER 04 SIC CODE 02 D.6.8 NUMBER 04 SIC CODE 02 D.8 B NUMBER	06 STATE 07 2IP CODE 14 CITY 02 0.6.8 NUMBER 10 NAME N/A 04 SIC CODE 12 STREET ADDRESS (P.O. BOJ. AFD # ELC.) 06 STATE 07 2IP CODE 14 CITY 02 D.6.8 NUMBER 10 NAME N/A 04 SIC CODE 14 CITY 04 SIC CODE 12 STREET ADDRESS (P.O. BOJ. AFD # ELC.) 04 SIC CODE 12 STREET ADDRESS (P.O. BOJ. AFD # ELC.) 05 STATE 07 ZIP CODE 14 CITY 04 SIC CODE 14 CITY STREET ADDRESS (P.O. BOJ. AFD # ELC.) 04 SIC CODE 14 CITY UNAME 04 SIC CODE 14 CITY 05 STATE 07 ZIP CODE 14 CITY 04 SIC CODE 14 CITY D4 SIC CODE 14 CITY 04 SIC CODE	06 STATE 07 ZIP CODE 14 CITY 15 STATE 02 0.8.8 NUMBER 10 NAME N/A	06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 02 0.8.8 NUMBER 10 NAME 11 11 11 04 5.C CODE 12 STREET ADDRESS (P.O. Box. APD # Etc.) 15 STATE 15 STATE 16 06 STATE 07 2.P CODE 14 CITY 15 STATE 16 02 D.8.8 NUMBER 10 NAME 11 11 11 04 SIC CODE 14 CITY 15 STATE 16 04 SIC CODE 14 CITY 15 STATE 16 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 07 ZIP CODE 14 CITY 15 STATE 11 11 04 SIC CODE 12

EPA FORM 2070-13 (7-81)

		20			RDOUS WASTE SITE	1. 11	DENTIFIC	ATION	1
	PA				TION REPORT FOR INFORMATION	01 9	MD		T NUMBER 370
CURRENT OPERATOR	ovide if different f	rom owner)			OPERATOR'S PARENT COMPANY	(if acons		،، ۱	
Black and Decker (U.S.), Ínco	rporated	02 0	D & B NUMBER	10 NAME N/A	·		Ŧ	11 0 6 6 NUMB
STREET ADDRESS (P.O. Box. 4F) 626 Hanover Pike	0 • Etc.)	<u></u>	<u> </u>	04 SIC CODE	12 STREET AODRESS (P.O. Box. RFD #. Etc.)			t	13 940 00
5 CTV		16 STATE		21P CODE	14 CITY	ł	IS STAT	E	16 ZIP CODE
Hampstead 3 YEARS OF OPERATION 1952 - present	09 NAMEOFO Black	NNER	<u> </u>	S), Incorp	rated		L		
PREVIOUS OPERATOR (L				PREVIOUS OPERATOR'S PAR	ENT CO	MPANIE	S of an	piicable)
N/A			02 1	D & B NUMBER	10 NAME N/A				1 0 5 8 NUMB
3 STREET ADORESS (P.O. Box, RF)	0 Ø. Etc.)	····	L	04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD #, Etc.)				13 SIC CO
5 CITY		06 STATE	07	LIP CODE	14 - CITY		15 STAT	٤	16 ZIP CODE
E FEARS OF OPERATION	09 NAME OF O	L WNER	1				I		<u> </u>
	<u>l</u>		02 (D & B NUMBER	IG NAME				1 0 6 8 NUMB
N/A 3 STREET ADORESS (P.O. Box. AFI	D Ø. Etc.)		<u> </u>	04 SIC CODE	N/A 12 STREET ADDRESS (P.O. BOX, RFD #, Etc.)				13 SIC CO
5 CITY		06 STATE	07	ZIP CODE	14 CITY		15 STAT	E	16 ZIP CODE
YEARS OF OPERATION	09 NAME OF O	WNER							
	L	<u></u>	02	D & 8 NUMBER	10 NAME N/A	<u> </u>			11 D & S NUMS
N/A 3 STREET ADDRESS (P.O. Box. RF	D Ø, Etc.)			04 SIC CODE	12 STREET ADDRESS (P.O. BOX. RFD #. Etc.)		<u>.</u>		13 SIC CC
5 CITY		06 STATE	07	ZIP CODE	14 CITY	<u> </u>	IS STAT	ε	16 ZIP CODE
8 FEARS OF OPERATION	09 NAME OF C	IWNER							
V. SOURCES OF INFORMA		in ménomena a a			L				
		in renerances, e.g		nines, sempre ener				_	<u> </u>
See reference nos.	7 and 19								
•									

.

E	P	Α
	E	EP

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 9 - GENERATOR/TRANSPORTER INFORMATION

١.	DENTIFIC	ATI	ON
a 1	STATE	02	SILE

01 STATE MD	02 SITE NUMBER
	HA.

I. ON-SITE GENERATOR			T		
Black and Decker (U.S	.), Incorporated	32 O S 3 NUMBER			
3 STREET CORESS (P.O. dos. AFO #. 1 626 Hanover Pike	Etc.)	04 SIC CODE			
Hampstead	-36 STATE MD	07 2'P CODE 21074			
II. OFF-SITE GENERATOR(S)					
N/A		02 D& B NUMBER	01 NAME N/A		02 D & 8 NUMB
3 STREET ACORESS (P.O. Box, RFD #, 1	Etc.)	04 SIC CODE	03 STREET ADDRESS (P.O. Bor. AFD . Et	c.)	04 SIC CO
05 CITY	D6 STATE	07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
N/A	, I	02 D & B NUMBER	JI NAME N/A	#	02 D & 8 NUMB
3 STREET ADORESS (P O Box RFD # 1	Etc.)	04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #. Et	c.)	04 SIC CO
DS CITY	06 STATE	07 ZIP CODE	05 CITY	06 STATE	07 Z# CODE
V. TRANSPORTER(S)			1		
Ecoflo, Incorporated		02 D & B NUMBER	01 NAME N/A		02 D & 8 NUMBE
3 STREET ADORESS (P.O. Box. RFD #, E 2750 Patterson Street		04 SIC CODE	03 STREET ADDRESS (P.O. Bos. RFD #. Etc	.)	04 SIC CO0
Greensboro	06 STATE NC	07 ZIP CODE 27407	05 CITY	06 STATE	07 ZIP CODE
N/A		02 D & B NUMBER	01 NAME N/A		02 D & S NUMBE
3 STREET ADDRESS (P O Box, RFD Ø. 6	itc)	04 SIC CODE	03 STREET ADDRESS (P.O. Boz, RFD #, EN		04 SIC COC
15 CITY	06 STATE	07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
V. SOURCES OF INFORMATION	V (Cite specific references. e.g	., state files, sample anal	1		<u> </u>
v. SOURCES OF INFORMATION	<u> </u>	., state files, sample anal	rs(s, reports)		

EPA FORM 2070-13 (7-81)

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES

I. IDENTIFICATION RIGINAL 42 SITE NUMBER 370

	37

	HU 370
12 DATE	3 AGENCY
)2 DATE	33 2GENCY
2 DATE	03 AGENCY
32 DATE	03 AGENCY
,	
32 DATE	D3 AGENCY
:2 DATE	03 AGENCY
22 DATE	03 AGENCY
02 DATE	03 AGENCY
	03 AGENCY
J2 UNIT	
12 DATE	03 AGENCY
)2 DATE	03 AGENCY
22 DATE	03 AGENCY
· · · · · · · · · · · · · · · · · · ·	
22 DATE	03 AGENCY
22 OATE	03 AGENCY
J2 DATE	03 AGENCY
J2 OATE	03 AGENCY
J2 DATE	03 AGENCY
	:2 DATE :2 DATE

A	POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES	L IDENTIFICATION
EPA		01 STATE 02 SITE NUMBER 370
II. PAST RESPONSE ACTIVITIES (Continued)		
3 31ARIER WALLS CONSTRUCTED - 3 DESCRIPTION None reported or observed	22 DATE	13 AGENCY
: Line C-PP-NG.CO.ERING (a De)CRIPT ON None reported or observed	32 DATE	:3 4GENCY
DI CITANKAGE REPAIRED DA DESCRIPTION None reported or observed)2 DATE	13 AGENCY
21 SROUT CURTAIN CONSTRUCTED 24 DESCRIPTION None reported or observed	32 DATE)3 4GENCY
None reported or observed	02 DATE	:] 1GENCY
31 . V GASCONTROL 34 DESCRIPTION None reported or observed)2 DATE	33 AGENCY
DI _ X PRECONTROL 24 DESCRIPTION None reported or observed	32 OATE	33 AGENCY
01 Y LEACHATE TREATMENT 04 DESCRIPTION None reported or observed	02 DATE)3 AGENCY
01 2 AREA EVACUATES 04 DESCRIPTION None reported or observed	02 DATE	J3 AGENCY
31 - LCCESS TO SITE RESTRICTED 34 DESCRIPTION None reported None reported	02 OATE	33 AGENCY
DI 2 POPULATION RELOCATED D4 DESCRIPTION None reported or observed	02 DATE	33 AGENCY
		J3 AGENCY
result of VOC groundwater containstalled by BCM engineers in f water is the plant's sole potab Black and Decker installed four barn on October 26, 1987 under f	32 DATE Installed carbon filters on the facility pot mination detected in the plant's on-site pr December 1986 was connected to the five on- le water supply. in-line granular activated carbon filter (MDE direction. The filter installation was ater to the farm due to PCE contamination.	able water supply system as oduction wells. An air stri site production wells. The GAC) units in the Leister d
III. SOURCES OF INFORMATION (Cite specific refer	ences, e.g., state files, sample analysis, reports)	
See reference nos. 7 and 20		
EPA FORM 2070-13 (7-81)	·	

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 11 - ENFORCEMENT INFORMATION

I. IDENTIFICATION

01 STATE 02 SITE MOMBER MD 370

II. ENFORCEMENT INFORMATION

22 DESCRIPTION OF FEDERAL, STATE, LOCAL REGULATORY ENFORCEMENT ACTION

EPA

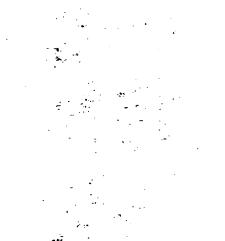
In April 1984, TCE and PCE contamination was detected in the groundwater at the Black and Decker facility. MD DHMH inspected the facility and conducted sampling several times in 1984. On September 17; 1984, Black and Decker entered into a Consent Order with MD DHMH. In compliance with this order, the company performed an investigation of groundwater conditions at the facility. Twenty-one MNs were installed on Black and Decker's property by Geraghty and Miller consultants in April 1985. Further evaluation of the contaminated groundwater was recommended by the consultant.

MD DHMH conducted home well sampling in the area surrounding the subject facility. Varying levels of PCE and TCE contamination were detected in several wells.

A soil investigation was requested by MD DHMH and performed by BCM Eastern, Incorporated in August 1986.

Black and Decker contracted Weston consultants in 1987 to perform an environmental investigation of the facility. Weston installed 17 MWs on the property as part of this investigation. A work plan for soil and groundwater remediation was submitted to MD HSWMA in December 1989 by Weston. Information indicates that this work plan has not yet been approved by MDE.

III. SOURCES OF INFORMATION (Cite specific references, e.g., state files, sample analysis, reports)


See reference nos. 7, 19 and 21

EPA FORM 2070-13 (7-81)

- 1. Roy F. Weston, Incorporated. Environmental Investigation Report, Black and Decker, Incorporated, Hampstead, Maryland Facility. April 1989.
- 2. NUS FIT 3. Site Inspection; sample results. TDD No. F3-9101-19, February 26 and 27, 1991.
- 3. Lewis, Charles, MD DHMH. Site Complaint No. SC-0-84-487. May 2, 1984.
- 4. United States Geological Survey. Hampstead, Maryland Quadrangle, 7.5 Minute Series. <u>Topographic Map.</u> 1953, photorevised 1974. Combined with Manchester, Maryland Quadrangle, 7.5 Minute Series. <u>Topographic Map.</u> Map. 1953, photorevised 1971; Westminster, Maryland Quadrangle, 7.5 Minute Series. <u>Topographic Map.</u> 1953, photorevised 1979; and Lineboro, Maryland - Pennsylvania Quadrangle, 7.5 Minute Series. <u>Topographic Map.</u> <u>Topographic Map.</u> 1953, photorevised 1974.
- United States Department of Commerce, Bureau of the Census. <u>1980 Census of the Population</u>. Volume 1 Characteristics of the Population, Chapter B General Population Characteristics. Part 40, Maryland. Issued August 1982.
- 6. Ramnarain, Pars, MDE Air Management Administration, with Linda Ciarletta, NUS FIT 3. Telecon. May 13, 1991.
- 7. Grimes, LaVere, Black and Decker Facilities Manager, with Linda Ciarletta, NUS FIT 3. Telecons. February5, March 18, April 18, 1991.
- 8. NUS Corporation, FIT 3. Non-sampling site reconnaissance; Logbook No. 2480. TDD No. F3-9101-19, January 31, 1991.
- 9. NUS Corporation, FIT 3. Site Inspection; site visit. TDD No. F3-9101-19, February 26 and 27, 1991.
- 10. United States Department of Commerce, National Climatic Center. <u>Climatic Atlas of the United States.</u> 1979.
- 11. National Oceanic and Atmospheric Administration. Local Climatological Data, Baltimore, Maryland. 1983.
- 12. United States Department of Commerce, United States Printing Office. Rainfall Frequency Atlas of the United States. Technical Paper No. 40, 1963.
- 13. United States Department of the Interior, Fish and Wildlife Service. Hampstead, Maryland Quadrangle, 7.5 Minute Series. National Wetlands Inventory. 1991.
- 14. Riley, John, City of Hampstead Water Department. NUS FIT 3 Water Supply Questionnaire. November 6, 1990.
- 15. Miller, K.M., Maryland Department of Natural Resources, Water Resources Administration to William Wentworth, NUS FIT 3. Correspondence. April 29, 1991.
- 16. Weaver, K.N., and E.T. Cleaves, J. Edwards, J.D. Glaser, Maryland Geological Survey. Geologic Map of Maryland. 1968
- 17. Meyer, G., and R.M. Beall, Maryland Department of Geology, Mines, and Water Resources. The Water Resources of Carroll and Frederick Counties. Bulletin 22, 1958.
- 18, United States Department of Agriculture, Soil Conservation Service. <u>Soil Survey of Carroll County</u>, <u>Maryland</u>. October 1969.
- 19. Maryland Department of the Environment, Hazardous and Solid Waste Management Administration. A Preliminary Assessment of the Black and Decker, Incorporated Site. February 1990.
- 20. Chambers, Barry, MDE, to Butch Dye, MDE. Memorandum. October 28, 1987.
- 21. BCM Eastern, Incorporated. Landfill Soil Sampling Report, BCM Project No. 00-5543-03. September 16, 1986.
- 22. NUS FIT 3. Home Well Surveys for Black and Decker Site. January 31, February 6 and 20, 1991.

SECTION 6

(Red)

Site Name: Black and Decker, Incorporated TDD No.: F3-9101-19

6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0

- United States Geological Survey. Hampstead, Maryland Quadrangle, 7.5 Minute Series. <u>Topographic Map.</u> 1953, photorevised 1974. Combined with Manchester, Maryland Quadrangle, 7.5 Minute Series. <u>Topographic Map.</u> 1953, photorevised 1971; Westminster, Maryland Quadrangle, 7.5 Minute Series. <u>Topographic Map.</u> 1953, photorevised 1979; and Lineboro, Maryland - Pennsylvania Quadrangle, 7.5 Minute Series. <u>Topographic Map.</u> 1953, photorevised 1974.
- 2. NUS Corporation, FIT 3. Non-sampling site reconnaissance; logbook no. 2480. TDD No. F3-9101-19, January 31, 1991.
- 3. NUS Corporation, FIT 3. Site inspection; site visit. TDD No. F3-9101-19, February 26 and 27, 1991.
- 4. Grimes, LaVere, Black and Decker Facilities Manager, with Linda Ciarletta, NUS FIT 3. Meeting, January 31, 1991.
- 5. Grimes, LaVere, Black and Decker Facilities Manager, with Linda Ciarletta, NUS FIT 3. Telecons. February 5, March 18, and April 18, 1991.
- 6. Roy F. Weston, Incorporated. Environmental Investigation Report, Black and Decker, Incorporated, Hampstead, Maryland Facility. April 1989.
- Lewis, Charles, Maryland Department of Health and Mental Hygiene. Site Complaint No. SC-0-84-487. May 2, 1984.
- 8. Bailey, William, Plant Services Manager, Black and Decker, to James Metz, Maryland Department of Natural Resources, Water Resources Administration. Correspondence. May 4, 1977.
- 9. Maryland Department of the Environment, Hazardous and Solid Waste Management Administration. A Preliminary Assessment of the Black and Decker, Incorporated Site. February 1990.

6-1

Site Name: Black and Decker, Incorporated

- 10. Healy, David, Maryland Department of Health and Mental Hygiene. Memorandum for the Record. January 27, 1978.
- 11. United States Environmental Protection Agency. Notification of Hazardous Waste Activity. Form Approved OMB No. 158-579016, September 10, 1980.
- 12. The Office of the Federal Register, National Archives and Records Administration. Code of Federal Regulations 40, Part 261. July 1, 1985.
- 13. United States Environmental Protection Agency. Hazardous Waste Permit Application -Consolidated Permits Program. Form Approved OMB No. 158-580004, November 24, 1980.
- 14. Bulkin, Shirley, United States Environmental Protection Agency, to Daniel Noble, Black and Decker (U.S.) Incorporated. Correspondence. June 4, 1981.
- 15. Noren, Donald, Maryland Department of Health and Mental Hygiene, to E.G. Delcher, Black and Decker. Notice of Violation and Corrective Order No. 77-12-003 (By Consent). February 21, 1978.
- 16. Noren, Donald, Maryland Department of Health and Mental Hygiene, to LaVere Grimes, Black and Decker. Correspondence (Corrective Order). November 16, 1978.
- 17. Connelly, J.M., Black and Decker Facilities Manager, to Donald Noren, Maryland Department of Health and Mental Hygiene. Correspondence. January 11, 1979.
- Metcalf and Eddy, Incorporated. Report to Black and Decker (U.S.) Incorporated on Sludge Characterization and Alternatives for Sludge Management and Disposal. July 30, 1979.
- 19. Gascoyne Laboratories, Incorporated. Certificate of Analysis. Report No. 1630, December 17, 1979.
- 20. Maryland Department of Health and Mental Hygiene, Trace Organics Laboratory. Volatile Organic Analyses. April 23, 1984.

6-2

с.,.;

- 21. Daniel, Robert, Maryland Department of Health and Mental Hygiene. Summary of Findings of Compliance Inspection of Black and Decker, Carroll County, Maryland. July 20, 1984.
- 22. Geraghty and Miller, Incorporated. Ground Water Conditions at the Black and Decker Plant, Hampstead, Maryland, Phase I. March 1985.
- 23. Maryland Department of Health and Mental Hygiene, Trace Organics Laboratory. Volatile Organic Analyses. May 3 and 23, 1984 and November 19, 1984.
- 24. Maryland Department of Health and Mental Hygiene, Trace Organics Laboratory. Volatile Organic Analyses. June 5, 1984.
- 25. Maryland Department of Health and Mental Hygiene. Consent Order C-0-85-022. September 17, 1984.
- 26. United States Environmental Protection Agency. RCRA Compliance Evaluation Inspection. August 16, 1985.
- 27. Geraghty and Miller, Incorporated. Phase II, Investigation of Ground Water Conditions at the Black and Decker Plant, Hampstead, Maryland. September, 1985.
- 28. Maryland Department of Health and Mental Hygiene. Report of Inspection to Determine Compliance with the TSCA Regulations. September 3, 1985.
- 29. Maryland Department of the Environment. 1989 Hazardous Waste Report. Form OMB No. 2050-0024, March 22, 1990.
- 30. Maryland Hazardous and Solid Waste Management Administration. 1988 Hazardous Waste Generation and Shipment Report. May 30, 1989.
- 31. Maryland Department of Health and Mental Hygiene, Trace Organics Laboratory. Volatile Organic Analyses: December 17, 1985, January 9 and 24, 1986, February 21, 1986, August 7, 11 and 18, 1986, October 3,7, and 24, 1986, November 7, 1986.

Site Name: <u>Black and Decker, Incorporated</u> TDD No.: <u>F3-9101-19</u>

- 32. Maryland Department of Health and Mental Hygiene. Report of Observations. September 4, 1986.
- 33. Maryland Department of Health and Mental Hygiene, Trace Organics Laboratory. Volatile Organic Analyses. September 4, 1986.
- 34. BCM Eastern, Incorporated. Landfill Soil Sampling Report. BCM Project No. 00-5543-03, September 16, 1986.
- 35. Maryland Department of Health and Mental Hygiene, Trace Organics Laboratory. Volatile Organic Analyses. September 23, 1988, October 12, 1988, August 15, 1989, and May 29, 1990.
- 36. Maryland Department of Health and Mental Hygiene. DHS Inspection Form and Report of Observations. January 30, 1990.
- 37. Maryland Department of the Environment. Timeline for Black and Decker remediation and impact on the Town of Hampstead Robert's well field. November 20, 1990.
- 38. Maryland Department of Health and Mental Hygiene, Gas Chromatography/Mass Spectrometry Laboratory. RCRA Analysis Report Forms. July 24, and 27, 1990.
- McAlister, Randall, Roy F. Weston, Incorporated, to Arlene Weiner, Maryland Department of the Environment Hazardous and Solid Waste Management Administration. Correspondence. November 8, 1990.
- 40. Buff, Phyllis, Maryland Department of the Environment, with Linda Ciarletta, NUS FIT 3. Telecon. May 9, 1990.
- 41. Weiner, Arlene, Maryland Department of the Environment Hazardous and Solid Waste Management Administration, to LaVere Grimes, Black and Decker. Correspondence. August 20, 1990.
- 42. Maryland Department of Health and Mental Hygiene, Gas Chromatography/Mass Spectrometry Laboratory. RCRA Analysis Report Form. August 14, 1990.

(ب-2

- 43. McAlister, Randall, Roy F. Weston, Incorporated, to Arlene Weiner, Maryland Department of the Environment Hazardous and Solid Waste Management Administration. Correspondence. September 5, 1990.
- 44. Maryland Department of the Environment. Discharge Permit No. 88-DP-0022. March 7, 1988.
- 45. Maryland Department of the Environment, Air Management Administration. Inspection and Observation General Report. March 6, 1990.
- 46. Ramnarain, Pars, Maryland Department of the Environment, Air Management Administration, with Linda Ciarletta, NUS FIT 3. Telecon. May 13, 1991.
- 47. Chambers, Barry, Maryland Department of the Environment, to Butch Dye, Maryland Department of the Environment. Memorandum. October 28, 1987.
- 48. Riley, John, City of Hampstead Water Department. NUS FIT 3 Water Supply Questionaire. November 6, 1990.
- 49. Miller, K.M., Maryland Department of Natural Resources, Water Resources Administration, to William Wentworth, NUS FIT 3. Correspondence. April 29, 1991.
- 50. NUS Corporation, FIT 3. Home Well Surveys for Black and Decker site. TDD No. F3-9101-19. January 31, 1991, February 6 and 20, 1991.
- 51. United States Department of Commerce, Bureau of the Census. <u>1980 Census of the</u> <u>Population</u>. Volume 1 Characteristics of the Population, Chapter B General Population Characteristics. Maryland. Issued August 1982.
- 52. Dintaman, Ray, Maryland Tidewater Administration, with Linda Ciarletta, NUS FIT 3. Telecon. March 18, 1991.

6-5

Site Name: <u>Black and Decker, Incorporated</u> TDD No.: <u>F3-9101-19</u>

،:=^م

- 62. Riley, John, Black and Decker, to Russ Summers, Maryland Department of Health and Mental Hygiene. Correspondence. July 12, 1982.
- 63. Maryland Hazardous and Solid Waste Management Administration. Uniform Hazardous Waste Manifest. Manifest Document No. MDC0243240. January 5, 1990.

(Rec)

- 53. United States Department of the Interior, Fish and Wildlife Service. Hampstead, Maryland Quadrangle, 7.5 Minute Series. <u>National Wetlands Inventory</u>. April 1981. Combined with Hereford, Maryland Quadrangle, 7.5 Minute Series. <u>National Wetlands Inventory</u>. April 1981; Reisterstown, Maryland Quadrangle, 7.5 Minute Series. <u>National Wetlands Inventory</u>. April 1981; Finksburg, Maryland Quadrangle, 7.5 Minute Series. <u>National Wetlands Wetlands</u> <u>Inventory</u>. April 1981; and Westminster, Maryland Quadrangle, 7.5 Minute Series. <u>National Wetlands</u> <u>Wetlands Inventory</u>. April 1981.
- 54. Weaver, K.N., and E.T. Cleaves, J. Edwards, J.D. Glaser, Maryland Geological Survey. <u>Geologic</u> <u>Map of Maryland</u>. 1968.
- 55. Meyer, G., and R.M. Beall, Maryland Department of Geology, Mines and Water Resources. The Water Resources of Carroll and Frederick Counties. Bulletin 22, 1958.
- 56. United States Department of Agriculture. Soil Conservation Service. <u>Soil Survey of Carroll</u> <u>County, Maryland</u>. October 1969.
- 57. National Oceanic and Atmospheric Administration. <u>Climatography of the United States.</u> No.
 60, Climate of Maryland. 1977.
- 58. National Oceanic and Atmospheric Administration. <u>Climatography of the United States</u>. Local Climatological Data, Baltimore, Maryland. 1983.
- 59. United States Department of Commerce, National Climatic Center. <u>Climatic Atlas of the</u> <u>United States</u>. 1979.
- 60. United States Department of Commerce, United States Printing Office. Rainfall Frequency Atlas of the United States. Technical Paper No. 40, 1963.
- 61. Wolfin, John, United States Department of the Interior, Fish and Wildlife Service, to Garth Glenn, NUS FIT 3. Correspondence. March 19, 1991.

GLOSSARY OF DATA QUALIFIER CODES (ORGANIC)

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds)

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.

.

- NO CODE = Confirmed identification.
- B = Not detected substantially above the level reported in laboratory or field blanks.
- R = Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.
- N = Tentative identification. Consider present. Special methods may be needed to confirm its presence or absence in future sampling efforts.

CODES RELATED TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = Analyte present. Reported value may not be accurate or precise.
- K = Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L = Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- UL = Not detected, quantitation limit is probably higher.

OTHER CODES

Q = No analytical result.

Page 1 of 2

DATA SUMMARY FORM: VOLATILES 1

uite Hames Black and Decker

HATER SAMPLES (µg/L)

Case #1 15947 Sampling Date(s)1 2/26-27/91

To calculate sample quantitation lim (CRQL + Dilution Fact

Sample No.	CDNay		CDN2	5	CONJO		CDNA	2	CDN25		CDN2	9	CINS	<u>p</u>	CDNJI		CDN 3
Dilution factor	<u> </u>				1/1]	<u></u>		1/76	2	12,5				
Location	MW-2		MN.	18	MH-		111.		MHI-	<u>Ø1</u>	Mw-	12	<u></u>		PN.J		PN-4
					Firid D of COM	r .							Field Di Of CON	-ρ			I
					. J CBA	130							of CON	26			
·					1.1							1					
RAL COMPOLIND	<u> </u>]					
Chierancthene]	2
10 Bromomethane		<u>n</u> J		113		11		MJ		NJ		UJ		117		11	
10 "Vinyl Chloride																	
10 Chloroethane							t							 			
5 Alethytene Chloride										.						_	
10 Acetone				.[]	·					·				·			
Carbon Disulfide				·		-				- 		딸		·			
5 •1,1-Dichloreethene											_4_	L			7		
5 1,1-Dichloroethane					<u> 4 </u>	J	7 <u>7</u>								·		
5fotel 1,2-Pichloroethene					_29_				15	1	_12_		<u></u>	J		J	_1
<u>S</u> Chloroform			·	·		-			li	-		B		.			
5 +1,2-Dichioroethene]	.	l	-1				-		·		.	·		
_102:Butenone					H	-			I	-				-			
5lililicishlerestheme				-				1		-	_2	J		-	37		13
5 Carbon Tetrachteride			 	-	I	-		-		-1-1-	I		·		·		
10 Vinvi Acetate	- []	<u> </u>		-	1	-	1	<u>I</u> I		四		11	H	LNJ	I	41	I
	-			-		-	 	-	íl	-		-	· 	-		·]
	-			-	H	-	ll	-		-	 	-	·	-			
<u> </u>	-			-	.	-	I	-	I	-		-				·	
······	-		·	-	¥			-	8	-	[-	.[-{	[[
			·[-	∦	-	·	-	Ů	-	[-		-	5	·	
			· [-	· [[-		-	·	-	I	-	· [- स	F	·	
					.		· []		· II	-		-			·	·	
		l			<u></u>	<u> </u>		-	Н				J	<u> </u>			
	ntitatio	n Li	lmit			Aot	ion Lev	•1 E	xists				BE NARR	Y.LIA	E FOR CO		derjute

DATA SUMMARY FORMI VOLATILES 2

Blis Names Black and Decker

х. Ц

> WATER SAMPLES (µg/L)

Case #1 15947 Sampling Date(s): 2/26-27/9/

To calculate sample quantitation limit (CRQL * Dilution Factor

CDN3,	7	CONS	0	CNN3	9	CDN2		CDN29	7 1	CDN	6	CONZ	5	CONZ	241	a þa			<u></u>
1		1	5			1/7		11.4				1/1	•				Sample No. Dilution Factor		
12-4	,	PN-3	>	MN-1		Mw-	/	MN-S		MW-1		MW-	0	MN-a	A	MN-0	Location		
			4P. 26	FIEM » of CON							ыр, 30	Ria D Of CON							
	<u></u>										,			_				COMPOUND	OL
												<u> </u>						+1,2-Dichlor	5
					团								·				hloropropene		5
27_		50		2000		12000+	1	33		_18		1800*						Trichloroet	5
						`												Dibromochie	5
					T				<u> </u>	·				. <u> </u>			lorethene	1,1,2-1rici	5
	Ш		业		<u>hr</u>	[<u>u</u>									Bentene	5
															·		lchloropropene	the second s	5
					—						 				· 		- nent enone	Uromoform 4-Nethyl-2-	5 10
										_	· 		1-		·	l		2. Bexanone	10
2			J	-35-	J	210 +		1700		-19-		36					and the second	*Tetrachlor	5
_			Y	<u> </u>	-X -					H- <u></u>		<u>P</u>	 			[]	trachloroethane		3
	UL		UL	l	ū				T	H	-[]			6		H		*loluene	5
	ΙŤ				ΗŤ				17				·	- 8		╢────		*Chlorobenz	3
	1+1								1+1	[]	·[·1				a contraction of the second	*Ethylbenze	5
									1+		·	1	·		-	[*Styrene	5
	II		厅	1			1			H	-1				-1	H		*lotal Xyle	5
				 			1-						1		-	 			
		·	1	Ň			1		· []				1		-	· · · · · · · · · · · · · · · · · · ·		· · · ·	
			1				1		-1	ľ	-		-		-1	¥			
									-		-		1-		-1	1		<u> </u>	
E.,									-		-		-		-	H			
1												1	-		-	1			
1.				A						K		A				X			
EFINIT		I FOR C	TIV	EB NARRI		17545	ana	ailuted a		ton Le Sult is				mit	on Li	titatio	Required Que	Contract	4
) * • •					ly 34 ż 1	ana (dilufed o	1 10m	esult is							11 111		

DATA BUHHARY FORMI VOLATILES 1

ito Names Black and Decker

HATER BAHPLES (µg/1.)

.... 11 15947 Bampling Date(s): 2/26-27/9/

To calculate sample quantitation li (CRQL * Dilution Fac

Page 3 of

4 81 7]	Sample He.	CD N.	22	CDNJ	4	CNJ		C DN3	6	CDNJ	12	CDNY	Y	CDIV4	6	CONY	2	CDN.
	Dilution factor		<u>, </u>		<u> </u>	10			2					/				/
1.	Lecation	PN-S		PN-	e	PN-		PW-		Agal	1/K	SN-	·/	3.0-	2	54-3		SN.
						FIEL DI	··P.	Field	Dig.									
ij						OF CDN	36	Field of CD	NJ5									
IJ	-				ľ			-7										
CROL	CONPOUND				1									1				
10_	Chi ocone thane	YI	Ì										Ĩ		j		Ť,	
10	Bromomethave		•		UJ						43						-	
10	*Vinyl Chloride																	
10	Chloroethane																	
	Mothylene Chloride	·						<u> </u>	8									
10	Acetone							_57_	8			5	B					
	Carbon Bisulfide																	
	<u>-1.1-Bichloroethene</u>										 							
	1, 1-Dichtersethane																	
	·lotal 1,2-Dichiereethene	· · · ·		<u> </u>	I B													
	Chlereform •1,2-Dichleroethene		—	<u> </u>	_ <u>B</u>				-			3	B					
		•			·				·	I	·							
1 <u></u> 1 <u></u>		·			· ['				-				·		-			
	*Carbon Tetrachleride				·				-		·			3	I			
10	Vinyi Acetate			·	uJ		·[[-		UJ		·	·	—		—	
5	Dropodichioromethene						·		-		.		J		—		—	
						·	·		-				- <u> </u>					
1		· [·		·				·		-			I		
				[i	·	·	-				-		·			
					·		·]		-	[]			-					
¶	1	-[-		-		-	[·	I	-	I		I		
·	······				-		·	· []	-		·	[-					1
		- [-1		-		-		-		-			·		
	يجوبي غاينك وتعواد فغني يتفاهيد بببية الكاكلي وتعويد			Creation		1	1.000		جنده أع			(Lesson and service)		A		1	Leans,	Lange and the second second

RQL = Contract Regulred Quantitation Limit

Action Level Exists

ARE NABRATIVE FOR CODE DEPIN

Page 4_ 01 54

DATA SUMMARY FORMI VOLATILES 2

Bite	Hanel	BI	9ÇK	and	Decke	<u>r</u>	•
C4	1. 1	5947	Samp	ling	Date(s)	2/26-29	A)

٠

HATER BAHPLES $(\mu g/L)$

To calculate sample quantitation limit (CRQL + Dilution Factor

.

Dilution factor 1																•		بر زمین و ترکید
Location PM-5 PM-6 PM-7 PM-7 Apphar 1 Stol-1 Stol-2 SM-3 S 1101 CONCOMD 1 2 Stol-1 Stol-1 Stol-2 Stol-3 S 1101 CONCOMD 1 CONCOMD Fit/Address Fit/Address Fit/Address S		CDN 3	12	CDNJ	Ł		15_]	CANS	2	_CON	44	CPN4	6	CONY		CDN
All CONCUMD 5 -1,2-201chlorogroppene 3 -1,2-201chlorogroppene 4 -1,2-201chlorogroppene 5 -1,2-201chlorogroppene 6 -1,2-201chlorogroppene 7 -1,2-201chlorogroppene 1 -1,2-201chlorogroppene 3 -1,2-201chlor		- D 2					·	لر <u>روا</u> و - ليرو		1 2 14 -		- 541-	7	54-	2	SW- 1		SN-+
101 CONFOLNO 3 *1,2-Dichlorogropane 3 Cla-1,3-Bichlorogropane 3 Tishlorogropane 3 Tishlorogropane 3 Tishlorogropane 3 Tishlorogropane 3 Tishlorogropane 3 Tishlorogropane 1,1,2-lichlorogropane IL 4 UL 5 Tistististististististististististististi	Location	<u> </u>								CTIM	<u> </u>		·					
A01 COMPOND 3 C11, 2-01chterspropene 4 C11, 2-01chterspropene 5 C11, 2-01chterspropene 6 C11, 2-01chterspropene 7 Contrast		1				Field D	up,	Field Du	۴									
A0L CONFORD 5 -1,2-bichtersprepene 5 -1,2-bichtersprepene 3 1,1,2-bichtersprepene 3 1,1,2-bichtersprepene 3 1,1,2-bichtersprepene 3 1,1,2-bichtersprepene 3 1,1,2-bichtersprepene 3 1,1,2-bichtersprepene 4 1,1,2-bichtersprepene 5 bibresschierse 1 1,1,2-bichtersprepene 3 1,1,2-bichtersprepene 4 1,1,2-bichtersprepene 5 bibresschierse 10 2-biscanona 10 2-biscanona 10 2-biscanona 11,1,2,2-bithersetherse 11,1,2,2-bithersetherse 11,1,2,2-bithersetherse 11,1,2,2-bithersetherse 11,1,2,2-bithersetherse 12 12,2,2-bithersetherse 13 1/D 14,12,2-bithersetherse 15 *lighterse 16 1,12,2-bithersetherse 17,12,2-bithersetherse 17,12,2-bithersetherse 14,12,2,2-bithersetherse <th></th> <th></th> <th></th> <th></th> <th></th> <th>of CON</th> <th>06</th> <th>A CON.</th> <th>35</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1 ()</th> <th></th> <th></th>						of CON	06	A CON.	35							1 ()		
5 11,2-01chloropropene 5 Cle-1,3-01chloropropene 3 1richlorosthere 3 1richlorosthere 3 1,1,2-1richlorosthere 1 1,1,2-1richlorosthere 1 1/1 1 1/2 1 1/2 1 1/2 1 1/2 1 1/2 1 1/2 1 1/2 1 1/2 1 1/2		4					ŕ											
5 cin-1,3-bichlor opropone 3 3 9	THE R. P. LEWIS CO., LANSING MICH.						, 		[-
5 iricklaresthans 3 3 4 15 5 bibremethans 11 11 11 11 11 5 iricklaresthans 11 11 11 11 11 11 5 iricklaresthans 11		Í	.														·	
5 blor enachlarem 3					·[]					<u> </u>							·	7
1,1,2-trichlorethere 11.			-1-3-1		·						-			<u>!@</u>	-	<i>13</i>	-	
1 10 11			-		-							¥	· ¥-		-			
i Irans-1,1-Dickloropropens				·	TIT		T		$\overline{\mathbf{n}}$		T		·		-	l	-	
3 Dromofein		 	-		125		1		25		1==				-			[
10 4-Reihyl-2-pentauoro 10 2-Bernanono 3 *tetrachler oethere 3 *tetrachler oethere 3 *tetrachler oethere 3 *tetrachler oethere 4 11,2,2-Tetrachler oethere 3 *tetrachler oethere 4 11,2,2-Tetrachler oethere 4 11,2,2-Tetrachler oethere 4 11,1,2,2-Tetrachler oethere 4 11,1,2,2-Tetrachler oethere 4 11,1,2,2-Tetrachler oethere 4 11,1,2,2-Tetrachler oethere 5 *Tetrachler oethere 4 11,1,2,2-Tetrachler oethere 5 *Tetrachler oethere 6 *Tetrachler oethere 7 *Tetrachler oethere 6 *Tetrachler oethere 7 *Tetrachler oethere 6 *Tetrachler oethere 7 *Tetrachler oethere			-		·	l									-	I	-[
10 2:Bersanore 13 3 10 1600 1500 16000 1600 1600		I	-		-	∦					·			ŧ	-			
3 *tetrachtoroethene 13 3 !!D 1600		l	-		-	H	1	II	—	I	1-	· ·	·		-	1	-	[
5 1,1,2,2·leirschleroethere 5 •leiuene 4 11 1 11 <tr< td=""><td></td><td>13</td><td>13</td><td>!D ·</td><td>- </td><td>1600</td><td></td><td>1500</td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td><td>-1</td><td></td><td>- </td><td></td></tr<>		13	13	!D ·	-	1600		1500		· · · · · · · · · · · · · · · · · · ·					-1		-	
3 *Ethylbensere 5 *Styrene 5 *Iotal Xylence - - <td></td> <td>1</td> <td>- </td> <td>[</td> <td>- </td> <td></td> <td>1-</td> <td></td>		1	-	[-		1-											
3 *Ethylbensene 3 *Isite 3 *Isite 4 Contract Required Quantitation Limit	5 *loluene		UL		170		III		III		III							
3 •felhylbensene 5 •siyrene 5 •lotal Xylenes	5 *Chlorobenzene		II				II		II		IT			1				
3 *lotal Xylenes - - <tr< th=""><th></th><th></th><th>II</th><th></th><th></th><th> </th><th></th><th></th><th>II</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th></tr<>			II						II								_	
Contract Required Quantitation Limit						II							_				_	
	5 *lotal Xylenes	·]					_ ⊻_		L	Ì	- -*		-				-	
		-]	_		_		-			I	-		_		_		-	
		-	_		-	-	-			[-		-		- _		_	.
			_		_	.	-				-				_	-[
		- 8			-		-				-		-					·]
		- [·		-	-[[-				-			
		- []	-			-	-				-					-]	-	· [
					<u>ط ام</u>													
	Contract Regulred Qua	ntitati	on L	imit			No.	tion Lev	•1	Exists				ZE NARI	LATI \	/# 1		
																	r e	vlaad
ا 🔝 ای	a and and had b									<u>jant</u>								

DATÀ SUNHARY FORMI VOLATILES

Bito Hamos ______ Black and Decker

HATER SAMPLES

(µg/L)

1

Case #1 15947 Sampling Date(s): 2/6-27/1/

To calculate sample quantitation lim (CRQL + Dilution Factor)

tage <u>5</u> of _

	Sample No.	CDN5		CDN	4	CONS		CONS		CONDO	2	CDNG		CDNG	2	CONS	Z	CONES
	Dilution factor Location	3W-5	5	- <u>-</u>	<u> </u>	541-	7	GW-Y		HN.	T	HW	2	HW-	3	HW		HN-G
	i i								-							Jeff Leister		Stear + Leister
	• • •								2			-						
CHOL	CONFOLIND			-				-						_				
10	fhieronethane		·		· .								रत				राउ	
<u>10</u> 10	•Vinyl Chloride		·		·		<u>HJ</u>		<u>11</u> 3		41		<u>43</u>		43		<u>us</u>	
10	Chloroethane					[
5	Methylene Chloride							- <u>_</u>	B			—	8					
10	Acetone	3	B	4	8													
J	Carbon_Blaulfide	i]	.	·	113	·	47		ण		WJ		R		UI	
	1, 1-Dichloroethene		-[-					·								
	field 1,2-Dichlerethene	2	5		-		·											
	Chloroform			·	-	}			[
5	*1,2-91chtoroethane																	
10	2:Butenone	· []	-		-		.			8								
	-1.1.1-Irichiereethene	.[-	·]	-		-		·		·	4	I		-			
5	<u>Carbon Tetrachteride</u>	-	-		-		43	·	TV3		1J		u3		113		<u>II</u>	
5	Bronodichieromethene	-	-		-		- =3		-1-12-1		153		100		183		<u>L</u>	
			-		-		-		-									
ļ			_		_													
	l				-		-		.	I	·			[.			
			-	-[-	-	-		·]	·	0		[·	·	—	
		-1	-		-	-	-	 	-		·					•		
			a la an		a lana	ترجمه ومتحد أع	alessa		مر ال			A second second	Lenn.	A guession of the	, I	A succession of the local division of the lo	-	Accessory

angl = Contract Reguired Quantitation Limit

Action Level Reinte

DATA SUMMARY FORME VOLATILES 2

BILL HAMON Black and Decker

۰.

.

HATER SAMPLES $(\mu g/L)$

۰

Cu. 11 15947 Sampling Date(s): 2/26-27/9/

To calculate sample quantitation limit (CRQL * Dilution Factor

	Sample Ho.	CDN	<u>۶۱_</u>	CDNSY		CDNS	6	C DN	57	CDN	60	CDN	6	CDN	62	CDNG		CONG
	Dilution Factor Location	<u>-5w-5</u>		56		<u></u> <u></u> <u></u> S-4- i	7	<u>Sw-</u>	8	H W	-7	H W -	<u></u>	HW	-3	HW- Jeff Leister		<u>H</u> W. Stewa Leiste
ngl	COMPOLIND	1										l				 		
5	*1,2-Dichtoropropave Cla-1,3-Dichtoropropane						<u>U</u> J		- UJ		EN -		J		IN		UJ	
5	Ir Ichlor oe there Ulbranochlor and there				_			7	-	2	_ J							
	1, 1, 2-1r ichiorethewe *Benzene		Ū		<u>I</u>		UL		<u> </u>		<u></u>		- III		<u>_u</u>		π	
<u>5</u> 10	Trans-1, 3-Dichloropropene Bromoform 4-Nethyl-2-pentanono				_						_							· -
10	2. Nexamone * Letrachilor oethene				_							0.9	- - J					
5	1, 1, 2, 2- Tetrachloroethane *Tolucue		<u>u</u>	ī	π								- 4				U	
5	*Chlorobenzene *Ethylbenzene		I		F		- - - 					· [-1-		- -		II	
5	*Styrene *Total Xylenes		Ī		Ŧ						$- $ \pm							
			-								_		_		_			
			-				-		-		_ _	·	_	l	_		-	
 ·			_	-			-				_ _	-	_		_ _	-	-	
ال <u>۔۔۔</u> الارب	Contract Required Quar	ntitatic	on Lí	lmit	<u></u>			ll		H Exists		_//	<u>- </u> 6	EE NARI	RATIV	18 70200		
													-					

DATA SUNHARY FORMI VOLATILES 1

Bite Names _ Black and Decker

WATER SAMPLES (µg/l)

Case /: 15947 Sampling Date(s): 2/26-87/7/

To calculate sample quantitation li: (CRQL * Dilution Fact

Page 7 of

Sample He.	CONGE	<u>CDN67</u>	CONG1	<u>C) 1469</u>	CDN70	CINZI	CONTL	
Dilution factor Location	HW-7	HW-9	Hw-7	H N-10	AQ BIANK2	TIPBIANKS	PW-22	
•					1			
CROL CONFOLNO								
_10Chlorowethane 10Bremovethane		<u> </u>	HJ				UJ	
10 Vinyi Chioride			a2			<u>~_</u>	HX	
10 Chloroethane								
<u> </u>	 	 		 -				
	<u> </u>		HJ	<u></u> <u></u>	<u></u> <u>u</u>		<u>Ch</u>	
5 1,1-Dichlereethene	-			 		·		
5								
5 <u>Chloreform</u> 5 41,2-Dichtoroethane	-[·				-	2 8	
5 Carbon Tetrachlarida	-					-		
		1 13	<u> </u>	UJ	V	U1	TT III	
Brenedichieremethene				·				·
	-	· 		· [-	·II	
		· -	· 	· [-		- []	.	
			1					

Action Level Exists

SEE NARRATIVE FOR CODE DEFINIS

10 <u>v</u> 01

DATA SUMMARY FORME VOLATILES 2

HLLO NOBOL BACK and Decker

1

MATER BAMPLES (µg/L)

Case #1 15947 Bampling Date(s): 2/26-27/7/

To calculate sample quantitation limit (CRQL * Dilution Factor

Semple No.	CDNG	e	CDING 7	_ -	CDN'6X	CDNO	2	CONT	0	CDN71	CDNZZ				
Dilution Factor Location	<u>ΗΨ-</u>	2	HLJ-8	- -	1113-7	H 1J -	10	APBMAK	2	TV; PShnK;	<u> </u>				
ol Confound	 			= 11=							_				
5 •1,2-Dichtoropropene 5 Cls-1,3-Dichtoropropene 5 Trichtoroethene		<u>L1</u>	<i>u</i>	5			Ū		1	UJ	Ų	Ī		· ·	
5 Dibromochtoromethewe 5 1,1,2-trichtorethewe 5 Benzene														-	
S Brans-1, 3-Dichtoropropene Brans-1, and biological		<u>I</u> L		Щ. 			<u>II</u>	I	<u>u</u> L	(<u>4</u> 6	¥	<u>レ</u>		-	
10 4-Hethyl-2-репtалоло 10 2-Неявлоно														-	
5 • fetrachloroethene 5 1,1,2,2-1etrachloroethane	1	J		_	U_		<u>—</u> प्र							_	
5 *fotuene 5 *Chtorobenzene 5 *Ethylbenzene	-			Ľ			+			kf b					
5 *Styrene 5 *Total Xylenes	-						1		$\overline{\mathbf{T}}$			Ł		-	
	-		 -	_										-	•
												_			
	-	-	·			<u> </u>								<u></u>	×
Contract Reguired Que	ntitatic	on L	lalt		C	tion Le	ml 1	Exists		8	ES NARBAT	IVR	FOR-SODE	0871 07180	

DATA SUMMARY FORME B N A S

1

Bito Namos Black + Decker

WATER BAMPLES (µg/l.)

(tra

Case #1 15947 Sampling Date(s): 2/26-27/1

To calculate semple quantitation lim: (CRQL + Dilution Facto

o <u>A</u> of ³

		CONSY	- V	(DN25		CDN26		(DNJ7	<u> </u>	CDNA		CDN2	2	CON	20	CDN.	<u>7</u>	CONS
	Sample Ho.		-			1	[]	- <u>sec</u> f1	-1-	1		1		1				
	Dilution Factor	MW-2A	-	MW-2	3	MU-7		M+1-		MW-	81	MW-	12	MW-	10	PN-	3	PW-4
	Location		-											= in Ind	طير			1
					1	Field D	-19					I	ł	Field of Ci				Á
					H	Field Du of CDN3	0							ofc	ong p	i.		1
					1	V	ł									1		
CROL	CONFOUND		_ _		[]			<u> </u>							1	·		
_10	Phenol		-1-												-		-	
10	ble(2-Chloroethyl)ether		- -	. <u> </u>											-		-	
10	2-Chtorophenol		-11-												-		-	
10	•1.3-Dichtorobenzene		- -												-	{{		
	1.4.Dichiorobeniene		- -								—				-			
10-	Beneyl Alcohol			·	·								-		-			
_10	1.2.Dichiorobentene		- ·															
_10	<u>2:Helhylousnel</u>	 	- I ·															
	bist2-Chlorolsopropyl)ether	∦					—							1				
_!0	4.Hethylphenol														_			
10	<u>N-Nitroso-di-n-propylamine</u> Nexachloroethane	 	- 1											l			!	
10	Nitrobenzene													I				
10_10_			-1								.	 	-	. []				
10	2. Nitrophenol		- 1							l						_		- [
10	2.4-Plaethylahenol							I		l	.		.					
_50	bisa_acid												.					
10	bis(2-Chiloroethoxy)methane										-		-	.		- []		
_10											.		-	- []				
10_1					<u> </u>		.]			-		-					
10	Naphthalene	_ _								[-			-		-1	- 3	· F
10		-1					-		 		-		-	-		- [Red Th	§
		-8				II	-1	II			-	.]	-			- 🛛	- -	ถ
		_ <u></u>		l	<u> </u>	<u>N</u>	<u> </u>	<u> </u>	1	<u>.H</u>	_		_]			.A		

angL = Contract Required Quantitation Limit

Action Level Exists

BEE NARRATIVE FOR CODE DEFINI

Page 10 of 50

DATA SUMMARY FORM: B N A S

WATER SAMPLES (µg/L)

2

ilto Hanos Black + Decker Case #: 15 947 Sampling Date(s): 2/36-27/91

To calculate sample quantitation limit: (CRQL + Dilution Factor)

	Sample No.	CDN2+	<u></u>	NZS		CDN2		CDNS	7	CINZI		CDN2	2	CDN	30	CD N31		CN(2)	2
	Dilution factor Location	MW-2A	-	1 N-23	- -	MW.		MN-	9	MN-B		MN-	12	MW-	10	PN-J	,	Pw.4	\overline{r}
	Contract (_!!!!!!!!!												Fie Jal 1	Dup				
						Field D of CDN.	30							Fib IN . Of C.D.M	126				
						9.00								,					
CROL	CONFOUND				_ _														
10	Hexachtorobutadlene																	·	-
10	4-Chloro-3-methylphenol	I									1								
10	2-Nethylnephthalene	·		1	- -										[-
10	Hexechlorocyclopentadiene				- -		1												-
10 	2,4,6-Trichlorophenol 2,4,5-Trichlorophenol																		
	2. Chloronephthalene		-#								I								
50	2-Nitroaniline		-		-				{		1								-
10	Dimethylphthalate												-						-
10	Acenephthylene		- [-#-												-	*	-
10	2,6-Dinitrotoluene				- (·												_		1-
- 50	3-Nitroeniline	-			-1						_				—				1-
10	Acenephthene				- 11														1
50	2,4-Dinitrophenol	-	-1		- -														-
	4-Nitrophenol				-1								U						
10	Dibenzofuran																		
10	2,4-Dinitrotoluene																		
10	Diethylphthalate										_							I	
10	4-Chiorophenyl-phenylether													·					_
10	Fluorene																		
50	4-Nitroaniline		U																
50	4,6-Dinitro-2-methylphenol]	_													1. 1. V. V.	. _
l		_ _													 				. _
			![#					L		Π		<u> </u>	I	A		~	

C. jL _____Contract Required Quantitation Limit

SEE MARRATIVE FOR CODE DEFINITIONS

eviced 07/9

DATA SUMMARY FORME B N A B 3

Bito Names Black + Decker

WATER GAMPLES

(µg/L)

Case #: 15947 Sampling Date(s): 2/26-27/11

To calculate sample quantitation limi (CRQL * Dilution Facto

• 11 of 7

									C	Ch AL
	Sample No.	CIN24	2CNO2	CONAG	FENDS	CONSS	CDN29	CONBO	C)N31	CONS
	Dilution factor		/		I					·
	Location	MN-2A	MHI-2B	Mr1-7	MN-9	MN-BI	MW-12	MW-10	PN-3	PN-4
				Cidd D.O				Fie 6 2410 01 CDN 76	1.	· .
				Firld Dup of CONJU			t i			
				0(~ 0 ~)0	1		1	07 CDN 76		
							Ţ.	1		1
CRQL	COMPOUND		<u> </u>	_						
10	N-Nitrosodiphenylamine				.					I
10	4-Bromophenyl-phenylether				l					
10	*Nexechi or obenzene				<u> </u>	.		.[
50	*Pentachlorophenol				.				 	
10	Phenanthrene									
-15-	Anthracene									
10	Di-n-butylphthalate		8	_	_ []]					
10	Fluoranthene				-					
10	Pyrene			_ []]	_ 8	-			· · · · · · · · · · · · · · · · · · ·	
10	Butylbenzylphthalate				_ []]	_ [[]	-	-	.[]	
20	3,3°-Dichlorobenzidine				_]]]	_]	-]			
10	Benzo(a) anthracene	I				_ 🛛 /	-	-		-]
10	Chrysene			_	_ []]	-				-]
10	bis(2-Ethylhexyl)phthalate		. .		-	-		-]]		
10	DI-n-octylphthelate			_	_	-		-1	.	
10	Benzo(b) fluoranthene						-	-	. []	
10	Senzo(k) fluroenthene				_	-		-1		
10	Benzo(a)pyreise				_ []	_		_]		_
10	Indeno(1,2,3-cd)pyrene								-	
10	Dibenz(s,h)anthracene					_	_			_
10	Benzo(s, h, l)perylene									
II	1	- [] [10 M
1	1									
ļ ——						_				<u> </u>
				•						

CRQL = Contract Required Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITI

revised

1

Bito Hanos Black + Deckor

۰.

HATER SAMPLES

(µg/L)

Case #1 15947 Sampling Date(s): 2/26-27/91

To calculate semple quantitation limi (CRQL * Dilution.Facto

Sample He.	CDN 33	CDN34	CDN35	CDN36	CDNJ7	CDN44	CDNHO	CDN48	CDNY
Dilution factor Location	PW-5		<u></u> <u></u> PN-7		AQ BANKI	<u></u> <u></u>	52-2	5. 3	5N-4
				Field Dup, of CDN 35					
crol conpound	l	<u> </u>	<u></u>	.) //	
19		 				 			
10 bls(2-Chloroethyl)ether 10 2-Chlorophenol] [
10 +1,3-Dichtorobenzene		[]							
10 •1.4.Dichlorobenzene		· · · · · · · · · · · · · · · · · · ·					<i></i>		
10 Denzyl Alcohol	 	·			I			·	
10 1.2.Dichlorobentene			·		│	·]	∦	·∦	·]
10 2-Nethyiplismi 10 bis(2-Chioroleopropyi)ether		·	u	y	<u> </u>		UJ	u3	
10 4-Methylphenol									
10 H.Hitroze-dl-n-propylaning			.	-			l		
10 Hexachloroethane	- [.	-					-	-
10Nltrabenreine	- [] []	· []	······································	-	· [·		- [
<u>10 1 socher ent</u> 10 2 · N l trophenol	-	-							
10 2.4-Pleethylchesel									
			.	-	-		.]] [- [
10 ble(2.Chloroethoxy)methave		-	-			-			- []
_102, A:Dichtorophenol		-	-	-	-	-[· [[[]	- [[
<u>10 1.2.4-1rishlarokene</u> 10 Naphthalene	-	-	-			-	• [] []		• [
10 4-Chiereeniiine						-			
	-[-	-		- []	-[·I	- []	-
All - Contract Required Que	nt it at ion I			tion Level (- Concerce - 1995	ER MARRATIN	K FOR CODE	DEPTHIC

DATA SUMMARY FORME B N A S 2

Bito Namos Black + De CKar

WATER GAMPLES (µg/L)

Case #: 15 947 Sampling Date(s): 2/26-27/41

To calculate sample quantitation limit (CRQL + Dilution Factor

	Sample No.	CDN33	٦Ē	CDN 34		CDN35	5][CDN36		CDN 37		CINYY		CDN4	<u> </u>	CDNY	1	CDN 41
	Dilution factor		- I			- 1		1		1		/	1	/				
	Location	PN-5		PN-6		<u>PH-i</u>		PN-P		A4 B19	<u>nk</u>	SW-1		SN-	<u>~</u> [541-1	2	54-4
			_			Field Du	ľα	Carlo			8							
								FIC M DA	r.				H				1	
						Field Du of CDN3	'	OF CON 3:	5 🛛				l					
CROL	CONPOUND		1					. •										
10	Nexach or obut ad ene		<u>[</u>			l	— ï	<u> </u>	—ï		ij	Ī	Î					
10	4-Chloro-3-methylphenol		-1						-		_							
10	2-Methylnephthalene		-1															
10	Nexachiorocyclopentadiene		-1			·												
10	2,4,6-Irichtorophenol					·												
-30	2, 6, 5 · Irichiorophenol																	
10	2-Chioronaphthalene						[
50	2-Hitroaniline																	
10	Dimethylphthalate															I		
10	Acenaphthylene														· '			
10	2,6-Dinitrotoluene														1.1			
30	3-Nitroaniline						NI				nj		MI		LU		1J	
10	Acenaphthene					[]												
50	2,4-Dinitrophenol					l					110		UJ		NJ		117	
	4-Nitrophenol						<u>MJ</u>				四		<u> us</u>	l	147		দ্য	
10	Olbenzofuran							-						·			 	
10	2,4-Dinitrotoluene													 	·			
10	Diethylphthalate											32						
10	4-Chiorophenyl-phenylether				Ì	 									-		·	
10	fluorene	- -										I			-	[1-	
50	4-Witroaniline						ИJ	.			四	[12	į	UJ		11	
50	4,6-Dinitro-2-methylphenol	-								I			·	I	-		·	
1		-		I						·	 	I	·	l				<u>C</u>
11				H	1		I	N I		A		Π	1	l				

C. L = Contract Required Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITI

revised 07

Bite Names Black + DECKEr

HATER GAMPLES

3

(µg/L)

Case #: 15947 Bampling Date(s): 2/26-27/9/

, To calculate sample quantitation limit (CRQL + Dilution Factor

				CDN35	CDNJG	CD1V37	CDN44	CDN46	CDNYP	CON47
	Sample No.	CIN33	CDNJY	<u> </u>		1				
	Dilution Factor Location	PW-5	PW-6	PN.7	11.8	AQ BIANKI	541-1	54-2	SAU-3	510-4
	Location			l		-		1		
				Eleki Dilp	Field Dup of UN 3			¥	R	
				of CDN36	01 UN 3					
				I '				1	h	
CRQL	CONPOUND		l) 		_ []))) 	
10	N-Nitrosodiphenytamine					-			 	
10	6-Bromophenyl-phenylether					-	I			
-10-	"Nexachlorobenzene			i	- I	-		· [·	-
50	*Pentachlorophenol					-	ll	·lll	· [] [-
10	Phenanthrene					-	· []]	·	·	
-15	Anthracene	 	81	III		-	·[[]	.81	·	·
10	Di-n-butylphthalate		<u> </u>	· [] [-[]]	- []	· [· · · · · · · · · · · · · · · · · · ·
10	fluoranthene			. [] [-	-	· 	·		· []
10	Pyrene			- []]					- [] []	-
10	Butylbenzylphthalate		 	· 77	-	- UJ	- WJ	<u> </u>	<u> </u>	
20	3,3'-Dichlorobenzidine	-	·III	·III ²	<u>J</u>	- ""	· **	- " J		-
10	Benzo(a)anthracene	-``````````	· II I	-	[] []	-				
10	Chrysene	-[[]]	. 🛛 🖣	·]	[] []	-	-		160	- []
10	bis(2-Ethylhexyl)phthalate			-∦l			-	- []	╶║─────────	
10	DI-n-octylphthalate	-		- -		-∦l	-	- []	- [• [
10	Benzo(b)fluoranthene	-1	- [] [- -			-	- [╌╢────╎	
10	Benzo(k)fluroenthene	-	- [[- 🖁	[] []		-	-	- [-
10	Benzo(a)pyreixe	-	- [- [[[— ———— —		-	-8	-	- [[]
10	Indeno(1,2,3-cd)pyrene	- [] [-	- -		- #[-8	-∦	-	
10	Dibenz(a, h)anthracene	-#!	-[[]	- [[]			┉╢╼╼╾╌╌╸╎╌─╴	-8[- [[-
10	Benzo(g,h, l)perylene	-∦	-			-		- [] []	-]	ORIGUE (Red)
			-∦	- -	[-		- 39 -
		╺╢───╎──	-	- -		╾╏╌┈╴╎╼╾	-	- []		
!	Λ	<u></u>	<u>_ N </u>	<u>_ !!</u>	N [<u></u>	- A <u></u>			
CHQ1	- Contract Required Qua	ntitation L	imit	Å	ction Level	Eziste		IGE MARRATI	E FOR CODE	
										vised Q7
							,			
			-						_	

DATA SUBBARY FORME B N A B

1

Bito Namos Black + Decker

1

HATER BAMPLES (//g/L)

Case #: 15947 Sampling Date(s): 2/26-27/1/

To calculate sample guantitation lim (CRQL + Dilution Fact

				12 115	 ii	CDNS	<u> </u>	CDNSS		CDNG	2 1	CONG	1	CDN6.	<u>, 1</u>	CONGY	T	CONG
	Sample II.	CDN51		CONSY	′∦	באעז	<u>هــــــــــــــــــــــــــــــــــــ</u>	1					<u>د ا</u>	0.99		1		1
	Dilution factor			50-6		Sul - 7	, — I	SW-8		HW-		HW-	$\overline{2}$	HW-	3	Hw-5		HW-
	Location	SW-5		<u></u>	H				— I		I	لـــــــــــــــــــــــــــــــــــــ				Jeff		Stuar -
			i		l		1									UCT I	1	
1					l		5		H		1			1				
	· · · · · ·						l											l
CROL	CONFOUND				[]				!								{	
10	Chenol							·										
10	ble(2-Chloroethyl)ether																	
10	2. Chlorophenol		!		[·	[—							
10	*1,3-Dichlorobenzene	-																
10	<u>•1.4-Dichterobenzene</u>	-						·										
10	Benzyl Alcohol	-			[
10	1,2-01chtorobenzene	-																
		N -	[
10	bis(2-Chiorolsopropyl)ether	∦ ·																
10		 -	—								-							
10_	<u>H-Hitrese:di:n-propylamine</u> Reachtoroethane	·																
10		· 🖞 ·					-1											
10	Nitrobenreive	· [] ·					-											
10		· [] [·					-											
10	2.4-Pimethyiphenol	· ·					-											
11		· [] [l		1			-									
<u>_50</u> 10	Usniels_Acid bls(2-Chloroethoxy)methnus						-											
U		-		I			-				-							
1-10-		-			1-		-			1	-1							
10	1.2.4-1rishlarabentana	-					-		-									
10	4-Chlorgentline	- []			·	li	-	-										
1-10-				1	-1		-											
				1	1									1				
است. ۱							• •		200									

CRQL = Contract Required Quantitation Limit

Blto Names Black + Decker

5 I.

WATER SAMPLES

(µg/L)

Case #: 15947 Bampling Date(=): 2/26-23/9/

To calculate sample quantitation limit (CRQL * Dilution Factor

													-			
	Sample Ho.	ON51	CON54		NS6	CDNSI	<u>_</u>	CONG	0	CDNG		CDING	2	CONG	<u> </u>	CONGS
	Dilution Factor	1		_	1	/		I				0,99		/		/
	Location	Jul-5.	50-6		1-7	5W-5	2	11-11-1	/	HW-	2	HW-	· <u></u> 3	HN-	5	HW-6
							1							Jeff		stva/t
				N			- H							••••		
				1												
CROL	COMPOUND	l	N			<u> </u>										
10	Henachtorobutadiene		II_	_												
10	4-Chloro-3-methylphenol		II	_												
10	2-Hethylnsphthalene															
10	llexachlorocyclopentadlene															
10	2,6,6-Irichtorophenol					·										
30	2,6,5-trichlorophenol		I		_											
10	2-Chloronophthalene	I		_												
50	2-Nitroaniline		<u> </u>]									
10	Olaethylphthalate						Ì									
10	Acensphthylene	· · · · ·														
10	2,6-Dinitrotoluene															
50	S-Nitroaniline		<u> </u>				11		MI		U1		UJ		II	
10	Acenaphthene															
50	2,4-Dinitrophenol						41		UJ		112		K1		17	
- 50	4-Nitrophenol						uJ		45		KJ	!	11		47	
10	Dibenzofuran															
10	2,4-Dinitrotoluene															
10	Diethylphthalate											1				
10	4-Chlorophenyl-phenylether		- -													
10	fluorene		-										-			
30	4-Nitroaniline		-				45		T.W		TU		UJ		III	
50	4,6-Dinitro-2-methylphenol	1	- -							i			╽╧╩	·	***	
	······································		- -			I			1-				1			
						1							1			

ChQL = Contract Required Quantitation Limit

BEE MARRATIVE FOR CODE DEFINITIO

DATA SUMMARY PORMI B N A S

Bito HADDI Black + Decker

WATER SAMPLES (µg/L)

3

Case #1 15947 Sampling Date(=): 3/36-27/9/

To calculate sample quantitation limi (CRQL + Dilution Facto

Tage Ir of I

								E 11				. V	AS 112	- V		77	CONGS
	Sample Ho.	72451	CON5.	£_\[CDN 56	<u>6</u>	CDN 5	<u>8</u>	CDNG	0	CONG		CDNG		CDIVE		CONGS
	Dilution factor						/						0,99		HW- Jeff		
	Location	541-5	SW-4	6	561-7	,	510-		Hul-	·/	HW-	2	HW	-3	Hŵ-	5	HW-G Stuart
A						[1			Jeff		Stuart
			8			ļ		- 11				i			-		•
	• •		ł.							ł							
			9														
CROL	CONPOLIND																
	and the second	N (—¦		ï		i		<u> </u>							
10	N-Nitrosodiphenylamine	 												—			
10	4-Bromophenyl-phenylether Hexachlorobentene	ll	-														
10		l l	-							·							
50	*Pentachlorophenol	 	-														
10	Plienanthrena		-					II						—		—	
10	Anthracene	l	_		I										'	—	
10	D1-n-butylphthatate		_1							-							
10	Fluoranthene	<u> </u>								-			[·
10	Pyrene	<u> </u>	_							-	 		·				
10	Butylbenzylphthalate	1								-	I			1			
20	3,3*-Dichlorobenzidine		_			·		LU .		113		NJ.		MJ.		NJ	
10	Benzo(a)anthracene		-		l 				l	-							
10	Chrysene				i									.			
10	blo(2-Ethylhexyl)phthalate						l		Î					.	I		·
10	Di-n-octylphthalate		_							_							
10	Benzo(b)fluoranthene	-									1		1				
10	Benzo(k)/luroanthene	- -													1		
10	Benzo(a)pyrene	-								-							
	Indeno(1,2,3-cd)pyrene	-81				[<u> </u>						-			1		- A1
10	Dibenz(a,h)anthracene	-1						-		-	·	·	I	-1		-	5
1-10-	Benzo(g,h,l)perylene									-	-	-	l	-			1
ļ		-		·			∦	-			- []	-	·				
∦	l	╾║─────		-[- []	[H	-	·				· [-1	·		
	¥	-8		·	-		· []	-	·		-	-	· [-	· []	-	1
l	ll			.I	<u> </u>	. <u></u> .	.ll				<u>л</u>	1		1			

CAQL - Contract Required Quantitation Limit

SEE NARRATIVE FOR CODE DI

Bito Hamos Black + Decker

(1, 1)

HATER BAHPLES (µg/L)

Case #: 15947 Sampling Date(=): 2/26-23/9/

To calculate sample quantitation limit (CRQL * Dilution Factor

	Sample He. Dilution factor	CDN66 0.99 Hw-7		CINGI/RE I HW-P		N68 1 N-9		N69 1 W-10		NJO Blank		CDN72 1 Pw-2				,			
	Location	<u></u>	·		k	<u> </u>				. 									
CROL	CONFOUND			<u> </u>					 	<u> </u>	- 1						<u> </u>		
10 _10_ _10_	Plienol ble(2-Chloroethyl)ether 2-Chlorophenol			<u>1</u> 7											_				
<u>10</u> <u>10</u> 10	•1,3-Dichlorobenzene •1,4-Dichlorobenzene Benzyt Alcohol											 	-						- - - - - - - - - - - - - - - -
<u>10</u> <u>19</u> 10	1.2-Dichiorobenzene 2:Heshyidismol blo(2-Chioroloopropyi)ether			II							-								
10 _19_ _10	<u>4-Hethylphenol</u> <u>Hethylphenol</u> Henchloroethane			<u>Eu</u>							_						-		
10		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·					-						_		
<u>10</u> <u>10</u> <u>50</u>		· · · · · · · · · · · · · · · · · · ·							-		-				-				
<u>10</u> _10_ _10_	bis(2-Chior or thosy)methane 						-				-								
10 10		-			-				-						-			-	
(.:QL	- Contract Required Qua	ntitation		<u> </u>	<u> </u>			J.evel	Ex1.				8	ES HARR	ATIV	B FOR			
												,) "	vlaed	

jo ____ ol ____

EPA			TIAL HAZARD				I. IDENTIF		
V	PAI	-	OCATION AND I			N	et state MD	** 3 70	UMBER
I. SITE NAME AND LOCATI	0N					-			
01 SITE NAME (Legal, common. or		it e)		J2 STREET.	OUTE NO , OR SPI		DENTIFIER		
Black and Decker, I	ncorporated			62	6 Hanover I	Pike			
03 CITY				04 STATE	05 ZIP CODE	06 COUNEY	<u> </u>	07 COUNTY	08 CONC
Hampstead				MD	21074	Carrol	1	013	MDO
9 COORDINATES	LONGITU	05	10 TYPE OF OWNER	_		C. STA'			
<u>3 9° 35' 36" . N</u>	_7 <u>6°_50'</u>	<u>58" . W</u>							
III. INSPECTION INFORMAT	ION	•							
DATE OF INSPECTION	02 SITE STATUS		03 YEARS OF OPERA						
02 / 26, 27 91					present	_	•it	KNOWN	
month day year	8. INACTIV		BEGINNING YE	AR	ENDING YEAR			<u></u>	
04 AGENCY PERFORMING INSPECT		-	. ·	-					
Δ ΕΡΑ 🗶 Β ΕΡΑ ΟΟ	NTRACTOR	NUS FIT (Name of firm)	<u> </u>	C. MUNIC	PAL . D. M	UNICIPAL CONTR	ACTOR	Name of firm)	
		Name of firm)	[G. OTHER		(Specify)			
05 CHIEF INSPECTOR		06 TITLE			07 ORGANIZA		OR TELEP	HONE NO.	
Linda Ciarletta		Biologi	st		NUS FIT	3	(215)	687-9510	
OR OTHER INSPECTORS			mental Scient	ic+	11 ORGANIZA NUS FIT	TION	_	HONE NO. 687-9510	
•	ary Williams			ist	NUS FIT			687-9510 687-9510	
Thomas Ferrie		Environ	mental Scient	ist	NUS FIT	3	.215.	687-9510	
Steven Sottung			mental Scient		NUS FIT			<u>687-9510</u>	-
John Pugh		Environ	mental Scient	1st	NUS FIT	3	(215)	687-9510	
Paul Davis		Environ	mental Scient	ist	NUS FIT	3	(215)	687-9510	
Thomas Smith		Environ	mental Scient	ist	NUS FIT	3	(215)	687-9510	
13 SITE REPRESENTATIVES INTERV	IEWED	14 TITLE		15 ADDRESS	over Pike		16 TELEP		
LaVere Grimes		Facili	ties Manager	_	ad, MD 21	071	(301)	239-5555	
							()		
							()		
	<u> </u>					<u> </u>			
		<u> </u>				····	()		
							()		
							()		
			·				()		
17 ACCESS GAINED BY	18 TIME OF INSPECT		19 WEATHER COND	TIONS					
(Check one)	02/26/91 02/27/91		partly sun	ny, with	temperature	es in the m	nid-30s		
IV. INFORMATION AVAILA	BLE FROM								
01 CONTACT		02 OF (Agen	cy/Organization)				03 TELEP	HONE NO.	
Donna Santiago		US EP	A				(215)	597-1105	
04 PERSON RESPONSIBLE FOR SITE	INSPECTION FORM		05 AGENCY	DE ORG		07 TELEPHONE	NO.	08 DATE	
Linda Ciarletta			NUS	FIT	3	<mark>215 ، 687-</mark> 9	9510	05 /1	5 91

EPA FORM 2070-13 (7-81)

EPA UANTITIES, AND CHA (UANTITIES, AND CHA (CAN AND CHA	PAR	T 2 - WAS					OLUBLE NFECTIOUS	02 SITE NUMBER 370 (Red) (X) - MIGHLY JOLATILE - EXPLOSIVE
Et all that apply) 0	2 WASTE QUANTITY AT SITI Messures of waste quan independent: TONS UNKIC CUBIC YARDS NO OF DRUMS	itities must c	*		FOXIC CORROSIVE RADIOACTIVE		OLUBLE NFECTIOUS	IRenj)
E SLURRY E SLURRY G GAS SUBSTANCE NAME SLUDGE OILY WASTES	CUBIC YARDS	itities must c	×		FOXIC CORROSIVE RADIOACTIVE		OLUBLE NFECTIOUS	IRenj)
	Independent) TONS UNKIC CUBIC YARDS NO OF DRUMS		×		CORROSIVE		NFECTIOUS	A
G. GAS	CUBIC YARDS)wn		<u> </u>	RADIOACTIVE	· 📮 - +		EXPLOSIVE
SUBSTANCE NAME	NO OF DRUMS						- JAABAARI F	
SUBSTANCE NAME SLUDGE DILY WASTES					- ENGISTENT		GNITABLE	
SLUDGE DILY WASTES	01 GROSS AMOUNT	· . · · · · ·						M NOT APPLICABLE
SLUDGE DILY WASTES	01 GROSS AMOUNT							
OILY WASTES				FMEAS	URE	03 COMME	NTS	
		_						
SOLVENTS								
	unknown		unkn	OWN		On-site	groundwat	ter was found to
PESTICIDES				_				levels of PCE and
OTHER ORGANIC CHEMICALS						TCE.	31210060	
VORGANIC CHEMICALS			1			102.		
-0.05			1					
			 	_				
			 					
	dix for most frequent	tiv cited C	I AS Numb	ert)				
2 SUBSTANCE NAME	03 CAS NUMBER	<u>†</u>	-		OD	05 CONCEN	RATION	06 MEASURE OF CONCENTRATION
revious sampling:		1						
	79-01-6	detec	ted on-	site	_	12000		ppb
<u> </u>	127-18-4	aroun	dwater			3100		ppb
	79-01-6			site				ppb
	127-18-4	+						ppb
luene		<u> </u>						ppb
hvlbenzene	<u></u>	unde;	ground	Callk	areas			ppb
		1	-					
	1330-20-7					310000		ррь
	79-01-6	Detec	ted on-	cita		12000		
	1	1		3118				ppb
		groun	lawater					ppb
		+	+					ppb
		+						ppb
	-÷							ppb
						37		ppb
			r				- I	02 CAS NUMBER
	_ <u>_</u>		<u> </u>		ļ	u		
					ļ			
		·			L	-		
			FDS					
	2 SUBSTANCE NAME revious sampling: Uuene hylbenzene lene 1 3 samplings: 1-DCE 1-DCE 1-DCEA tal 1,2-DCE 1,1-TCEA re Appendix for CAS N 01 FEEDSTOCK NAME	-EAVY METALS DSTANCES (See Appendix for most frequent :2 SUBSTANCE NAME 03 CAS NUMBER revious sampling: E 79-01-6 E 127-18-4 E 79-01-6 E 127-18-4 Ruene 108-88-3 hylbenzene 100-41-4 Iene 1330-20-7 T 3 samplings: E 79-01-6 E 127-184 Iene 1330-20-7 T 3 samplings: E 79-01-6 E 127-184 I-DCE 75-35-4 I-DCEA 75-34-3 tal 1,2-DCE 540-59-0 1,1-TCEA 01 FEEDSTOCK NAME 02 CAS NUM	-EAVY METALS DSTANCES (See Appendix for most frequently cited C :2 SUBSTANCE NAME 03 CAS NUMBER 04 STORA revious sampling: 03 CAS NUMBER 04 STORA revious sampling: 127-18-4 groun 127-18-4 groun 9-01-6 detect 127-18-4 groun 9-01-6 detect 127-18-4 Sof1s 127-18-4 Sof1s Buene 108-88-3 under 109-41-4 Iene 1330-20-7 13 Samplings: 127-184 groun I-DCE 75-35-4 127-184 groun 1-DCE 75-35-4 127-184 groun 1-DCEA 75-35-4 127-184 127-184 1-DCEA 75-35-4 127-184 127-184 1-DCEA 75-35-6 11,1-TCEA 71-55-6 I Appendix for CAS Numbers) NA CC 01 FEEDSTOCK NAME 02 CAS NUMBER	HEAVY METALS BSTANCES (See Appendix for most frequently cited CAS Number 2 SUBSTANCE NAME 03 CAS NUMBER 04 STORAGE DISPOSA revious sampling: 03 Cas Number 04 STORAGE DISPOSA Image: 79-01-6 detected on- Suene 108-88-3 underground hylbenzene 100-41-4 010-41-4 Iene 1330-20-7 17 I 3 samplings: 127-184 groundwater I-DCE 75-35-4 100-11 I-DCEA 75-35-4 100-11 I-DCEA 75-35-6 100-11 01 FEEDSTOCK NAME 02 CAS NUMBER CATEGO 01 FEEDSTOCK NAME 02 CAS NUMBER CATEGO FDS FDS FDS	HEAVY METALS ISTANCES (See Appendix for most frequently cited CAS Numbers) 12 SUBSTANCE NAME OB CAS NUMBER OM STORAGE DISPOSAL METH revious sampling: IZ SUBSTANCE NAME OB CAS NUMBER OM STORAGE DISPOSAL METH revious sampling: IZ 79-01-6 IZ 70.16 IZ 70.16 IZ 70.16 IZ 70.16 IZ 70.16	HEAVY METALS ISTANCES (See Appendix for most frequently cited CAS Numbers) 12 SUBSTANCE NAME 03 CAS NUMBER OM STORAGE DISPOSAL METHOD revious sampling: Interview Cas Number Intelostock Name In	-EAVY METALS DSTANCES (See Appendix for most frequently cited CAS Numbers) :2 SUBSTANCE NAME 03 CAS NUMBER OF STORAGE DISPOSAL METHOD DS CONCENT revious sampling:	

									MD	370
II. WASTE STAT	ES, QUANTITIES. AND CH								<u></u>	_
01 PHYSICAL STATE	S (Check all that apply)		QUANTITY AT SITE		*	03 WA	STE CHARACTE	NISTICS (Chec	z al that apply)	
		indept	ndent)				TOXIC	E 5		
3 POWDER	FINES F UOUIO G. G. G. G. G.		TONS			-	CORROSIVE RADIOACTIVI	-	NFECTIOUS	L EXPLOSIN
0 OTHER_		CUBIC					PERSISTENT		GNITABLE	L. INCOMP
	Specify)	NO. OF							· ·	M. NOT APP
III. WASTE TYPE										
CATEGORY		01	GROSS AMOUNT		02 UNIT 0	FMEAS	URE	03 COMME	NTS	
SUU	SLUDGE				ļ			L	· ·	
OLW	OILY WASTES					_				
SOL	SOLVENTS									
PSD	PESTICIDES						-			
000	OTHER ORGANIC CHEMICAL	LS								
၀င	NORGANIC CHEMICALS									
÷CD	÷CID\$									
345	345E5									
MES	HEAVY METALS									
IV. HAZARDOU	S SUBSTANCES (See Appe	ndix for	most frequent	ly cited C	AS Numb	ters)				
01 CATEGORY	22 SUBSTANCE NAME	03	CAS NUMBER	04 STORA	GE DISPOSA	L METH	00	95 CONCEN	RATION	
CONTINUED		+		1			·			
SOL	TCE	79-0	1-6	detec	ted in	on-s	ite	18		ppb
SOL	PCE	127-	18-4	surfa	ce wate	er		89		ppb
SOL	TCE	79-0	1-6	detec	ted in	on-s	ite	5		ppb
SOL	PCE	127-	18-4	sedim	ents			46	<u> </u>	ppb
										T
						-				Î
• •										T
										T
				T						
				T						
				T	-					T
	,									T
										1
IV. FEEDSTOCK	(See Appendix for CAS I	Numbers).							- L
CATEGORY	DI FEEDSTOCK NAME		02 CAS NUM	JER	CATEG	ORY	01 PEEDSTOC		Ī	02 CAS NI
40 S					101					
FDS					101					
			<u> </u>		101	-		···· ·		
FDS									 	
FD\$	······································				F01					

	EPA		. HAZARDOUS W INSPECTION REP			I. IDENTIF	
V	LFM	PART 3 - DESCRIPTION OF			ENTS	di state MD	02 SITE AUTORES 370- 7:12134
II. HAZARD	OUS CONDITIONS AND	INCIDENTS					~;
Elevated FIT 3 sar	levels of TCE (up mpling in February	9475/4 mile radius 9475/4 mile radius to 12,000 ppb) and 1991 revealed eleva and several other vi	PCE (up to 3,100 ted levels of TC	ppb) have been E (up to 12.000	detect	POTENTIAL ed in on- PCE (up to	□ ALLEGED site groundwater. p 1,800 ppb),
_	SURFACE WATER CONTAMINA	0	OBSERVED (DATI		, C	POTENTIAL	ALLEGED
effluent	revealed elevated	on discharges into Du levels of TCE (up to (7 ppb and 5 ppb, re	o 18 ppb). Downs	PDES outfall. S tream samples o	ampling of the De	of the la ep Run ti	agoon and outfall ributary indicated
_	CONTAMINATION OF AIR TION POTENTIALLY AFFECTED		OBSERVED (DATI			POTENTIAL	ALLEGED
None repo	orted or observed.						
_	FIRE EXPLOSIVE CONDITIONS		OBSERVED (DATI) [POTENTIAL	ALLEGED
01 🗶 E.	DIRECT CONTACT		OBSERVED (DATE	E	<u> </u>	POTENTIAL	ALLEGED
Access is and sedir	s generally unrest ments on site indi	ricted to a majority cated elevated level:	of the site. FI	T 3 sampling in	Februar and 89 p	y 1991 of ppb, respe	F surface water actively).
and sedir	CONTAMINATION OF SOIL	cated elevated level:	of the site. FI s of TCE and PCE	T 3 sampling in (up to 18 ppb FF Fe <u>brmary 199</u>)	and 89 p	POTENTIAL	F surface water ectively).
and sedin	CONTAMINATION OF SOIL	cated elevated level:	of the site. FI s of TCE and PCE	T 3 sampling in (up to 18 ppb F F <u>ebrmary 199</u>) nt levels in on	and 89 p	POTENTIAL	ectively).
and sedin () X f) AREA PO FIT 3 san levels of () X g.	CONTAMINATION OF SOIL	cated elevated level: 02 146 acres 04 1991 Arevealed no eig PCE (46 ppb) were det ATION	of the site. FI s of TCE and PCE S OBSERVED (DATE NARRATIVE DESCRIPTION evated contaminal tected in on-site	T 3 sampling in (up to 18 ppb Fe <u>brmary 199)</u> Int levels in on e sediments.	and 89 p	POTENTIAL	ectively).
and sedin and sedin () (X) f FIT 3 san levels of () (X) G. () POPULA FIT 3 san TCE (up 1)	TERTS ON SITE INDI	cated elevated level: 02 146 acres 04 1991 Arevealed no eig PCE (46 ppb) were det ATION	Of the site. FI's of TCE and PCE NARRATIVE DESCRIPTION Evated contaminal tected in on-site NARRATIVE DESCRIPTION NARRATIVE DESCRIPTION , which provide and PCE (up to	T 3 sampling in (up to 18 ppb F February 199) Int levels in on e sediments. F February 1991 potable water f 1,600 ppb). Dom	-site su	POTENTIAL POTENTIAL Ibsurface	ALLEGED soils. Elevated
and sedin and sedin 3 AREA PO FIT 3 san levels of 91 X G. 93 POPULA FIT 3 san TCE (up 5 February 91 X H.	TERTS ON SITE INDI	cated elevated level: 146 acres 1991 ^{(△} revealed no ele PCE (46 ppb) were det ATION 02 9475/radius 04 ite production wells 04 TCEA (up to 37 ppb), 04 els of 1,1,1-TCEA up 02 during 02 3500 manufacturing 02	of the site. FI's of TCE and PCE	T 3 sampling in (up to 18 ppb February 199) int levels in on e sediments. February 1991 potable water f 1,600 ppb). Dom p to 2 ppb, and	and 89 p -site su or plant estic we PCE up	POTENTIAL POTENTIAL Ibsurface	ALLEGED soils. Elevated
and sedin and sedin	TREATS ON SITE INDI	cated elevated level: 146 acres 1991: revealed no ei PCE (46 ppb) were det 4710M 9475/radius 146 production wells TCEA (up to 37 ppb), els of 1,1,1-TCEA up during	of the site. FI's of TCE and PCE OBSERVED (DATE NARRATIVE DESCRIPTION evated contaminal tected in on-site NARRATIVE DESCRIPTION , which provide and PCE (up to to 4 ppb, TCE up () OBSERVED (DATE NARRATIVE DESCRIPTION S provided by 5 atile organic col	T 3 sampling in (up to 18 ppb February 199) In levels in on e sediments. February 1991 potable water f 1,600 ppb). Dom p to 2 ppb, and con-site product ntamination has	and 89 p -site su -site su or plant estic we PCE up	POTENTIAL POTENTIAL Description POTENTIAL Comployee POTENTIAL POTENTIAL S. PCE ar	ALLEGED soils. Elevated so, revealed ing by FIT 3 in ALLEGED ALLEGED
and sedin and sedin () (THE SON SITE INDI	ated elevated level: 146 acres 1991'Arevealed no eigen PCE (46 ppb) were det 410N 9475/radius 9475/radius 129475/radius 129475/radius 04 129475/radius 129475/radius 04 129475/radius	of the site. FI's of TCE and PCE CONSERVED (DATE NARRATIVE DESCRIPTION evated contaminal tected in on-site (A observed (DATE NARRATIVE DESCRIPTION , which provide and PCE (up to to 4 ppb, TCE up NARRATIVE DESCRIPTION s provided by 5 atile organic con tily employs 750 OBSERVED (DATE	T 3 sampling in (up to 18 ppb February 199) Int levels in on e sediments. February 1991 potable water f 1,600 ppb). Dom p to 2 ppb, and April 1984 on-site product ntamination has people.	and 89 p -site su or plant estic we PCE up	POTENTIAL POTENTIAL Description POTENTIAL Comployee POTENTIAL POTENTIAL S. PCE ar	ALLEGED soils. Elevated so, revealed ing by FIT 3 in ALLEGED ALLEGED
and sedin and sedin and sedin FIT 3 sam levels of a popula FIT 3 sam TCE (up 5 February 1 X H. 03 WORKEN Potable 1 has been surface M 01 X I. 03 POPULA Access 1	TION POTENTIALLY AFFECTED WORKER EXPOSURE/INJU TION POTENTIALLY AFFECTED TION POTENTIALLY AFFECTED TION POTENTIALLY AFFECTED WORKER EXPOSURE/INJURY NS POTENTIALLY AFFECTED: WATER for Black an detected in sever WATER FOR Black an detected in sever WATER FOR Black an DETENTIALLY AFFECTED: WATER FOR BLACK AN MALE FOR BLACK	ated elevated level: 146 acres 04 1991'-revealed no ele PCE (46 ppb) were det 4100N 02 9475/radius 04 ite production wells 04 ite production wells 04 TCEA (up to 37 ppb), 04 during 02 3500 manufacturing 04 operations 04 d Decker employees is 04 al of the wells. Volia 01 . The company current 02 av 02	of the site. FI's of TCE and PCE (X) OBSERVED (DATE NARRATIVE DESCRIPTION Pated contaminat tected in on-site NARRATIVE DESCRIPTION , which provide and PCE (up to to 4 ppb, TCE up (DATE NARRATIVE DESCRIPTION S provided by 5 atile organic con tly employs 750 CONTRACTIVE DESCRIPTION	T 3 sampling in (up to 18 ppb February 199) Int levels in on e sediments. February 1991 potable water f 1,600 ppb). Dom p to 2 ppb, and to 2 ppb, and con-site product ntamination has people.	and 89 p -site su or plant estic we PCE up fon well also be	POTENTIAL POTENTIAL Ibsurface POTENTIAL employee 11 sampli to 4 ppb. POTENTIAL s. PCE ar en found	ALLEGED soils. Elevated aLLEGED es, revealed ing by FIT 3 in ALLEGED ad TCE contamination in on-site
and sedin and sedin and sedin FIT 3 sam levels of a popula FIT 3 sam TCE (up 5 February 1 X H. 03 WORKEN Potable 1 has been surface M 01 X I. 03 POPULA Access 1	TERTS ON SITE INDI	ated elevated level: 146 acres 04 1991'-revealed no ele PCE (46 ppb) were det 4100N 02 9475/radius 04 ite production wells 04 ite production wells 04 TCEA (up to 37 ppb), 04 during 02 3500 manufacturing 04 operations 04 d Decker employees is 04 al of the wells. Volia 01 . The company current 02 av 02	of the site. FI's of TCE and PCE (X) OBSERVED (DATE NARRATIVE DESCRIPTION Pated contaminat tected in on-site NARRATIVE DESCRIPTION , which provide and PCE (up to to 4 ppb, TCE up (DATE NARRATIVE DESCRIPTION S provided by 5 atile organic con tly employs 750 CONTRACTIVE DESCRIPTION	T 3 sampling in (up to 18 ppb February 199) Int levels in on e sediments. February 1991 potable water f 1,600 ppb). Dom p to 2 ppb, and to 2 ppb, and con-site product ntamination has people.	and 89 p -site su or plant estic we PCE up fon well also be	POTENTIAL POTENTIAL Ibsurface POTENTIAL employee 11 sampli to 4 ppb. POTENTIAL s. PCE ar en found	ALLEGED soils. Elevated aLLEGED es, revealed ing by FIT 3 in ALLEGED ad TCE contamination in on-site

EPA		HAZARDOUS		ESITE		I. IDENTIFICA	ATION CIPICIN
	ART 3 - DESCRIPTION OF	HAZARDOUS CO	NDITION	IS AND INCIE	DENTS	MD	
HAZARDOUS CONDITIONS AND IN	CIDENTS (Continued)						
DEMAGE TO FLORA		22 OBSERVED	(DATE		·	- POTENT-AL	→
ARATIVE DESCRIPTION							
None reported or observed				<u></u>			
11 DAMAGE TO FAUNA 14 NARRATIVE DESCRIPTION <i>linclude namets</i>	i) of species)	22 OBSERVED	(DATE		'	D POTENTIAL	
None reported or observed							
	IN .	02 OBSERVED	(DATE	····	,	POTENTIAL	
None reported or observed							
21 X M UNSTABLE CONTAINMENT OF W	A \$7E\$	22 X OBSERVED		05/02/84		POTENTIAL	
Spills, Runoff, Standing liquids, L Spills, Runoff, Standing liquids, L 33 POPULATION POTENTIALLY AFFECTED	eaking drums)			0		9	
An MD DHMH inspection repor- potentially draining into su		zardous waste	conta	iners were	observ	ed to be lead	cing and
31 DAMAGE TO OFFSITE PROPERTY		02 OBSERVED	(DATE			POTENTIAL	
04 NARATIVE DESCRIPTION							
None reported or observed							
JI O CONTAMINATION OF SEWERS, S	TORM DRAINS, WWTPS		(DATE				<u> </u>
04 NARRATIVE DESCRIPTION							
None reported or observed							
DE LLEGAL UNAUTHORIZED DUMP	ING	02 OBSERVED	OATE)		AL
None reported or observed							
05 DESCRIPTION OF ANY OTHER KNOWN. PO Off-specification products a			uried	in various	areas	around the si	ite. Numen
oils, paints, and solvents	were utilized in th	e manufacture	of th	ese produc	ts.		
						<u></u>	
III. TOTAL POPULATION POTENTIAL	Y AFFECTED: 12,	975					
IV. COMMENTS	· · · · · · · · · · · · · · · · · · ·						
11 / 4							
N/A							
							<u> </u>
	specífic references, e.g.	, state files, samp	ile analy	sis, reports)			
V. SOURCES OF INFORMATION (Cite							
V. SOURCES OF INFORMATION (Cite See reference nos. 1,2,3,4,							

.

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 4 - PERMIT AND DESCRIPTIVE INFORMATION

1. IDENTIFICATION DICINAL 01 STATE 02 SITE INVINE MD 37 (199) Berk, Lee.

IL PERMIT INFORMATION									
01 TYPE OF PERMIT ISSUED (Check all that apply)	02 PERMIT NUMBER	03 DATE ISSUED	04 EXPIRATION DATE	05 COMMENT	s				
A. NPDES	MD0001881	unknown	3-7-93						
8 UIC	4-0063	unknown	N/A	boiler					
C. AIR	4-0062	unknown	N/A	boiler					
D ACRA	9-0049	unknown	N/A	air strip	per				
	6-0119	unknown	N/A	heat furn	ace				
F SPCC PLAN		·							
G. STATE (specify)	88-DP-0022	L		effluent	discharge				
H LOCAL (specify)				_					
OTHER (specify)				<u> </u>					
J. NONE	L								
II. SITE DESCRIPTION									
01 STORAGE/DISPOSAL (Check all that apply)	02 AMOUNT 03 U	NIT OF MEASURE	04 TREATMENT (Check all that app	hy)	05 OTHER				
A. SURFACE IMPOUNDMENT	<u>14 - 16 mill</u> ion	gallons			A. BUILDINGS ON SITE				
			8. UNDERGROUND INJECT	ON					
C. DRUMS, ABOVE GROUND	<u>unknown numb</u> er		C. CHEMICAL/PHYSICAL						
D. TANK, ABOVE GROUND		rying stzes	D. BIOLOGICAL						
E. TANK, BELOW GROUND		<u>rying sizes</u>	E. WASTE OIL PROCESSING	i	06 AREA OF SITE				
F. LANDFILL	<u>unknown size</u>		F SOLVENT RECOVERY						
			G. OTHER RECYCLING/REC	DVERY	286				
H. OPEN DUMP			H. OTHER(Specify)		(Acres)				
1. OTHER (Specify) 07 COMMENTS		Two on-sit	(Specify) e lagoons have been	used by B	lack and Decker since				
DI. OTHER (Specify) 07 COMMENTS 1978 for wastewater treatm utilized on site; treated end Jnderground storage tanks w currently utilized for met MD DHMH representatives ob were used as landfill areas IV. CONTAINMENT	ffluent is discharg were used in the p hanol and liouid n	atment plant ed into the l ast for stora itrogen stora	(Specify) ie lagoons have been and industrial chem arger lagoon. Lagoon ge of oils and solve ge: TCE was previous	used by B ical treat overflow i ints. Two a ly stored	alack and Decker since ment plant were also s via a NPDES outfall. above ground tanks are in aboveground tanks.				
DI. OTHER (Specify) 07 COMMENTS 1978 for wastewater treatm utilized on site; treated end Underground storage tanks w currently utilized for met MD DHMH representatives ob were used as landfill areas IV. CONTAINMENT	ffluent is discharg were used in the p hanol and liouid n	atment plant ed into the l ast for stora itrogen stora ums at the s bris during t	(Specify) and industrial chem arger lagoon. Lagoon ge of oils and solve ge; TCE was previous ite in 1984. Several he history of manufac	used by B ical treat overflow i nts. Two ints. Two ints. Two ints. Two ints. Two ints. Two ints. Two ints. The ints. The ints.	alack and Decker since ment plant were also s via a NPDES outfall. above ground tanks are in aboveground tanks.				
I. OTHER	ffluent is discharg were used in the p hano] and liquid n oserved leaking dr for disposal of de envices of the second manniers, etc. and other waste ma	atment plant ed into the l ast for stora itrogen stora ms at the s bris during t Xic unu iterials were	(Specify) ie lagoons have been and industrial chem arger lagoon. Lagoon ge of oils and solve ge; TCE was previous ite in 1984. Several he history of manufac DEQUATE POOR	used by B ical treat overflow i ints. Two a ly stored areas on turing ope 0. INSECURE. U	Black and Decker since tment plant were also s via a NPDES outfall. above ground tanks are in aboveground tanks. the subject property rations.				
I. OTHER (Specify) O7 COMMENTS 1978 for wastewater treatm utilized on site; treated ex Underground storage tanks w currently utilized for meti MD DHMH representatives ob were used as landfill areas IV. CONTAINMENT O1 CONTAINMENT OF WASTES (Check one) A. ADEQUATE. SECURE O2 DESCRIPTION OF DRUMS, DIKING, LINERS. I	ffluent is discharg were used in the p hano] and liquid n oserved leaking dr for disposal of de envices of the second manniers, etc. and other waste ma	atment plant ed into the l ast for stora itrogen stora ms at the s bris during t Xic unu iterials were	(Specify) ie lagoons have been and industrial chem arger lagoon. Lagoon ge of oils and solve ge; TCE was previous ite in 1984. Several he history of manufac DEQUATE POOR	used by B ical treat overflow i ints. Two a ly stored areas on turing ope 0. INSECURE. U	Black and Decker since tment plant were also s via a NPDES outfall. above ground tanks are in aboveground tanks. the subject property rations.				
I. OTHER	ffluent is discharg were used in the p hanol and liquid n oserved leaking dru for disposal of de environment is moorenate manniens, etc. and other waste ma aking hazardous was	atment plant ed into the l ast for stora itrogen stora ms at the s bris during t Xic unu iterials were ite containers	(Specify) ie lagoons have been and industrial chem arger lagoon. Lagoon ge of oils and solve ge; TCE was previous ite in 1984. Several he history of manufac NDEQUATE POOR	used by B ical treat overflow i nts. Two a ly stored areas on turing ope o. INSECURE. U burned on sections.	Hack and Decker since Ement plant were also s via a NPDES outfall. above ground tanks are in aboveground tanks. the subject property rations.				
I. OTHER (Specify) O7 COMMENTS 1978 for wastewater treatm utilized on site; treated eff Underground storage tanks w currently utilized for metil MD DHMH representatives ob were used as landfill areas IV. CONTAINMENT O1 CONTAINMENT OF WASTES (Check one) A. ADEQUATE, SECURE O2 DESCRIPTION OF DRUMS, DIKING, LINERS, C Off-specification products areas. MD DHMH reported le V. ACCESSIBILITY O1 WASTE EASILY ACCESSIBLE X THE main facility has rest:	ffluent is discharg were used in the p hanol and liquid n oserved leaking dru for disposal of de e. MODERATE markiers, erc. and other waste ma aking hazardous was es no ricted access. Howe	atment plant ed into the l ast for stora itrogen stora ms at the s bris during t [X] c. INV iterials were ite containers	(Specify) ise lagoons have been and industrial chem arger lagoon. Lagoon ge of oils and solve ge; TCE was previous ite in 1984. Several he history of manufac ADEQUATE POOR	used by B ical treat overflow i nts. Two a ly stored areas on turing ope o. INSECURE. U burned on sections.	Hack and Decker since Ement plant were also s via a NPDES outfall. above ground tanks are in aboveground tanks. the subject property rations.				

· · ·

BLto Namos ______Black + Decker

HATER SAMPLES

2

(µg/L)

DATA SUMMARY FORME B N A S

Case #: 15947 Sampling Date(a): 2/26-27/91

To calculate sample quantitation lim (CRQL * Dilution Fact

. 9• <u>. . .</u> 0. _:

	_								_									
	Sample No.	QDN66	Ĩ	CDNG 7/6	711	CONGS		CON69		CDIVZO	_1	CONT			1			
1	Sample Ho. Dilution Factor	0.99	-1							1		1	1					
N .	Location	HW-7		HW-1		HW-	9	H W-10	,	AP Blank	2	PW-2	2			· ·		
				<u> </u>	1				_									
l.					ł				1				- 8					
ll –					1				ļ		H							•
1			H		1													
CROL	CONPOUND										_[
10	Hexachlorobutediene	Î	N]							_							
10	· 4. Chloro-J.methylphenol	N	— II	1	13			İ.			_							
10	2-Methylnephthalene		-		-								[
10	liexacht or ocyct opent adlene	∦	-1															
10	2,4,6-Irichtorophenol	g [-1	u	1										_			
30	2,4,5-1richtorophenol	 			13													
10	2-Chioronayhthatene		-1	· · ·					_									
50	2-Hitrosniline	₩ -									_							
10	Dimethylphthalate	 -							-									
10	Acenaphthylene	· [] [_		_		_					
10	2,6-Dinitrotoivene	·# -		[· · · ·								
-30	J-Hitroshitine	1	17	li	万													
10	Acenaphthene	· · · · · · · · · · · · · · · · · · ·		[-							-							
50	2,4-Dinitrophenol		NI NI		113						_							
-30	L-Nitrophenol		词		<u>11</u>		u3		万	<u>م</u> ا ا	15		uj					
10	Olbenzoluran	·∦ -	<u></u>		⊮≍∣		[[•]		∥ ≌	-			H				1
10	2,4-Dinitrotoluene	- -				·												
10	Olethylphthalate	-		·			 			∦			<u> </u>	 	I		 	I
 		- -		-						║						 	 	
<u>10</u> 10	<u>fluorene</u>	-81-		·				 ·		║╶───┣━				II	1			
-50-	4-Nitroanitine	-81-	114	 -	113	·		·		H								
l			<u>u1</u>		11			 ·		↓↓						I		20
50	4,6-Dinitro-2-methylphenol	- -	_		<u>LN</u>		·	∦I·				∦						<u> </u>
 		- -					·	-	 -									1
II	Π			II		II II	<u> </u>	<u>N</u>]		<u></u>		<u>π</u> Ι		A				<u> </u>

Black + Decker Site Hamma

HATER BAHPLES

(µg/L)

Case #: 15147 Sampling Date(=): 2/26-27/9/

To calculate sample quantitation limi (CRQL + Dilution Facto

Sample do.				CINC	CINCZ/CZAS		ON6Y		CDN69		CON 70		CON72					
Dilution factor		0,99		1			·	/								- <u> </u>		
	Location	HW-		Hw	- 8	H	10-9	Hu	1-10	AØBIA	nK2	PH.	- 22					
																	i	
				,							1						ĺ	1
	•	-																
ROL	COMPOUND]						<u>]]</u>								
10	N-Nitrosodiphenytamine					[_		-						-	
10	4-Bromophenyl-phenyletker																-]]	
75-	"Hexachi or obenzene								_								-[]	
50	Pentachlorophenol				四		_		-						-		-	
10	Phenonthreno							ļ				l	-			l	-	
75	Anthracene			l				H		1]		[-	
10	DI-n-butytplithetete	 	 '	I		I		H		I			-		-		-	
10	fluoranthene			i		l		 		l				!			-[·
10	Pyrene				_	i		I									-1	
10	Butylbenzylphthalate			I	-	II]	_	. []					-		-	
20	3,31-Dichiorobenzidine		LU3		LUJ	┃				.∦						┨		
10	Benzo(a) anthracene	I	.	¥		 		N	[I——							-	
10	Chrysene		.	l	-	I]	li		- []		I					- [
10	blo(2-Ethythenyl)phthalate		.	·		¥]	· []		-{		i				.		
10	DI-n-octylphthalate		-			l				-						· []		
10	Benzo(b) fluor anthens		-			H		· II			-l	l				· [
10	Benzo(k) flur oan thene	-	-		_			.				I				· [
10	Bonzo(a)pyreine		-							- []	_	l		 			-	
- 10	Indeno(1,2,3-cd)pyrene	-			_	. []				- 🛛	_			I			_	
10	Olbenz(a,h)anthracene	.	-		_ _	-		- []		- []				i		·]]	_	
10	Benzo(g,h, 1)perylene	-		-		-		- []		-	_ _	[]		I		·II	-	
]		- []	-	-		. []	_ _	-		-				I				-
		-∦	-1—	- [[-		- 🛛		- [¥		·	-	0110
			_!	. H		. <u> </u> _	!	A			!	А	!					
ROL	Contract Required Qua	ntitati	on L	imit			Act	ton L	ovel (Exists			8	KK NAR	RATIV	K FOR		
																		vlaad
									•								/	
			_		_	-	_				-	_						

ge bor a

PESTICIDES AND CB'S DATA SUMMARY FOR.

Site Hanos Black + Decker

WATER SAMPLES (µg/L)

Case #1 15947 Sampling Date(=): 2/26-27/91

To calculate sample quantitation limi - (CHQL + Dilution Facto :

	Sample No.	46MED	14 C.DN25		CDN2C.		CONST		CDAU8		CDN29		CDN30		CONST		CDN3
	Dilution factor		, , ,		/ /		/			·	1.01]		1	·		
	Location	MH-2A	MW-	28	Mil.	2	MW-9		MH-	<u>И</u>	MN-12		Mw-		PH-3		PW-+
	1			P	I right			Į.				P	Field D of CDN	up	4		1
	,	1		Į,	Field D Of C DN							y,	of CON!	26	Å		1
	,			ļ,	07000						i	ļ,		Y	4	Ņ	1
CRQL	Санрани			, /	<u> </u>		- (* *********		÷	, , ,		r		7== /		┎┶═┷╏	
0.05	alpha-BHC			-[/	l	-])				i	/!	1-	l'	<u> </u>	<i>ا</i> ا	1-1	//
0.05	beta-BHC		_	- /	(-]		i]	/!	1	A	1'	()'	1-1	/!
0.05	delta-BNC			- _'	1	-			!	()	ı'	1'	 	·[·!	(/	1	/!
0.05	*ganna-BHC (Linduna)			_ '		_	·] ·		!	11	I'	·['		·['	۱ <u></u> '	(P	۱ ۱
0.05	•Heptachlor			_ ′		_\/	·		·'	1	/ '	·['	8	·['	íl'	¹	/ '
0.05	Aldrin			- '	[]	_ /	·	}	,'	1P	\'	·['	[·['	· []'	1	ا '
0.05	Neptachlor Epoxide			_ ′	1	-	·		,'		I'	·['	l	· '	[]'	<i>\</i>	1
0.05	Endosulfan l			_ '		_ /	·		, ———'	ľ	l	·] '				V	4
0.10	Dieldrin			_ '		_ /	i		i'	ľ	l	·]	·			!	
0.10	4,41-DDE			_		_ _/	l	·	<u>،</u>	!	1	·	·]			<i> </i>	
0.10	*Endrin			_		_\/	۱I	, ₽	('	· !	1	·	· []	-[· []	· !	1
0.10	Endosul fan 11			_	-	_ /	۸ J	·/	l	. ′	(-	· []		· []	·\!	
0.10	4,44-000	_ _		_	. []	_ ľ	d}	۱ <u> </u> ا	4	· '		-		-	-	- 7	
0.10	Endosul fan Sul fate			_		-1'	11	1V	1	-['		-	-	-	-	· !	(
0.10	4,4*-001				-	-!'	d 1	() ¹	A	- '	[-	-		- []	· '	[
0.50	•Hethonychlor				-	'	l /	(·ľ	1	-['	[-		-	-1	-['	[
0.10	Endrin Ketowe			_ _	-	_ ′	۱ا	1	ll	- '			- 🛛	-		-]'	
0.50	*alpha-Chlordane			_ _	-	′	1/	(^y	d	'			-	-[- [· []
0.50	*yama-Chlordene			_ _	- []	'	۱ <u> </u>	('	1					-		-	·
1.0	*Toxophene			_ _		 '	l'	1'	l			- -	- [- -		-	·]
0.50	*Aroclor-1016							1'	1		-]			-			- H
0.50	*Aroclor-1221						. ′	.['	·	_		_ _		- -			-]
0.50	*Aroclor-1232					_ _	. '	.['		_		_	- 1	- -		-	- [
0.50	*Aroclor-1242						. ′	· '		_		- -		- -		-	·]
0.50	*Aroclor · 1248		_	_ _			. '	·['		-		-1-		-	-		
1.0	*Aroclor-1254				_		-] '	·		-		- -				-	
1.0	*Aroctor-1260						_	ىصار		<u>حلم</u>	<u>. </u>	<u> ما ح</u>		عدلم	VK PON C	سر الم	Jemana

CRQL - Contract Required Quantitation Limit

Aution Level Kalets

Page -2 of Z'

DATA SUMMARY PUMMI PESTICIDES AND PCB'S

Site Names Black + Decker

WATER BAHPLES (µg/I.)

Case #1 15947 Bampling Date(s): 6/26-27/71

To calculate sample quantitation lim

;

- (CHQL + Dilution Fact

		 Pw-	6	P 11.		<u></u> 		19 819	nĸ	<u></u>		- ShI -	2	<u></u>	.3	<u> </u>
η <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		Pw-	6					<u>A 4 BIA</u>	<u>nk</u>	<u> </u>	I		2		. 3	SN-4
	Î			ciend 1							1					
	1			Field I Of CDA	v36	Field Du Of CDI	4 P V35									
N																
				[
													.			
]					
				l												
				H									.			
													.			
			_										.			
				II	_								-			
			_	I									-[]			
			-	I		Î							-		· 	
			-			· · · · · ·							-	l'		
			-]	-	ļ									· 	
			-		-								-		· 	
				· []		I							-		-	
				I	-	I									-	
			-	I		I										
					_[I				i						
		l	_									·	-			
		·	-	. []				[-	l		
		I			_						 		-		-	I
		[_		_	.]	·[-		-	
		·	_	- []	-						 					
		I		-	-	· ·	· [-		-[[
			_	- 🛛			·						-		-	
	 		_	-]]	_		·	I					-	I	-	696
	·[-	-∦		· [[-	[-	
	<u> </u>		-	<u></u>	_!			A	l'and							

....

C B ' S Р DATA SUMMARY FL AND PE 8 T T C T h ю. f

Bito Hanos Black + Decker

WATER GAMPLES (µg/L)

Case /: 159/7 Sampling Date(a): 2/26-27/91

To calculate sample quantitation 1/ - (CHQI. + Dilution Fac

•

	Sample No.	CUNZI	CDN54	CONSE	CDN58	CONGO	CDN61	CONGE	CONGY	CDN
	Dilution factor				<u> </u>	+1W-1		HW-3		
	Location	SW-5	\$W-6	5W-7	<u>Sw. 8</u>	<u></u>	HW-2	<u></u>	H 11.5	Hh.
									Jeft	stu
CROL	CONPOLIND ,				<u></u>					
0.05	alpha-BHC						I			I
0.05	beta-BNC					.				
0.05	delta-BNC				l				- -	ð
0.05	*games-BHC (Linulane)				.]					
0.05	*Neptachlor					_	.]			
0.05	Aldrin					_				
0.05	Neptachtor Epoxide				.					
0.05	Endosul fan t					_	- 			
0.10	Dieldrin		-		-	_║		· 		-]
0.10	4,41-DDE		- []		-	-	-1	.		- []
0.10	*Endrin		. 	- []]	- [] []	- [] []	- []	.		
0.10	Endosul fan 11		-	-	-	- []]	-	·	. []]	-
0.10	4,4'-000	-		-	- 🛛	-		-	-	
0.10	Endosul fan Sul fate			-	-[[]	-		╶╢╌╾╍╌╧╏╼╍	-8	-1
0.10	4,41-001	-	_	- []]	-	-	- []	- [] []	- [] [- [
0.50	•Methoxychler	- [] [-	- 🛛 👌			╌╢╼╾╴╌╍╸╢╼╾	- 🛛 🕽	- []
0.10	Endrin Ketone	-	-	-	-			- 🛛 🛛	- 🛛 🕽	-
0.50	*alpha-Chlordane					[[]		- 🛛 👌		-
0.50	•game-Chiordane		-8	-			╾╏╼╼╍╌┙╾╎╼╌		-8[
1.0	*Toxaphene								-][- [
0.50	*Aroclor-1016	-8					-[]	-	-	-[
0.50	*Aroclor-1221		_[]						-	
0.50	*Aroclor-1232							- [] []		- 5
0.50	*Aroclor-1242				_			- [Calche
0.50	Aroclor-1248						 -	╾╏━╾╍┷╌╎━╴		
1.0	*Aroclor-1254			┉║┈┉┈║┈		╽		-[- []	- f
1.0	*Aroclor-1260	_ا			<u></u>	<u></u>]				

CROL - Contract Required Quantitation Limit

Action Level Kalete

Site Hames Black + Jecker

WATER GAMPLES (µg/1.)

Case #1 15947 Bampling Date(s)1 2/26-23/11

To calculate sample quantitation lim

.;

Т

7.

- (CHQL + Dilution Pact

	Sample No.	CDN66	CDN67	CDN68	CDN69	CDN70	CONTZ			Υ
	Dilution Factor		/	<u> </u>	/	·	/		·	
	Location	HW-7	HW-8	HW-9	HW-10	AP SIANK	PN-22	· · · · · · · · · · · · · · · · · · ·		
						1		1		
						8				
CRQL	CONPOLNO			₅║ ┈┉┉┈╤┍ ═	• [] 	∦ 	и. И		.	
0.05	elpha-BHC			-					· []]	·
0.05	beta-BHC	[-		[·┠────}	•
0.05	del ta-BHC		[- [[l	·	[]	·III	· [
0.05	*gema-BHC (Lindene)			-	- [·	 	·	
0.05	•Neptachlor	l[·	-	-			l	·	
0.05	Aldrin			-	-	╢	·]]		·]]	.[
0.05	Neptachior Epoxide			-	-		·I	·	· [] [·]
0.05	Endosul fan 1	I		-		·	· [·	-
0.10	Dieldrin	 	·	-	-	· []] - -	• • • • • • • • • • • • • • • • • • • •		- 🛛 🛛	-
0.10	4,4**00E *Endrin	[]	· [[-		· ∥		· · · · · · · · · · · · · · · · · · ·	· 🛛 🛛	
0.10		·	.[]	-		·]		· · · · · · · · · · · · · · · · · · ·	- 🛛	
0,10	Endosul fan 11	·ll				· []]		· · · · · · · · · · · · · · · · · · ·		
0.10	4,4*-DOD Endosul fan Sulfate	· 				·			-	-
0.10	4,4*-001			-	-	·		· [· 🛛	•
0.50	*Hethoxychlor	•]	• [] []					· []		
0.10	Endrin Ketow		-[[-		- []				-
	المحجم المتحر المارك أستحصر المتحد والمحجم والمحجم والمحجم والمحجم والمحجم والمحجم والمحجم والمحجم والمحجم	-	- []		-				· [
0.50	*siphs-Chiordane *gama-Chiordane	-	-			-	• []			-
1.0	*Toxaphene		-[]			-	- [!	·]	• [] []	
0.50	*Aroclor-1016			-		- [[]		·		
0.50			-[[[- [] []	-	╶╢╶──────┝╾║╼╾╸	- [-
0.50	*Aroclor-1221 *Aroclor-1232		-8			-				-
11#-	*Aroclor-1242	-				-		-		
0.50	*Aroclor-1248		-					-	-	
1.0	*Aroclor-1254	-8	╾╢╼╍╌╌╌┤─						-	13
1.0	*Aroclor-1260									
U					stion Level	Kxlata		KE NARRATIV	CODE	DEFINIT
	Contract Required Qua	NEILATION P					-			svised 8
							•		T "	
	بنين بيكش بحمق الأخد									

Page 25 of 34

DATA SUNHARY FORME VOLATILES 1

Ito Namo: Black and Decker

BOIL BAMPLES (µg/Kg)

ase #: 15947 Sampling Date(s): 2/27/9/

To calculate sample quantitation limit (CRQL + Dilution Factor) / ((100 - 1 moisture)/100)

															7		V		7
	Sample No.	CON 3	2	CDIN4		CDNG	<u>H</u>	CDNY		CDNY		CDIN4		CDNY	<u>,</u>	CONSO		CDNS	
	Dilution Factor	1.0	43	1.43		1.43		1.33		1.21	<u> </u>	1.4	3	1. 3	2	1. 30		<u>!!</u> 2	. <u></u>
	X Holeture	16		- 11		16		21		17		35]	57		46		40	
	Location	5-1(50)	5-2(3	6.)	5-31	'3')	5.4 (2	2	5-89K	(2')	<u>Sd - 1</u>		51-6	2	<u>Sd - 3</u>	2	50-4	_
																		Field J	hip.
	· .				· .		H		i									Field S of CDN	6
									l		ļ.								• •
CRQL	CONPOLND																		
10	Chieronethane							- <u></u>			us						 ₿		-
10	Brownethane		11		M		UJ		45		<u>4</u> 3		<u>UJ</u>						- -
10	Vinyl Chloride																		- -
10	Chloroethane																<u> </u>	I	- -
5	Methylene Chloride	6	₿	5	8	6	1	_10_	B	13	8		<u>B</u>	4	B	3	<u>8</u>	4	8
10	Acetone	6	B	3	8	4	1	5	A	7	8	<u> </u>	B	_7	0			_14_	-12
5	Carbon Disulfide								11		UJ		LN I						- -
5	1,1-Dichloroethene																	I	- -
5.	1,1-Dichloroethene																		_ _
5	Tetal 1,2-Dichloroethene																		-
5	Chieroform									I	<u> </u>	. <u></u>					· '		_ _
5	1,2-Dichloroethane																. '		_ _
10	2-Butanone					8													_ _
5	1,1,1-Trichioroethane		-										<u> </u>						_ _
5	Carbon Tetrachloride				1-													· · ·	_ _
10	Vinyi Acetate	-	<u>u</u> j		IN1	[]	NJ		LN I		LI		HJ	1				I	
5	Bremodichtoromethane				1		-	1								<u> </u>			
 		-	-1				-												
1		-	-1	.	-	I	-1		-		-								
 		-1				1	-	ģ	-1		-1		-1	1					
}				· [1	-		-1	.	-1	I	-1		-	1	1		
			-1	-	-	·	-		-		-1		-1	I	1-	1	1		
l			-		-1	·	-		-	1	-		-		1	· [<u> </u>
h	₩				-	 	-	 	-		-1		-	1	1-	1			<u> </u>
			<u>معطم</u>		ي حقاق	Λ		<u>n</u>	صعماه		lanc			1	-		<u> si anii</u>		-

CROL - Contract Required Quantitation Limit

SEE MARRATIVE FOR CODE DEFINITION

Page db of 3

DATA SUMMARY FORME VOLATILES 2

Site Hanes Black and Decker

 $\hat{}$

6011. 6AMPLES (#9/Kg)

Case #1 15947 Sampling Date(s): 2/27/7/

To calculate sample quantitation limi (CRQL * Dilution Factor) / ((100 - % moleture)/10

CDN		CDNS	the second s	CDN		CDN	43	<u>CDN</u> 1.3	442		4/ 73	CDN		CM		CDN 3	Sample No.		
- <u> </u>		1.1	÷	<u>/, 3</u> 51		<u> </u>		17	32				the second se	<u> </u>		<u> </u>	Dilution factor		
-1	2	46	I	21		Sa		5- 89	(2)			5.3	(36*)			5-1 (5	X Hoisture Lecation		
Field of CD				··															
=-1 / -				- Timtriana	 \	-	H		<u></u>				╼┰╼═╎						
			·				TUT	·	Eu -				-				blaropropane		<u>ج</u> ا
3	-		J	7							-					- 			ӡ╟
							_				_						chloromethane	Dibromoc	5
			- <u>-</u>						-		-1-				-		richloreethene		5
Ł			<u>UL</u>								_ 11		_ #		_ 41_			Benzene	ᆜ
							-								-		. 3 · Dichloropropene	lrens-].	<u>ک</u>
			-								-		-		-		l - 2 - pentanone		10
																		2-Nesona	10
I 37		_5_			_												leresthene]stcachl	2
7						·			$- _{\overline{m}}$			[- <u>-</u>		IIL		-letrachloroethane		
	二平	·	44		-144		- 44		<u> </u>		- 4		_ 11		-145]elurne	2
-		i	-1-+-		- +		-	 					-1-1-		-1-†			ChlecelaEthylber	-5-
	-1+-														-1-†-				5
			II		$\overline{\mathbf{v}}$	·					<u> </u>			I	II				5
							-			 						l			
				·				ii		I	- -			8		l	·····		[
-				•				∦		Į	- -				-]			
										 				 		·			
															-				—
																	t	Sivrene	5

Page 27 of 3

DATA SUMMARY FORME VOLATILES 1

Bite Name: <u>Black and Decker</u> Case #: <u>15947</u> Bampling Date(s): <u>3/27/91</u>

BOIL BAMPLES (//g/Kg)

> To calculate sample quantitation limi (CHQL * Dilution Factor) / ((100 - % moisture)/10

										 				-			
	Sample No.	CON 5 1. 39	3	CONS		CUNS	2	CDN 5	2_1	 				I			
	Dilution factor	1. 39		_1.7	1	1, 2		1.39		 					•		
	X Hoisture	37		. 42		50		a3	1								
	Location	5d - 5		5d - 4	<u> </u>	<u>54 - 2</u>	7	50-8	, 1	 							
										 							,
		Field Du of CDN	· P.													•	
		PA CDN	5 2		•				8				•				
CROL	COHPOLNO									 							
_10_1	Chiorons thans						·			 							
10	Bromomethane																
10	Vinyl Chioride																
10	Chloroethane																
5	Hethylene Chloride	5	8	14	8	25	B	<u>31</u> <u>35</u>	5								
10	Acetone	14	$\frac{B}{B}$	11	B B	25	B	35	8	 							
5	Cerbon Disuifide																
5	1, I-Dichloroethene									 							
5	1, I-Dichlorosthane									 							
5	Tetal 1,2-Dichloroethene									 		—					
5	Chieroform									 							
5	1,2-Dichloroethane	1				•				 							
10	2- Jutanone	1	-							 							
5	1,1,1-Trichloroethene	- 			1					 -							
	Carbon Tetrachloride	-	-		1				 	 							
10	Vinyi Acetate		-		-					 					·		
	Brenodichioromethane		-	8			·	·		 							
<u></u>		·{	-				·	I		 				1		1-	
₿¦			-	I	-	I				 				· [
 			-	i	-		·	l	I—	 		 	·				
 			-					l		 							
 			-	I						 	·						
			-				-			 <u> </u>						·	
			_				-		<u> </u>	 						·	
						<u>]</u>	<u> </u>			 <u> </u>		_		_			

CRQL = Contract Required Quantitation Limit

SEE WARRATIVE FOR CODE DEFINITE

Bite Hanus Black and Decker Case #: 15947 Sampling Date(s): 2/27/9/

8011. SAMPLES (µg/Kg)

> To calculate sample quantitation limit (CRQL + Dilution Factor) / ((100 - \ moisture)/100

Sample No. Dilution factor X Hoisture Location	<u>CDN</u> 1.3 37 Sd - 5		CDN5 1.2 49 50-0	7	CDN5 1,75 50 5d - 7	٢_	CDNS 1. 31 23 5d-1		· · · · · · · · · · · · · · · · · · ·				•		`	
CROL CONFOIND	Field 1 Of con	52													i .	
5		- - -]								
						U .		<u>.</u>								
10 6-Nethyl-2-pentanone 10 2-Nesanone				-								+ + + +				
							<u> </u>						·			
		-				- - -									·	
CRQ Contract Required Qua	ntitati	ou L	lmit	<u>- 1</u>			. I	1 <i></i>		<u> </u>	R	8	EK NARD	alaa Ativ	The Performance	

DATA SUMHARY FORMI B N A S

Site Hames Black + Decker

SOIL SAMPLES (µg/Kg)

Case #: 15947 Sampling Date: 2/23/91

FTo calculate sapple quantitation lim

(CRQL + Dilution Factor) / ((1 - & moisture)/1

			<u> </u>	<u> </u>	<u>jí</u> :	- Ch. 11		01 4/1 3		CDN43	<u> </u>	CDNYS	77	CDN 4	7 Y	CONS	31	CONSO
1	Sample No.	CIN39		CJN40	<u> </u>	CDN.II		<u>_CDN42_</u> 1.99		1.99		2.00		1.97		ده د د		1.97
	Dilution factor	1.97		1.97		1.97		the second se	-11-	/8		28	—-[ŀ			18		31
	X Hoisture	17	<u></u>	12	<u> </u>	16	∥	28	<u>-</u> [[·		π		 ·	52-2	-1	5-1-3	[31 چا-ب
1	Location	5-1150	꼬.	5-2 (3	21	5-3/3	드∥	5-4(2'	∠∥.	S-BAK/2	<u>-</u>	<u>ا - پنين</u>	N					
ų		Į.	·		l l	1	H		N									Field D.
Ŋ		1	ľ		A	ļ	ĥ				8		l			1		of aDN
3	·		A				h		H		·			•		1	1	•
CROL	CONPOUND											r			h	<u></u>	~ ⊸¦	
330	Phenol]			<u> </u>			l-							<u> </u>	
330	ble(2-Chloroethyl)ether	\I					<u>ا ا</u>	-								 	\ 	
330	2. Chtorophenol	∥Ⅰ.]			-		·						 		
330	1,3-Dichlorobenzene	Ŋ	8					¶I								1		
330	1,4-Dichlorobenzene	<u> </u> .				l		∥ _		·	<u> </u>	∖		∖ }	 	l]		
330	Banzyl Alcohol	I		·		 i		╏╏-		│].		 			 	ų		
330	1,2-Dichlorobenzene	I				li		∦ -		۱ ا	}	[]		··		II		
330	2-Hethylphenol	I			I	l		-		┨I		 	۱ İ					∖−−−−
330	bis(2-Chioroleopropyl)ether	I					 	·		۱l			 			i	{}	\
330	4 · Nethylphenol	<u> </u>				I		.		۱I		 	 	Į	 		·	
330	N-Nitroso-di-n-propylanline	. <u> </u>		l	۱	I	·	 _		∖	\ 				1	¥		
330	Nexachloroethane	. 					·I	 .		¶I				·	·[I		
330	Hitrobenzene		·			I	.	.║		l			1—	[· —	·H		[
330	Isophorone						-						1-	I	·	l	-	[
330	2-Nitrophenol					.[]	.	. .						¶	-	· [[
330	2,4-Dimethylphenol	-	<u> </u>	I	1		-					·		·	-	·[[-	H
1600	Benzoic Acid		 	i								I		. []	-	·]]	-	H
330	bis(2-Chloroethoxy)methane						-					I	·		-	.[-	· [-
330	2.4-Dichterechenet							-		l			·				-	
330	1,2,4-Irichtorobenzene				1		_	_ 			1-					-1	-	·
330	Nephthalene										I				-	- []	-	
330	L·Chlorosniline					_	_									-]	-[75
		I				_		_ []]			I		.			· [-	- 53
Ŋ		-1						<u> </u>			<u> </u>		<u> </u>					
L	فتجارك فكالمتحافظ فالمتحافظ فتحصر والمجاج والمحافظ والمحاف				_													

CROL - Contract Required Quantitation Limit

SER NARRATIVE FOR CODE DEFINIT

DATA SUHMARY FORMI B N A 8 2

Bito Honos Black + Decker

· · · ·

8011. 8AMPLE8 (µg/Kg)

Case #1 15947 Bampling Date(s): 2/27/9/

(CRQL * Dilution Factor) / ((100 - % molsture)/

Sample No.	CJN 39	_ _	C DN40		N41	<u>(2)</u>	42 19	CDNY	2	CDNY		CMY		CON		<u>C</u>
Dilution factor	1.97	_ _	1.97	i	.97			1.99].	2.0	<u> </u>	1.9			00	
X Hoisture	17	- ⊼	12		16			19		28	[20				
Location	5-1 (50	Ľ_	5-2(36*)	<u></u>	3 (1')	5-4	<u>('6</u>	5-84K	<u>(2</u>].	5d -		<u> </u>	2	Sd.	-3	<u></u>
	1			1		l.										Fie
		Ï		l		1	ļ									010
al Compound						Í										
0Nexachlorolutadiene	\[]]		1						[[Î
0				Ì												
0 2-Hethylnaphthalene															_	
0 Hexachtorocyclopentadiene							-									
02.4.6-Trichlorochenol	 _	#					-						1		_	
0 2,4,5-Trichtorophenol	· []			·]	_]
02·Chloronaphthalene															_	·
Q2-Wisroeniline	·			· 🛛			-								_	i
0 Dimethylphthalate				·		- 🛛	-	·]			·	_	
0 Acenaphthylene	╢━━━━┛						-								_	I
0 2.6-Pinitroteluene	· II			·		·	-						117	·	- 777	[
0 3-Witreaniline	∦ -			·∦		-	-				<u> </u>		11		<u>[</u>]UJ	I
0 Acenephthene		778-		· H					117		<u></u>				-	
0 2.4-Dinitrochenol	·III-/		11 11	H	[1]	; N	<u>u</u> 1 <u>u</u> 1		45		11 II		-		-	
	╶╢╼╾╍╌╍╼╸╽╺	┶╌╢╌	"	·	- <u>"</u>	`╢	- -		<u>"</u>			·				I
0 <u>Pibenzeluren</u>	.∦ -			-		- 🛿	-1							l		·[]
10 2.4-Dinitratelume 10 Diethylphthalate	- [] -			-#		-11	-									· I
	- -			- [[- [[-		"						-	
10 4-Chlorophenyl:phenylather	· [] []			-		- [[· '				-}		-	
10 <u>Fluorene</u> 00 4-Nitroaniline		┷╌╢╌		-		-	-						113		- 17	
	╶╢╼╾╍╌╼╸╢╸			-		-∦	-					i	127		-1	ł
00 4.6-Dinitro-Zmethylehenel	- -			-∦		-	-									
	- -					-	-								-	1
	allan e ta					<u> </u>					lanasi a a					Seam
L = Contract Required Quan	821282104	11101	16									SE NARR	ATIV			
										,					Lei	vise

3 DATA BUHHARY FORMI BNAS

Bito Namos <u>Black + Deckor</u>

SOIL BAHPLES (µg/Kg)

Case #: 15947 Sampling Date(s): 2/27/91

; To calculate sample quantitation lis (CRQL + Dilution Factor) / ((100 - % moisture)/)

14ge ____ 04 __

		(A) 11 9 4	<u>т</u>	O Mili	<u> </u>	0 1 1 H	<u> </u>	CDN42		CDN 43	-γ	CDN45	<u> </u>	CDN4	5	CDNS	0	C325
	Sample No.	CDN39	<u>_</u> _	CDN40	<u></u>	CDN4/ 1.97		1.99		1,99		2.00		1.97		<i>d.e</i>		1.92
	Dilution Factor								-	18		28			and the second s	/9	2	37
	X Holsture	17		12			$\overline{\mathbf{x}}$		$\overline{\mathbf{x}}$	5-09K(2	57	Sd-1		<u>بردم</u> لر- اری		Sd-	2	<u></u> <u></u> <u></u>
	Location	5-1 (50	2	5-23	5	5.3()	2	5-4(2'	-1	3-0-11(2	-4	<u>Ja-/</u>					-	
ĥ			1					i	H		1		1					Field D
1		1							- 11				1					Field D of C.D.
1									Ì					•	H		1	•
CRQL	COMPOUND						[
330																		· •==
330	4-Bromophenyl-phenylether	 																
330	Nexachlorobenzene								8				[
1600	Pentachtorophenol																	
330	Phenonthrene							.										
330	Anthracene							<u> </u>]							
330	DI-n-butyiphthalate							<u> </u>										·
330	fluoranthene							·	1									
330	tyrene			76	J													
330	Butylbenzylphthelete							l l									1	
660	3,3°-Dichtorobenzidine							[]]					·		11		LL I	
330	Benzo(a)anthrocane					l											1	1
330	Chrysene							1										·
330	bis(2-Ethylhesyl)phthelete											410	J					·
330	Di-n-octyiphthalate		1			1												
330	Henzo(b)fluoranthene																	
330	Benzo(k) fluoranthene																	
330	Benzo(a)pyrene																	
330	drame(ba-E.S.I)ensbel	-	1		-1	1		1										
330	Dibenz(a, h)anthracene	1	1		-1	Щ <u></u>	-						1			1		
330	Senzo(g, h)perylene	1	1		-1											1		
			1	 	1-								1	1	T			1
		-			-1	I	-					1	—	1	1	1	1	
V		•{	1-	· [-1		-	-					1	· [·	1	1	1-	
			-l-m			<u>_n</u>					a sector		1					a di seconda

SEE MARRATIVE FOR CODE

DATA BUHHARY FORMI B N A 8 1

Site Names Black + Decker

SOIL SAMPLES

(µg/Kg)

Case #1 15947 Sampling Date: 2/27/91

.

To calculate sample quantitation lim (CRQL + Dilution Factor) / ((1 - % moleture)/)

· . i

		ALUCE	CJN57	CON 59	M	Ĩ		T		land the second se	
Sample No.	CON53	<u>C)NS5</u> 1.97	1.94	1.15				· [
Dilution Factor	<u> </u>			35	- []			· [
X Holsture			501-7	51-8		[[
Location	50-5							- [1		
					t						
								:			
CRQL CONFOLNO			∜ i -	- <u>(</u>)))		î Î	T	Ϋ́ Τ	The second seco		
Phenel								-[[-			
310 bla(2-Chloroethyl)ether				-		·		-1			
330 2 · Chi ar aghienol	Ⅰ	· 	· [] []			╎───┃		-	[]-		1
330 1,3-Dichierobenzene]	.		-		·					
330 1,4-Dichlorobensene 330 Bensyl Alcohol		.		- [·		- [·
and the second se		-[- []		·		-[·		
330 1,2-9 Ichlorobenzene		- [-			·		-[·
330 2-Hethylphenel	.[╺╏╼╍╍╍╌╎╍╍	-							-
310 bis(2-Chieroleoprepyl)other		-[[-	270	J	-					
310 4-Hethylphenol		-	-		×	-	[-
310 H-Hitroso-di-n-propylanine		-	-								- [
330 Henachtereethene	-		-			-					-]
330 Hitrobensene			[]					_			- [
330 Leopherene		_		[-[]				 	• [
330 2-Hitrophonol	-	_]]	[]							╽╼━━━━-┃━━	-[
330 2,4-Dimethylphenol		╾╏┯┯┯╾╎╌╴		[] []							
1600 Benzolc Acid		_]]-		-	-	[
330 bls(2-Chloroethexy)methane	-		_ []			-		[l	-1
330 2.4.9 ishterephenel			[]		Î	-	 -		 		-1
330 1,2,4-trichlorobenzene									 		
330 Haphthal ene	_]					_			 		
330 4-Chloroonlline						_	-				
			[]	[] .		_	-		}	╏	
										l	

SEE MARRATIVE FOR CODE DEFINS

Blto Namos Black + Decker

` ;

BOIL BAMPLES (µg/Kg) 2

Case #1 15947 Sampling Date(s): 2/27/91

S To calculate sample quantitation lim (CHQL * Dilution Factor) / ((100 - % moisture)/)

Sample No.	CIN53	CONSS	CDN57	CDN59					ſ
Ditution factor	1.95	1.91	1.94						
X Hoisture	38		32					·	i
Lecation	501-5	54-2	50.7	Sel - 8	·				
					1		1		
									8
CROL CONPOLND			"						
_330itexachtaralattadiena									.
310 4-Chioro-J-methylphenel								II	
330 2-Hethylnephthelene									
330 Nexachi or ocyclopentediene			l						
				I	¥				
1600 2,4,5-1richlorophonel			· I [
330 2-Chieranechtheiene		. 						I	
1600 2-Nitreaniline									
330 Dimethylphthelate	[]	·							
Acenephthylene		. 						I	
_3392.6-Pinitreteluene						·			
1600 3-Nitreeniline	<u> </u>	<u> </u>	1	<u> </u>	[]	· []			
Acenephthene	·				.]				
14092.4-Dinitrophenel								·	-
1600 4-Hitrophenol							· · · · · · · · · · · · · · · · · · ·		
310Pibenzefuren				·					
330 Diethylphthalate									-
A:Chlorophenyl:phenylather			-						
_310fluorene				· 					
1600 4-Nitroaniline	[<u> </u>	LUJ	113						
1600 4.6-Dinitro-Zeethylphenel			- [-					-
	.]		-1						
Landar and the second s			A						
CROL - Contract Required Quan	titation L	init					EE MARRATIV	E KOR CODE	MARNIT
									v Sind 1
						+			

DATA SUHHARY FORMI B N A 8 3

Bito Hamos Black + Decker

60IL BAMPLES (µg/Kg)

Case #: 15947 Bampling Date(s): 2/27/71

To calculate sample quantitation lim (CRQL + Dilution Factor) / ((100 - % moisture)/1

			Television of the						T				<u> </u>	فالتفلية بالشفاطية	-		The second second second second second second second second second second second second second second second s	
	Sample He,	CIN53		ODNS	55 I	CONS		CDN5	2						I			
	Sample Ne. Dilution factor	1.95		1.91	7	1.94		1.95										
	X Nelsture	38		39		32	I	35	ł									
l.	Lecation	Set - 5	7	Sd-		sd.	7	5d-8	;									
		╎┈┷╧╌→			<u> </u>		B		1		[·							
1		1		h					H					1	,	1		
I .		1		1	l	1								1		1		
		1		ļ.		1				ł				•		ł		I
CROL	CONPOUND		,		 !		()		[]		() }		\}		╒╼╼╼╴╢		(î	
	H:Hitrasodiphenvianine						II			 					 			
_ 330	4-Bromophenyl-phenylether				. 	<u></u>	[·										
330	Hexechlorobenzene			l	.	I		l	 							۱ا		
1400	Pentachtorophenol																	
330	Plienenthrene					l		<u> </u>		۱l								
330	Anthrecene]]			<u> </u>	۱ <u> </u>]
330	Di-n-butylphthalate			· _												·	! i	<u> </u>
330	fluoranthene	1		1		1			۱ <u> </u>					I				
330	Pyrene	· [1														
330	Butylbenzylphthalate	1														·		
660	3,3*-Dichlorobenzidine	1	চ্য		তা		1J		UJ									
330	Benzo(a)anthracens	1																
330	Chrysene																	
330	bis(2-Ethylhexyl)phthalate	1																
330	pi-n-octylphthelate	-1	1-		-	1	-						1					
330	Benzo(b) (luoránthene	-1	-	1	-	1	-1	1						1				
330	Benzo(k) / Luor anthene	-1	-		-1		-1		1-	1								1
330	Benzo(a)pyrene	-1	-1	1	-	- II	-		1	·								
	Indeno(1.2.3-cd)pyrene	-	-1	1	-1	1	-	H			-		1	1				
330	Dibenz(o,h)anthracene	-1	-1	· [-	•	-			1	-1	I	-	1	1		1	1
330	Benzo(g,h)perylene	-11	-	•	-1	-	-1—		1	-	1	1	-1	1	-1	1		1
		-1	-	-1	-	·	-[•	-	•	-		-	1		-	1	1
			-	-[-	-	-		·	·1	-1	1	-		-1	-	1-	1
I		~ 		-[-1	•	-	·1	-	- [·1	-	-		- [-1	
				_	<u></u>	<u>_ IL</u>	<u></u>	A	-lama	-	-		d and	-	a damage de la competencia de		, Lange	سسنهار مخالج

BEE NARRATIVE FOR CODE DEPINI

raulund.

Bito Namos Black + Decker

.

,

SOIL SAMPLES

(µg/Kg)

Case #1 15947 Sampling Date(e): 2/27/91

To calculate sample quantitation lis

(CRQL * Dilution Factor) / ((100 - % moisture)/)

· ·	Sample No.	CDN39	CONTO	CDN41	CDN42	CDNY3	CDN45	CDN47	CONSO	CONS
	Dilution Factor	1.97	1.97	1.97	1.99	1.99	2.00	1.97	2.00	1.97
ł	× Hoisture	17	12	16	27	11	28	22	18	57
1	Location	5-1 (50)	5-2(36")	5.9(3')	5-4(2')	5-39(k(3)	50 - 1	50-2	58-3	54-7
		<u>_</u>		<u></u>			¥=	·		Field D
		1					1			OFCON
CROL	CONPOLIND									
	elphe-BHC									
	beta-BNC									
	del La-BHC						╏			
	game-BHC (Lindene)									
	Neptachior							·		
	Aldrin						i			
	Neptachlor Epoxide				·	ⅠⅠ	┨		·]	
	Endosul fan 1						·		I]	
16	Dieldrin					I				
16	4,4*-0DE								I	
16	Endrin		 		II		[]		I	
16	Endosulfen_LI			I I			 		I	
16	4.4*-000		 	I		·	[]			
16	Endosulfan Sulfate			II						
16	4,4*-DDT	II			·					
80	Nethoxychlor									
16	Endrin Ketone									
	alpha-Chlordene									
80	game-Chlordene									-
160	Texephene									
80	Aroctor-1016									
80	Aroćlor-1221									1
80	Aroclor-1232									
80	Aroclor-1242							 	 	· ·
80	Aroclor-1248						· · ·	· · · · · · · · · · · · · · · · · · ·	1	15
160	Aroclor 1254			[370 5		· []	[·	175
160	Arocler-1260								[[]]]	1 2
	• Contract Required Quan	titation L	lait					EE MARRATIV		

81	ta	Ne	-

Black + Decker

501L 6AMPLE8 (µg/Ky)

Case #1 15947 Sampling Date(s): 2/27/91

To calculate sample quantitation lim

(CRQL + Dilution Factor) / ((100 - % moisture)/1

- 76 of 1

						<u>a</u>								
	Sample Ho.	CDIV53	CDN35	CDN57	CDNS	Z_ -	 [-	. <u> </u>					[·	
U.	Dilution Factor	1.95	1.98	1.94	1.95		 		 -			······		
A	* Molstune Location	31	39		35]		 .	
	Location	5-5	50-2	50 -7	50-8	8	 		!					
	· • •				B							· •		
l .			1	l.	H				H					
1	•					- 1			8		i		1	
CROL	CUMPOLIND	N				<u> </u>	 [
	elphe-BHC I	Y		_] []			
8	beta-SHC						 							
0	del to-BNC			_ [] [] []			 							
8	gama-BHC (Lindane)						 							
8	Neptachlor						 [
	Aldrin			- -										
	Meptechlor Epoxide								1					
	Endosul fan 1			-										
16	Dieldrin	-H							_					
16	4,4'-DOE	∦												
16	Endrin						 							
16	Endesul fan 11						 							
16	4,4*-000	•					 							
16	Endosulfan Sulfate						 							-
16	4,4*-DDT						 				<u> </u>			
80	Nethoxychlor													
16	Endrin Ketone				1									
80	alche-Chierdene									" <u> </u>				
80	gama-Chiordene										 	i	_	
160	Toxophene													
80	Aroctor-1016													
80	Aroclor-1221													
80	Aroclor-1232													-37
00	Aroclor-1262						 							
80	Aroclor-1248						 		<u> </u>]		
160	Aroclor-1254						 					I		
160	Aroclor · 1260			A										
	التكافي وتراسط فيتحد والمتحد												_	

WISTEN

TABLE 1A

¥42

SUMMARY OF QUALIFIERS ON DATA SUMMARY AFTER DATA VALIDATION

<u>analyte</u>	SAMPLES AFFECTED	Positive <u>Values</u>	Non- Detected <u>Values</u>	BIAS	<u>Comments +</u>
Al	All aqueous (SDG# MCED44)	J	UJ		A (27.9%)
Sb	MCED72	ĸ		High	B (118%)
	All soils (SDG# MCED44)		UL	Low	C (42.2%)
	MCED64	L		Low	C (66.9%)
	MCED66		UL	Low	C (66.9%) D (79.0%)
As	All aqueous (SDG# MCED24)	L	R E	ctremely Low	E (7.8%)
	MCED61	K		High	B (156%)
	MCED71,74,75	L	UL	Low	D (73.6-84.1%)
	All soils (SDG# MCED44)	L	UL	Low	C (32.9%)
Cđ	All aqueous (SDG# MCED24)	J	UJ		A (±5.0 ppb)
	All soils (SDG# MCED44)	L	UL	Low	C (72.9%)
Fe	MCED31,33,34,36,37	В			F (42.3 ppb)
	MCED39,40,41,42,43	В		High	F (45.7 ppb)
	MCED44,45,51,61,63	J			A (38.0%)
	MCED53,55,56,58	B		High	F (45.7 ppb) A (38.0%)
	All aqueous except MCED68,76,77 (SDG# MCED64)	B	.	High	F.(54.3 ppb)
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	- .
		•			
	1 N				

WISTER

L

TABLE 1A

SUMMARY OF QUALIFIERS ON DATA SUMMARY AFTER DATA VALIDATION

ANALYTE	SAMPLES AFFECTED	Positive <u>Values</u>	Non- Detected <u>Values</u>	BINS	<u>COMMENTS +</u>
Pb	All aqueous except MCED26,35,41 (SDG# MCED24)	L	UL	Low	C (57.1%) D (42.5-77.1%)
	MCED26,35,41		UL	Low	C (57.1%)
	All soils (SDG# MCED44)	L		Low	C (56.0%)
Hg	All aqueous (SDG# MCED24)	J	UJ		A (<u>+</u> 0.2 ppb) G (146%)
ĸ	MCED68,69,75,76	В		High	H (550 ppb)
	MCED46,47,48,57,59, 64,66	В		High	Н (122 ррb)
Se	All aqueous except MCED24,26,27,28,31, 32,34 (SDG# MCED24)		R E:	xtremely Low	E (0.0%) D (68.2-84.5%)
	MCED24,26,27,28,31, 32,34	,	R E	xtremely Low	E (0.0%)
	All aqueous except MCED53 (SDG# MCED44	1)	UL	Low	C (60.4%)
	MCED53		UL	Low	C (60.4%) D (74.5%)
	All soils except MCED54 (SDG# MCED44	1)	R E:	xtremely Low	E (0.0%)
	MCED54		R E	xtremely Low	E (0.0%) D (79.8%)
	All soils (SDG# MCED64)	· ·	R E	Low	E (0.0%)
Ag	MCED30,33		- UL	- Low -	D (76.0-78.0%)
	MCED49,50,51,52,53, 54,55,61	Ľ	UL	Low	D (59.5-83.0%)
•					
				· · · ·	

ेश:GIMAL ^Nन्ध)

TABLE 1A

iL :2,

SUMMARY OF QUALIFIERS ON DATA SUMMARY AFTER DATA VALIDATION

<u>analyte</u>	••••	itive Lues	Non- Detected <u>Values</u>	BIAS	<u>C0</u>	omments *
Tl	All aqueous (SDG# MCED24)		UL	Low		(69.7%) (48.0-84.0%)
	MCED61,63,67,72,78		UL	Low	D	(67.5-77.0%)
Zn	All unfiltered except MCED39 (SDG# MCED24)	В		High	F	(54.8 ppb)
	All filtered except MCED36,37 (SDG# MCED24	B)		High	F	(12.8 ppb)
	All aqueous except MCED44,45,61 (SDG# MCED44)	B		High	F	(54.8 ppb)
CN	All soils (SDG# MCED44)		RE	xtremely Low	E	(0.0%)

in the second second second second second second second second second second second second second second second

and the second second second

•··· • • •

.

.

TABLE 1B

ł

CODES USED IN COMMENTS COLUMN

- A = The laboratory duplicate result was outside of the control limit (the result is in parentheses), the quantitation limits and reported results are estimated.
- B = Due to a high analytical spike recovery (* recovery is in parentheses), the reported results may be biased high.
- C = Due to a low matrix spike recovery (% recovery is in parentheses), the quantitation limits and reported results may be biased low.
- D = Due to a low analytical spike recovery (% recovery is in parentheses), the quantitation limits and reported results may be biased low.
- E = Due to an extremely low matrix spike recovery (% recovery is in parentheses), the quantitation limits and reported results may be biased extremely low.
- F = The field blank had a result that was >IDL (the result is in parentheses) and the reported results were <5x the blank. The reported results may be biased high.
- G = Due to a high matrix spike recovery (% recovery is in parentheses), the reported results may be biased high.

ويصبعه عادينا الالجيا ويدبع والاحمام بالأعام حال

The preparation blank had a result that was >IDL (the H =result is in parentheses) and the reported results were <5x the blank. The reported results may be biased high.

and the second second second second second second second second second second second second second second secon

.

.

TABLE 2

GLOSSARY OF DATA QUALIFIER CODES (INORGANIC)

CODES RELATED TO IDENTIFICATION

(confidence concerning presence or absence of analytes):

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.

(NO CODE) = Confirmed identification.

- B = Not detected substantially above the level reported in laboratory or field blanks.
- R = Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.

CODES RELATED TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = Analyte Present. Reported value may not be accurate or precise.
- K = Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L = Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- [] = Analyte present. As values approach the IDL the quantitation may not be accurate.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.
- Not detected, quantitation limit is probably UL = higher.

للدائد الحادية جسجت

OTHER CODES

~ .

· · · ·

Page <u>|</u> of _

DATA SUMMARY FORMI INORGANICS

Bite Hames	Black +	Decker

NATER SAMPLES

(µg/L)

Case #1 15947 Bampling Date(s): 3/26/91

iDue to dilution, sample quantitation limit is affect See dilution table for specifi

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	+ ··· ·	Sample No.	MCEDO	17 Y	ALCI D2	7-11	MCEP2		MOTO	7 1	Melle	8 1	Merte	29 1	MCED3	<u>a</u> (MCFD		MCED3	2 1	MCET.
testion $AW \cdot 2A$ $AW \cdot 2B$ $AW \cdot 2$ $AW \cdot 2B$ $AW \cdot 1D$ $AW \cdot 2AF$ <th>D</th> <th>-</th> <th>والمراجعة والمستجد المراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة وال</th> <th>-4-8</th> <th></th> <th><u> </u></th> <th></th> <th><u>*-</u> </th> <th></th> <th>-1</th> <th></th> <th><u></u> </th> <th></th> <th>`</th> <th></th> <th><u> </u></th> <th></th> <th> (</th> <th>The subscription of the su</th> <th></th> <th>10</th>	D	-	والمراجعة والمستجد المراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة وال	-4-8		<u> </u>		<u>*-</u>		-1		<u></u>		`		<u> </u>		(The subscription of the su		10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Location				<u></u>		[1	(, I				F		IF I	A10-81
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				<u> </u>			<u> </u>			[]		[<u> </u>				¥—∦		·····	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						l		1						e e		ļ					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CROL	ANALTIE																			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	Aliminum	16201	i i i i i i i i i i i i i i i i i i i		Ĥ	2200	î	11700	i i	915	i	219	i	1570			Ĭ			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	Antimony				[- Hickinson			_	d										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	*Arsenic	3.0	\overline{t}	12.51	T	1171	1.	TUT	1.	[1.3]	T	[3.0]	\overline{T}		7	TUT	<u> </u>	1101	<u> </u>	TJBT
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	Barlus	165.91	_	153.91		TIOT		15391						TITT		116.41				19371
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Beryllium																			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		*Cedalue		ন্য	5.1	了		UT		$\overline{\Omega}$		111		IT		जा		111		$\overline{01}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5000	Calcium	[2920]		9010				6410		11,300		11,50	·	5700		12890		8170		5290
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	*Chromium																			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50	Cobelt																			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-25	Copper							10.91		60.7										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100	tron	3070		52300		4790		8220		101000		838		3040		[314]	B	10500		[334]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	4Lead		1-		\overline{u}		<u>ii</u>		UL.	188	1		UL		U		Ū		म	and and a series of the second second second second second second second second second second second second se
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5000	Nagnesius			8510		7620		7800				[1960]	-	79.20		14340		8)30		6770
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15	Hangavese	574		10,20		200				120		51.9		191		29.0				211
$\frac{60}{10} \frac{1}{10} $	0.2	Hercury		了	0.34	J	0.16	Ī	0.40	T		01		J		T		17		J	0,34
$\frac{5}{10} \frac{5}{10 \text{ silver}} = \frac{R}{10} \frac{R}{1$	11 H								128.61		374							-			
$\frac{5}{10} \frac{5 \text{ Selentum}}{5 \text{ Solo}} \frac{R}{5 \text{ solution}} \frac{R}{10} \frac{R}$	5000		[2100]		3360		[1940]		[17]0]		1990		2110		[1680]	<u> </u>	[2100]		[3110]		I1460
$\frac{5000}{10} \frac{5001}{10} \frac{9840}{10} \frac{9840}{11} \frac{97700}{11} \frac{97700}{11} \frac{29500}{11} \frac{5540}{11} \frac{5540}{11} \frac{95400}{11} \frac{95400}{$		And the owner of the owner of the owner of the owner of the owner of the owner of the owner of the owner of the owner		ß		R		R		K		1 T		R		R		R		R	
$\frac{10}{50} \frac{1}{\text{Venedlum}} \frac{1}{10} $																UL.	1				
$\frac{10}{50} \frac{11}{\text{Venedium}} \frac{11}{10} \frac{11}$			9840		2600		97700		29500		5540		155,00		95400		10700		25200		10100
	II H			此		<u>01.</u>		UL.		<u>H.</u>		<u>U</u>		DL.		VI		帀		U	Linn
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11		_																		
			12.2	ß	13.1	Ŀ	116	Ŀ	111.1	B	47.1	B	221	ß	82.1	B	26.1	B	30.9	B	51.6
	10	*Cyanide	-		. ·													สา	 	Q	11
	 											1							1	·	·
																				1	
				<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	N										

"Action Lovel Exists

DATA SUMMARY FORME INORGANICS

Table 5

Bite	Name I	Block + Nerker	
Caso	/ <u>15947</u>	Sampling Date(=): _2/26/91	

٠

· · ·

WATER SAMPLES

(µg/L)

4Due to dilution, sample quantitation limit is affecte See dilution table for specific

يقيرينين	Sample No.	MCED	4	MCEL	25	MCED	26	MCIUS	57	MCIL	2	MCCDA	91	MCCDI	10	MCELI	T	MCED	21	Merpi
D	ilution factor	1.0		1.D		1.0		1.0		1.0		1.0		1.0		1.0	<u> </u>	1.0		1.0
	Location	MW-9	F	· 14W- BI	Ė	MW-12	£	MW-10	1	AV-3		Pw-4		Pw-5		Pw.6		Pu)."	<u> </u>	1.0.8
CROL	ANALYIE																			
200	Aluninum	. 						1/201		i	{		{	[[
	Antimony	· []						11:3.1												
10	*Arsenic	·	R	[4.3]	Τ.		<u>1</u>		\overline{K}		X		R		R		- 1		$\overline{\lambda}$	 -
200	Berlue	116.11			<u></u>			[4.6]	-1		1		<u> </u>		_₽_		-6-		⊸	·
5	Deryllim	·║╶┸╌┚╩╌┹╍┹╼						┺┛╨╌╨╍┠╴												
	*Cedalua		ন্য		II)		UT		D T		$\overline{00}$		UT		U T		iF		$\overline{\Pi}$	
5000	Calcium	6120	I	15600		610		1810	<u></u>	7690	<u></u>	12600	<u> </u>	15200	<u> </u>	25900	<u>"'</u>	4560	<u></u>	9420
10	*Chronium												_			<u> <u></u></u>				
50	Cobalt																			
_ 25	Copper											13.4								
100	Iron	38.5	B	7115	_	44.9	Ľ.	29.5	<u>Ľ.</u>	612		85.2	ß	112	E	213	B	[31.4]	K	[36.91]
3	*Lead	-	UL		可		11.		ण	[.2.2]	I.	[2.9]	<u> </u>		<u>E</u> 1.X.		T.		n	
5000	Magnesium	5240		5150		111001		7150		$[\underline{1920}]$		6600		4320		8520		3810		34001
15	HANGANESE	543		196		20.9		29.0		18.8		illet		1781		10.5		19.41		18.81
<u> </u>	Hercury *Nickel	0.17	I	0.53	J	0.20	工	0.31	I	<u></u>	<u> </u>	0.40	I	<u>D.47</u>	J		四		匝	
5000	Potosslum	111701	·]i	[805]		Laurent		12.101		1000		P	—			T				
	Selenium		R	10/21	K	[2720]	R	121101	7	[<u>[220]</u>		[1:11:0]	-	TIDI	<u> </u>	INOI	. <u> </u>	MUD		[[2]]
10	Silver				- - <u> </u> -		<u> </u>		<u> </u> <u>k</u>	[3,1]			R	I	R	I	B	[3,4]		
5000	Sodium	29100		6000	·	17600		100 CIO					<u> </u>				- <u> </u>			
10	Ihallium		JUL	6000	U.	11600	UL	11500	VL	22000	Ū	25200	<u> </u>	11000		16500		211200		21/11)
50	Venadium		100		100	·	125	I	14	 	11		<u>YF</u>		UL		亚		U	
20	Zinc	41.4	B	10.41	K	180	·	64.5		65.9	<u>r</u>	1230		256	-		1. <u>-</u> -		<u> </u>	a
10	*Cyanide	╺║╼╍┸╬╼┺━╍	T	1. <u>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</u>	ไก้	<u> </u>	Q		11		<u> </u>	1/20		226_	B	23.8	Ē	217	E	1105
			┤┷┻				<u> </u>	 	<u> `</u>					[<u> </u>	 		
		-		1	-	I										l				 .
			1																	 ·
CAP	Contract R	oquired	Dete	ction L	ini	L				ton Lav		M esseran Tyleta			L		ala guna			
		-									~				18	ES HARRA	TIV		DB I	BFINITIC
					_								-				_		7 .44	71847 MA/
									-				-							

Page 3 of

DATA SUMMARY FORME INORGANICS

Bite Namos

Black + Decler

HATER SAMPLES (pg/1.)

Case /: 15947 Bampling Date(s): 3/21/91

ibue to dilution, sample quantitation limit is affect. See dilution table for specific

	Sample Ho.	MCEP	i Y	MCEDI	ςΨ	MCEDS	7-1	24011.5	31	MCCLIF	7	MCCDA	6	MCCD	<u>8</u>	MCEDG		MCFIL	<u>, </u>	
D	lution factor	<u>- 1.0</u>	-4	1.0	I	1.0		1.0		1.0	[]	10		1.0		1.0		1.0		
	Location	Field Elan	<u>, </u>	Tield Bu			[]	Su). 2		5.6.3	[562-4		50-5		SW-6		.W-7		
		Fillere			<u> </u>			_												
					i												•			}
CADL	ANALYTE	<u>]</u>													_		_			NE SAL
200 L	Alustrus		N		$\overline{\mathbf{M}}$	1230	工	LIJOT		[123]	卫		工		म	189000	J	III.I	[]]	
60	Antimony															·				
10	*Arsenic															[21]	K			
200	Burlun					11.6		[617]		[1, 2, 3]		[11.6]				1980				
5	Beryllim]			l				14.6				
5	Cadalua									·						18.2				
5000	Culcium	1921				15600		211100		1,000		13900		7460		62200		9210		
10	* Chromium															321				
50	Cobel t					17.41										172				-
25	Copper	-				29.3								I		361				
100	Iron	[42.3]	T	45.7]	J	1960	J		<u>ŀ</u>	_112	Ē	215	Ľ	156	Ŀ	414000	II	<u>.257</u> [23]	了	
	*Lted	-				41.3		5.0		3.5						739	 	123		l
5000	Nagnesium					1980		5440		5220		5500		[3540]	 	22300		<u>6210</u> 119.1		1
15	Mangmiese					31.1		33,1		3.2.3		697	 	11.61	.	27400		<u></u>		
0.2	Hercury	-			I										·			·		
<u>40</u> 5000	·Nickel	-				TIDAD	I—	E HE EF		Lucia -			·	TICONT	· 	18		Traces		
li k	Potassium		<u> </u>		<u> </u>	1000		010	I	15801		5080	-	[1820]		12800	-	[1240]		¶
<u></u>	Selenium		见	8	<u>0</u>	 	<u> </u>	II	<u>N</u>		$\overline{\underline{m}}$		11		<u>n</u>		<u>D</u>	.	<u>1)/.</u>	
<u>10</u> 5000	Silver Sodium	-	·	TIONT	·]	JUTCO	U	111000	뽀	111800	<u>11.</u>	1.000		15000	·	[1,2]	1.6			
10		[460]	·	TIGDI	·	17500		<u>94000</u>		44800		16200	' <u> </u>	15900	-	11400	+	5910	_ 	
50	Vanadium	-#	·	[·	-[[·	·					-		.		ण.		亚	
20	Zinc	-	·	EIL O	·		·		<u> </u>					THE OT	-	419				
		[13.8]		54.8	-	12.1	. <u> </u>	31.0	L		<u> </u>	15.	B	[17.2]	ß	1990	· 		E	· []
10	"Cyanide		ß	· 	-	-	·	•			·		-	-	-					·
 '		- []		· II	-	-	·[-	 	-	-	• []	-		-	-	-	-11		I
			-		-	-		-		-	·		-1	- []	-	- []				
li <u></u>				<u></u>	<u> </u>	<u></u>	1	<u>_N</u>	<u>. </u>		. I		1	l						Lang an anna

CRDL = Contract Required Detection Limit

Anotion tours walate

DATA SUMMARY FORME INORGANICS

Table 5

Black + Decker Bite Hames Case #: 15947 Bampling Date(s): 2/37/91

HATER SAMPLES

(µg/L)

ibue to dilution, sample quantitation limit is affected See dilution table for specifics

Sample No.	MCED65	ACT DU7	MCCLUZ	Merrin	ACCUT	MATPID	MCCD13	MCGAT	MCPDIS	MCCM
Dilution factor	<u> </u>	<u> </u>	1.0	<u> </u>	1.0	<u> </u>	1.0	<u> </u>	<u> </u>	<u> </u>
Location	<u>8</u>	<u> </u>	1110-2	<u> </u>		<u>11W-6</u>	<u></u>	11W-8	[<u>//w)-]</u>	
					Jet Jet	Stract				
CRDL ANALYIE										
200 Aluniaun		· () ((((- (i i i i	1			H			
60 Antimony	TITI	[19.6]	[12.8]	[<u>],2,8</u>]	[25.0]	[10.4] K		18.4		1521
10 Arsenic					130 1	3.0		11	كشنا ويستعمدوا	
200 ·Berlus	[50.1]			10151		[159]	[<u>192</u>]	[195]	[101]	
5 Beryllium	·		-			2.1				
5 Cedalua		-	-							
5000 Celcium	17500	10200		<u>[[44:01]</u>	12600	11.60	61500	<u>F/270</u>	11200	11100
10 Chromium 50 Cobalt	.	-	-			╢───┤━━				·[[]-
25 Cipper	- [325	202		159	25,5	· []	<u>[71:4]</u> 93.6	11/6	• [] == = [
	116			<u>- 342</u> _109K	TUS DT K	$\frac{P_{P_{a}}}{ D }$ B	418.0T P.	[81.8] B	1100 B	
		3.5	[2.8]	$-\frac{p}{1,0}$	14201 1	1.6		1010 P		1231
5000 Hognesture	5260	7480	124901	[1.0]	7740	1620	6700	7440	10400	
15 Manganese	18.3	76.3	19.8	49.9	<u> </u>	34,1	25.6	4240		134907
0.2 Mercury	╶╢╌┈┸╩┅╧╼╸╽╶╼╸	- 	-	╶║━┸╩┹╼╸╎╼╍					-	╶║╼╍╘╍╘╌╌╴╎╴
40 *Nickel	[38.1]	-	-			I SIII _	-		-	-
5000 Potessium	[3940]	6320	[1010] B	[15:0] P.	[3370]	19600	1324DT	6860	12101 8	
5 Selenium										
10 Silver	_		_	_						-
5000 Sodium	32900	9190	[100]	19300	5200	11:00	8780	10000	1040	57.10
10 Ihallium	-			-	-				_	
50 Vanadium	-							-	-	_
20 21nc	[18.8]	65.3		10.6			-	62.9		IB81
10 Cyanide				-	-	-			-	
\\\\				-	-		-		-	
	- -			-		-	- []	-		-
CRD Contract R	anulrad Do	tection Lim		- • • •						
CONCERCE A	adarted be	ractou pim	, ,		tion Lovel	EX16C8	ſ	IEE HARRING'I		DEFINITIO
										wired an

	\bullet	
	Table 5	Page <u>5</u> of
	DATA SUMMARY FORM: INORGANICS	
BILO NAMOS Black + Decker	NATER SAMPLES	
Case #: <u> 5947</u> Bampling Date(=): _	<u> </u>	

4Due to dilution, sample quantitation limit is affecte See dilution table for specific

Sample No.	MCED77	MCF 178								[
Dilution Factor	1.0	1.0					-			
Location	Field Black	10.32								
CADL ANALYTE		l		l	l				II	<u> </u>
200 Alusina			-							
60 Ant Imony										
10 Areenic										
200 Serlue	<u></u>		<u> </u>							
5 Beryllim		II								
5 *Cacialum										
5000 Cetclum	[150]	9360	_							
10 *Chronium	I		_							
50 Cobel t										
25 Copper			_							
100 1ron	513	199 K						ll		
3 tead										
5000 Magnestum		[3750]								
15 Mangavese										
0.2 Hercury			_]]							
40 *Nickel										
5000 Potassium		18351								
5 Selenium					l					
10 Silver			-							
5000 Sodium		5020	-							
10 Thallium	- 	01							·	
50 Vanadium	-		_						·	
20 21nc	-								·	[
10 Cyanide	-	·	-							
	-		_						N	
	-									
<u> </u>	_![]	<u></u>		<u> </u>		<u> </u>			I I I I I	
CRDI. = Contract Re	equired Det	ection Limi	L	•Ac	lon Lovel	Exista		EE HABBATTU		

DATA SUMMARY FORME IN ORGANICS

GOIL SAMPLES

Table 5

(mg/Kg)

Case 1 15947 Bampling Date(s): 3/36/91

Bite H

4 1

10

Black + Breker

thus to dilution, sample quantitation limit is affecte See dilution table for specific

	Semple Ho.	ALCEDI	61	MCEDY	7 1	MCEDY	12 1	Mapi	1-11	MCCDC	0	MEELS	21	MCEDS	T	MCEDS	2	MCT D5	9	MEPLI
. : DI	ution factor	1.0	┷┨╴	1.0		1.0	·	1.0		1.0	[1.0		I.D		1.0				1.0
	X Solids	83.0		87.1		81.7		13.1	·	81.1	·	1,1.6		14.8		17.7		59.6		58.6
	Location	5-1(30")	<u>,</u> _∦.	5-2/26		5-3(3	. ア	5.1(21)	<u>г</u> II	C. Port 1:	.)	<u>(p-1</u>		51-2		.5p.3		.5).4		51, 1
· · ·					 	<u>_</u>	H	فدوفا المحم تشميم			[
CRDL	ANALYTE								!		l									18
-10-1-	Alinina	5780	Ì	31,20	Ĭ	4760		15,000		15900		15.600		1220		<u>1970</u>		1.1640	<u> </u>	10801
12	Antimony		VI.		11		U		<u>N</u>		<u>v</u>		N.		<u> </u>		<u>VI.</u>		匹	
2	Arsenic		UL	T <u>0.711</u>	Ŀ		可	<u>[15]</u>		151	$ \bot $	1.91	Ŀ	I.I.I.		2.6	<u> .</u>	69	<u> </u>	51
-22-	Derlim	[32.7]				[13.0]		163		[22.3]		<u>[.0.]</u>		[32.6]		[128]		45.3		31.91
	Berylllim	10.541									<u> </u>			H	$\overline{\mathbf{n}}$		UT	10.61I	┝┯╴╢	3.3
	*čadalua	2.8	L	2.2	Ŀ	2.4		2.2	<u> </u>	TUNT	교	12:0	교	10300	뽀	1725	느뜨	2.6	╽┷┷╽	16251
1000	Colcim	343		TUP		1280		1210			∖	23:0	·			9.5		33.1		28.1
7	"Ehronium	7.0		19.3		12.1		2.2.6		-13.1		36.4	·		[$\begin{bmatrix} 1 & 2 \\ 1 & 6 \end{bmatrix}$		<u> </u>		17.01
10-	Cobalt	23.1		23.6		<u>-10.9</u>		21.6		-10.5-		[[9.1]_	·[[12,0]		<u></u> J6.		<u>- 110.6 1</u> - (10.1		31.9
	Copper	48.2	<u> </u>	43.3		39.1		37.1	<u> </u>	35,0	[<u>. H. 6</u>	·[22.6	1	18800		55300		
-22-	lion	41800		30.100	<u> </u>	3/100	<u> </u>	10000	 	17000		51800	·	17800		5.6		<u>- <u>1.8</u></u>	T	38100
0.6	*Lead	7.3		5.5		<u> 90</u>	1	46.2		<u>1.2</u>	1-	111	╢╧	11.4	<u>ال</u> ے	2900	╢╧	- 11	<u>ال</u> ت	16181
1000	Magieslim	Tual		[49.8]		1320		<u>_1760</u>		<u>[529]</u>	·	[1250]	·	15700	·[183	·[<u>[[664]]</u> [15	·	131
1	Haugaivese	1180		1090		1080	.	557				233	-1	3071		102	·		·	
0.7	Mercury *Nickel				· 		·		·	Tast	·]	19.1	-1			20.0	-	18.2	·	- 19.1
1000	Fotasslim	12.1	 	15.8		29.9	-	17.5	·	1771	-		-	12.6	-	2631	- B		B	1013
1000	Selenium	THIL	P	11801	- <i>Ŀ</i> -	[3-1-1]	<u>Ľ</u>	[1050]		[481]	-	[i·izo]	-		10	. <u> 16631</u>	-1-6	-110121	┨╬	Harry
1- 1	<u>Silver</u>	-	. <u> </u>	i	<u>A</u>	- 🏾	1	.	R	·	$\frac{R}{VI}$	· []	<u>A</u> 10	-	R	-∦	- -^-	<u>- </u>	-1-6-	· -
1000-	Sodium		·	·II	-	Ting	-	-	<u> </u>	· []	-12	[237]	-[뽀	174.93		-	- -	-	-	-
	Thellim	-#	-	·II	-	╶╢┶┷┷┹	-	-	-		-	10.211	-1	-#	-	-	-	-	-	
1-15	Venedium	- 27.8	-	20.0	-		-	41.9	-1	39.4	-[FA I.	-	15.5	-	[N.6]	-	- 57.1	-	15.2
1-7-	1 1 Inc	36.7	-	38.0	-	- 26.7 36.2	-1	- 126	-	13.0	-	<u>FA.6</u> 38.3	- -		-	71,.0	- -	- 118,6	-1	116
	*Cyanide		R	1- <u>56.0</u>			$- \overline{\mathbf{g}} $		R	- <u>13'0'</u>	$-\overline{R}$	- <u> </u> _ -	\overline{R}	-1-100	$-\overline{k}$				R	el en alle Kar
			- -	-	-1-1-1-	∽∦	-	-	-1-	-	- -^-	-	-	└─	- -	-	╼╎╼┸	<u>~</u> ∦	- +>	ŧ!·
\\	·		-	-∦	-		-	-	-	- 11	-	-∦	-1-		-		-1-		-	•
	J		-	-	-	-	-		- -	-	-	-	- -		-1		- -		-	- [
ų					-	- Carterine	l		1		+!		-		alan					
(h	a Contract P	legulred	Dot	ection	Lini	lt			•//0	tion Le	vel	Palete			1	JE <mark>k</mark> Hari	UTI	VI	CODB	DREINIE
					R															

Table 5

DATA SUMMARY FORME IN OR GANICS

Site	Hames	Black + Deckey	<u> </u>
Case	1 15947	Sampling Date(s):	0/01-27/91

6011. 6AHPLES (mg/Kg)

> thus to dilution, sample quantitation limit is affect Bee dilution table for spucif

Page 7 of

Sampla Ro. Dilution factor X Solids Location	MCED62 1.0 58.0 5D-6	<u>MCFD61</u> <u>1.0</u> <u>1.6.1</u> <u>5</u> D-7	<u>МСГрбс</u> <u>1.0</u> <u>70.5</u> <u>сь-8</u>	 			
Up Alimitram 12 Antimony 2 Arsenic 3 Borlin 1 Codniun 1 Cobalt 1 Cobalt 1 Coper: 20 Fon 10 Reputsion 1 Nanganese 0;7 Nefcury 1 Sticket 10 Potasslum 2 Stiver 10 Vanadium 2 Cyanide		$ \begin{bmatrix} 2288 \\ \hline \hline \hline \hline $					

2568A RIVA ROAD SUITE 300 ANNAPOLIS. MD 21401 PHONE. 301-266-9887

DATE: July 02, 1991

- SUBJECT: ORGANIC DATA VALIDATION, CASE 15947 SITE: BLACK & DECKER
 - FROM: MAHBOOBEH MECANIC

DON O'BRIEN

- TO: TERRY SIMPSON ESAT DEPUTY PROJECT OFFICER
- THRU: RICHARD D. DRESSER ACC

OVERVIEW

Case 15947 consisted of thirty-four (34) water and thirteen (13) soil samples submitted to Aquatec for volatile, semivolatile and pesticide/PCB analyses. Included in this case were one (1) trip blank, two (2) field blanks, two (2) aqueous field duplicate pairs and one (1) soil field duplicate pair. The trip blank was analyzed for volatiles only. The samples were analyzed as a Contract Laboratory Program (CLP) Routine Analytical Service (RAS), under three (3) sample delivery groups (SDGs).

SUMMARY

All samples were successfully analyzed for all target compounds. All instrument and method sensitivities were according to the Contract Laboratory Program (CLP) Routine Analytical Service (RAS) protocol.

MINOR PROBLEMS

 The volatile analyses of several water samples were performed eight (8) to eleven (11) days from the date of sample collection. The technical holding time of seven (7) days for volatile aromatic compounds in unpreserved water samples has been exceeded by one (1) to four (4) days. The quantitation limits in the affected samples were qualified "UL". The affected samples are: CDN27, CDN29, CDN29DL, CDN30 - CDN37, CDN49, CDN51, CDN54, CDN56, CDN58, CDN60 -CDN62, CDN64, CDN65 and CDN66 - CDN72.

LARTEN

Page 2 of 4

· · ¥4

- o The volatile analyses of all soil samples were performed eight (8) to nine (9) days from the date of sample collection. Although no technical holding time has been established for soil samples, the technical holding time of seven (7) days for volatile aromatic compounds in water samples has been exceeded by one (1) to two (2) days. The quantitation limits were qualified "UL" and positive results were qualified "L".
- o The initial semivolatile analysis of samples CDN67 had two (2) acid surrogate recoveries less than 10%. This sample was reextracted sixteen (16) days after the date of sample collection, which exceeded the seven (7) days technical extraction holding time by nine (9) days. Sample CDN67RE had acceptable surrogate recoveries. Results from the initial analysis for base/neutral compounds and reanalysis for acid extractable compounds are reported on the data summary forms. The quantitation limits for acid extractable compounds are qualified "UJ".
- Several compounds failed precision criteria during the volatiles and semivolatiles continuing calibrations. The quantitation limits were qualified "UJ" for these compounds in the affected samples.

NOTES

0

The field and trip blanks were free of contaminants. The maximum concentrations of all compounds found in the analyses of the laboratory method blanks are listed below. All samples with concentrations of the common laboratory contaminants less than ten times (<10x), or uncommon laboratory contaminants less than five times (<5x) the blank concentration have been qualified "B" on the data summary forms.

Compound	<u>Concentration</u>
methylene chloride*	5 J ug/L
acetone*	7 J ug/L
chloroform	2 J ug/Kg

* Common laboratory contaminant.

0

GPC cleanup was employed for semivolatile and pesticide/PCB analyses of all soil samples. The dilution factors reported on the data summary forms have been adjusted by the reviewer to reflect this action. Dilution factors have also been adjusted to compensate for the difference in sample volume/weight used by the laboratory for several samples.

0

Page 3 of 4

- o The volatile analyses of samples CDN26 and CDN29 required dilutions to correct for compounds which exceeded the linear calibration range. Results from both analyses are reported on the data summary forms.
- During the pesticide/PCB continuing calibrations analyzed on 3/9/91 at 0635 and 1051, several compounds had retention times (RTs) slightly outside the RT windows. No data were affected. (SDG = CDN24)
- o The percent difference (%D) between the calibration factors was greater than 15% on the quantitation column for dieldrin analyzed on 3/9/91 at 1051. No positive results were detected for this compound and no sample was analyzed after this standard, therefore, no data were qualified. (SDG = CDN24)
- The percent differences (%Ds) between the calibration factors were greater than 20% on the confirmation column for the last IND B analyzed on 3/8/91 at 0726. No data were affected. (SDG = CDN29 and CDN47)
- Non-spiked compounds, other than blank contaminants, were determined in the volatile analyses of samples CDN28 and CDN29 and the MS/MSD analyses of these samples. The results and precision estimates are summarized in the following tables:

<u>Compound</u> 1,2 dichloroethene (total) tetrachloroethene	Concentration(ug/L)CDN28MSMSD15 J15 J14 J180018001700	<u>\RSD</u> 3.9 3.3
<u>Compound</u> 1,2-dichloroethene (total) chloroform 1,1,1-trichloroethene tetrachloroethene	Concentration (ug/L) CDN29 MS MSD 12 ND ND 3 J ND ND 2 J ND ND 210 J 200 J 190 J	<u>}RSD</u> IN IN IN 5.0

. .

- \$RSD = Percent Relative Standard Deviation
 ND = Not detected
 IN = Indeterminate
- The "Y" qualifier on the pesticide/PCB Form I (sample CDN42) indicates the reported result is below the specified reporting limit.

Page 4 of 4

. •

0

Three (3) field duplicate pairs were analyzed by the laboratory. The results and precision estimates are given in the following tables:

<u>Compound</u> 1,1-dichloroethene 1,2-dichloroethene (total) 1,1,1-trichloroethene trichloroethene tetrachlorethene	<u>Concentr</u> <u>CDN26</u> 4 J 29 7 1800 36	ation (ug/ <u>CDN30</u> ND 21 ND 2000 35	L) RPD IN 32 IN 11 2.8
<u>Compound</u> tetrachloroethene	Concentr CDN35 1600	ation (ug/) <u>CDN36</u> 1500 ation (ug/)	L) <u>RPD</u> 6.4

	CONCENTER		<u>NAT</u>
Compound	CDN52	CDN53	RPD
trichloroethene	3 J	5 J	50
tetrachloroethene	37	46	22

- RPD = Relative Percent Difference ND = Not detected
- The reported tentatively identified compounds (TIC) of
 Appendix D have been reviewed during data validation.
 Compounds identified as blank contaminants have been crossed off the TIC Form Is.

All data for case 15947 were reviewed in accordance with the Functional Guidelines for Evaluating Organic Analyses with Modifications for Use within Region III. The text of this report addresses only those problems affecting usability.

ATTACHMENTS

- 1) Appendix A Glossary of Data Qualifiers
- 2) Appendix B Data Summary. These include:
 - (a) All positive results for target compounds with qualifier codes where applicable.
 - (b) All unusable detection limits (qualified "R").
- 3) Appendix C Results as Reported by the Laboratory for All Target Compounds
- 4) Appendix D Reviewed and Corrected Tentatively Identified Compounds
- 5) Appendix E TPO Report for Contractual Compliance
- 6) Appendix F Support Documentation

MM106A04.BLA

Page 3 of 5

ORGANIC REGIONAL DATA ASSESSMENT SUMMARY NOTES

CASE 15947 SDG CDN24, CDN29 WATER SAMPLES

- Item 1A The volatile analyses of several water samples were performed eight (8) to eleven (11) days from the date of sample collection. The technical holding time of seven (7) days for volatile aromatic compounds in unpreserved water samples has been exceeded by one (1) to four (4) days. The affected samples are: CDN27, CDN29, CDN29DL, CDN30-CDN37, CDN49, CDN51, CDN54, CDN56, CDN58, CDN60-CDN62, CDN64, CDN65 and CDN66-CDN72.
- Item 1B The semivolatile extraction of sample CDN67RE was performed sixteen (16) days from the date of sample collection. The technical extraction holding time of seven (7) days was exceeded by nine (9) days. The contractual extraction holding time of five (5) days from VTSR was exceeded by fifteen (15) days.
- Item 4A Several compounds had %Ds greater than 25% during the 4B volatiles and semivolatiles continuing calibrations. (See Table I in Appendix F.)
- Item 4C The percent difference (%D) between the calibration factors was greater then 15% on the quantitation column for dieldrin analyzed on 3/9/91 at 1051. No positive results were detected for this compound therefore, no data were qualified. (SDG = CDN24)

The percent differences (%Ds) between the calibration factors were greater than 20% on the confirmation column for the last IND B analyzed on 3/8/91 at 0726. No data were affected. (SDG = CDN29).

Item 6A The maximum concentrations of all compounds found in the analyses of the laboratory method blanks are listed below.

Compound	Concentration				
methylene chloride*	5 J ug/L				
acetone*	7 J ug/L				
chloroform	2 J ug/Kg				

- * Common laboratory contaminant.
- Item 7B The initial semivolatile analysis of sample CDN67 had two (2) acid surrogate recoveries less than 10%. The reextracted analysis of this sample had acceptable surrogate recoveries.

Sample CDN25 had one (1) acid surrogate recovery below the QC limit. (See Form II SV in Appendix F.)

. . .

Page 4 of 5

ORGANIC REGIONAL DATA ASSESSMENT SUMMARY HOTES

CASE 15947 SDG CDN24, CDN29 WATER SAMPLES

- Item 8C The pesticide/PCB MS/MSD analyses of sample CDN28 had three (3) out of six (6) RPDS outside the QC limits. Sample CDN29 had two (2) out of six (6) RPDs outside the QC limits. (See Form III pest in Appendix F.)
- Item 13C During the pesticide/PCB continuing calibrations analyzed on 3/9/91 at 0635 and 1051, several compounds had retention time (RT) slightly outside the RT windows. No data were affected. (SDG = CDN24)

WISTEN

Page 5 of 5

ORGANIC REGIONAL DATA ASSESSMENT SUMMARY NOTES

CASE 15947 SDG CDN24, CDN29 SOIL SAMPLES

Item 1A The volatile analyses of all soil samples were performed eight (8) to nine (9) days from the date of sample collection. Although no technical holding time has been established for soil samples, the technical holding time of seven (7) days for volatile aromatic compounds in water samples has been exceeded by one (1) to two (2) days.

- Item 4A Several compounds had %Ds greater than 25% during the 4B volatiles and semivolatiles continuing calibrations. (See Table I in Appendix F.)
- Item 4C The percent differences (%Ds) between the calibration factors were greater than 20% on the confirmation column for the last IND B analyzed on 3/8/91 at 726. No data were affected. (SDG = CDN29 and CDN47)
- Item 6A The maximum concentrations of all compounds found in the analyses of the laboratory method blanks are listed below.

Compound	<u>Concentration</u>
methylene chloride*	5 J ug/L
acetone*	7 J ug/L
chloroform	2 J ug/Kg

* Common laboratory contaminant.

Item 8A The volatile MS/MSD analyses of sample CDN47 had one (1) out of five (5) RPDs outside the QC limits. (See Form III VOA in Appendix F.)

TABLE 3

۰.

SAMPLES EXCEEDING THE CHEMICAL HEALTH ADVISORY LEVELS

	Cd (ug/L)	
Sample ID	Advisory Level	Actual Result
MCED61	8.0	18.2

Pb (ug/L)

Sample ID	Advisory Level	Actual Result
MCED28	20.0	188
MCED51	20.0	41.3
MCED61	20.0	739
MCED74	20.0	278

.

.

2568A RIVA ROAD SUITE 300 ANNAPOLIS, MD 21401 PHONE, 301-266-9887

- DATE: 5 AUGUST 1991
- SUBJECT: INORGANIC DATA VALIDATION, Case 15947 SITE: BLACK AND DECKER
- TO: TERRY SIMPSON ESAT DEPUTY PROJECT OFFICER
- THRU: RICHARD D. DRESSER

OVERVIEW

The set of samples for Case 15947 contained thirty-three (33) unfiltered aqueous, eight (8) filtered aqueous and thirteen (13) soil samples which were analyzed according to the Contract Laboratory Program (CLP) Routine Analytical Services. The case consisted of three (3) different Sample Delivery Groups (SDG's). Included in the sample set were two (2) unfiltered aqueous field blanks, a filtered aqueous field blank, an unfiltered aqueous field duplicate pair, and a filtered aqueous duplicate pair. Several samples exceeded the 10-day Chemical Health Advisory Level for the Cd and Pb analytes. The advisory levels and the results for these samples are listed on Table 3.

SUMMARY

<u>.</u>

·····

All analytes except As and Se in the aqueous samples for SDG# MCED24, Se and CN in the soil samples for SDG# MCED64 were successfully analyzed in all samples. Areas of concern with respect to data usability are listed according to the seriousness of the problem. These include:

.....

- 11. National Academy of Sciences. 1977. Drinking Water and Health. Volume 1. Safe Drinking Water Committee, Washington, D.C.
- 12. Travis, C.C., and A.D. Arms. 1988. Bioconcentration of organics in beef, milk, and vegetation. Environ. Sci. Technol. Vol. 22, No. 3, pp. 271-274.
- Cline, P.V., and D.R. Viste. 1984. Migration and Degradation Patterson of Volatile Organic Compounds. Presented at the Fifth National Conference on Management of Uncontrolled Hazardous Waste Sites, Washington, D.C. November 7 to 9, 1984.
- 14. National Primary Drinking Water Regulations; Final Rule. 56 FR 3526-3614, January 30, 1991.
- 15. United States Environmental Protection Agency. April 1991. Drinking Water Regulations and Health Advisories. Office of Water.
- 16. National Primary Drinking Water Regulations. 40 CFR 141, Subparts B and G, July 1990.
- 17. United States Environmental Protection Agency. 1991. Integrated Risk Information System (IRIS). Record for Chloromethane. August 30, 1991.
- 18. Maximum Contamination Level Goals and National Primary Drinking Water Regulations for Lead and Copper; Final Rule. 56 FR 26460-26564, June 7, 1991.
- 19. Federal Register. 1985. National Primary Drinking Water Regulations; Synthetic Organic Chemicals, Inorganic Chemicals, and Microorganisms; Proposed Rule. Volume 50, Number 219. November 13, 1985.

Site Name: Black and Decker, Incorpetation TDD No.: F3-9101-19

LIST OF SOURCES

- 1. Sittig, M. 1985. Handbook of Toxic and Hazardous Chemicals and Carcinogens. Second Edition. Noyes Publications, Park Ridge, New Jersey.
- Sax, N.I., and R.J. Lewis, Sr. 1989. Dangerous Properties of Industrial Materials. Seventh Edition. Van Nostrand Reinhold Company, New York.
- 3. United States Environmental Protection Agency. 1990. A Guide on Remedial Actions at Superfund Sites with PCB Contamination: Quick Reference Fact Sheet. Office of Emergency and Remedial Response, Hazardous Site Control Division, August 1990.
- 4. United States Environmental Protection Agency. 1991. Health Effects Assessment Summary Tables; Annual FY91. Office of Emergency and Remedial Response, Washington, D.C.
- 5. Doull, J., C.D. Klaassen, and M.O. Amdur. 1986. Casarett and Doull's Toxicology: The Basic Science of Poisons. Third Edition. MacMillan Publishing Company, New York.
- 6. Dragun, J. 1988. The Soil Chemistry of Hazardous Materials. HMCRI/Silver Spring, Maryland.
- United States Environmental Protection Agency. 1988. Ambient Aquatic Life Water Quality Criteria for Aluminum. Office of Research and Development, Duluth, Minnesota. EPA 440/5-86-006.
- 8. United States Environmental Protection Agency. 1987. Update Number 2 to Quality Criteria for Water 1986. Office of Water Regulations and Standards, Criteria and Standards Division, Washington, D.C.
- 9. Versar, Incorporated, for United States Environmental Protection Agency. 1979. Water-Related Environmental fate of 129 Priority Pollutants. Monitoring and Data Support Division, Washington, D.C. EPA 440/4-79-029.
- United States Environmental Protection Agency. 1986. Quality Criteria for Water. Office of Water Regulations and Standards, Criteria and Standards Division, Washington, D.C. EPA 440/5-86-001.

Page 2 of 4

MAJOR PROBLEM

The matrix spike recoveries were extremely low (<30%) for the As and Se analytes in the aqueous samples (SDG# MCFG24), for Se and CN in the soil samples (SDG# MCED44), and for Se in the soil samples (SDG# MCED64). Therefore, the quantitation limits and reported results for these analytes in the affected samples may be biased extremely low, and they have been qualified, "R" and "L", respectively.

MINOR ISSUES

Several blanks had reported results for analytes that were >IDL. The reported results for the analytes in the affected samples which are <5x the blank concentration may be biased high and, therefore, have been qualified "B" as summarized in the following table:

ANALYTE	SAMPLE TYP	<u>E(SDG#)</u>	TYPE OF BLANK
к	Unfiltered aqueous	(MCED64)	Preparation
Fe,2n	Unfiltered aqueous	(MCED24) (MCED44)	Field
Fe	Unfiltered aqueous	(MCED64)	Field
Fe,Zn	Filtered aqueous	(MCED24)	Field
K	Soil	(MCED44) (MCED64)	Preparation

Several laboratory duplicate results were outside of the control limits for various analytes in the samples. Therefore, the quantitation limits and reported results for these analytes in the affected samples have been qualified estimated, as summarized in the following table:

______ · ____ · e e ante e a المحاريصي وحيرا مغربين ومعتم مستعد تنفار الماتات -----

Page 3 of 4

÷:_ .

ANALYTE	SAMPLE TYPE (SDG#)	REPORTED QUANTITATI <u>RESULT LIMIT</u>	ON
Cd, Hg	Aqueous (MCED24)	J UJ	
Al, Fe	Aqueous (MCED44)	J* UJ	

 \star = Several results for the Fe analyte were superseded by the qualifier "B" as previously mentioned.

Several matrix spike recoveries were low (30-75%) or high (>125%) in the analyses. The quantitation limits and reported results may be biased and have been qualified accordingly for the analytes in the affected samples as summarized in the following table:

ANALYTE	SAMPLE T	YPE (SDG#)	RI <u>BIAS</u>	EPORTEDQUA <u>RESULT</u>	INTITATION
Pb,Tl	Aqueous	(MCED24)	Low	L	UL
Нд	Aqueous	(MCED24)	High	K*	N/A
Se	Aqueous	(MCED44)	Low	-	UL
Sb,As, Cd,Pb	Soil	(MCED44)	Low	L	UL
Sb	Soil	(MCED64)	Low	L	UL

The reported results have been superseded by the qualifier "J" as previously mentioned.

N/A = Not applicable.

.

- _ -----

Several analytical spike recoveries were low (<85%) for the As, Sb, Pb, Se, Ag and Tl analytes in the samples. The quantitation limits and reported results may be biased low, and therefore, they have been qualified "UL" and "L", respectively.

The analytical spike recoveries were high (>125%) for the Sb analyte in sample MCED72 and for the As analyte in sample MCED61. The reported results may be biased high, and therefore, they have been qualified "K".

والمع المعجد

Page 4 of 4

NOTES:

The laboratory duplicate result for the Al analyte in the soil samples (SDG# MCED64) was flagged according to U.S.E.P.A. SOW 3/90. However, the National Functional Guidelines allow a larger control limit for the soil samples, therefore, the samples were not qualified.

The data was reviewed in accordance with the National Functional Guidelines for Evaluating Inorganic Analyses.

INFORMATION REGARDING REPORT CONTENT

Table 1A is a summary of qualifiers added to the laboratory's results during evaluation.

الارد. مسلم 1993 - میں بعد موجود مسلمان کی الاختراف ایک ایک موال مسلم الاختراف ایک ایک ایک ایک ایک ایک ایک ایک ایک ای مسلم 1994 - میں ایک میں موجود مسلمان کی ایک ایک ایک ایک ایک ایک موال ایک مسلم الاختراف ایک ایک ایک ایک ایک ایک

ATTACHMENTS

- SUMMARY OF QUALIFIERS ON DATA SUMMARY TABLE 1A AFTER DATA VALIDATION
- CODES USED IN COMMENTS COLUMN TABLE 1B
- GLOSSARY OF DATA QUALIFIER CODES TABLE 2
- CHEMICAL HEALTH ADVISORY TABLE TABLE 3

. .

- SAMPLE DELIVERY GROUP IDENTIFICATION TABLE TABLE 4
- TABLE 5 DATA SUMMARY FORMS
- RESULTS REPORTED BY LABORATORY FORM IS APPENDIX A
- TPO REPORT APPENDIX B
- APPENDIX C SUPPORT DOCUMENTATION

PC107A02.BDR

SECTION 8 All Land Looke

T. T.

.

.

8.0 TOXICOLOGICAL EVALUATION

8.1 <u>Summary</u>

A polychlorinated biphenyl (PCB), a polycyclic aromatic hydrocarbon (PAH), and cadmium were detected in subsoil at concentrations not expected to produce significant noncarcinogenic effects. Several metals in surface water exceeded Ambient Water Quality Criteria (AWQCs), including aluminum in most locations, lead in some locations, and 11 inorganic analytes in the upstream sample. Several volatile organic compounds (VOCs) were detected in surface water below levels associated with aquatic toxicity. Some phthalate ester concentrations in two areas exceeded an AWQC. Potential cancer risk increase for carcinogens detected in subsoil, surface water, and sediment cannot be ruled out.

Potable and nonpotable wells were sampled. In both types of wells, concentrations of 1,1-dichloroethene (1,1-DCE), trichloroethene (TCE), and tetrachloroethene (PCE) exceeded drinking water criteria or guidelines, sometimes by as much as a factor of 2,400. Concentrations of lead and manganese in home well (HW) no. 8 were well above criteria or guidelines; such water would not be recommended for potable use in an untreated state. Drinking water criteria for antimony in most HWs were also exceeded. Theoretical cancer risk increases cannot be ruled out for groundwater due to the presence of TCE, PCE, lead, arsenic, and beryllium.

8.2 Support Data

8.2.1 Soil Contaminants

On-site subsurface soil was sampled. In one sample (S-4), Aroclor 1254, a PCB, was detected at approximately 370 ug/kg. PCBs are persistent chemicals used in transformers and capacitors.¹ They have been associated with chloracne and liver ailments after prolonged high-level exposure.^{1,2} However, the reported concentration in this subsoil is below even a recommended minimum quantitation level of 1,000 ppb in residential soil.³ PCBs are classified as Group B2 (probable human) carcinogens based on Aroclor 1260.⁴ If this carcinogenic ranking is applied to all Aroclor mixtures and the no-threshold theory of carcinogenicity is assumed, then some potential increase in cancer risk could not be ruled out if this subsoil were contacted.

A PAH, pyrene, was detected in one on-site subsurface soil sample (S-2) at 86 ug/kg. PAHs are common environmental contaminants that are found in the products of the combustion of organic material. For example, they are often found near roads and railroads.⁵ PAHs can be found up to around 10,000 ug/kg as naturally occurring soil chemicals.⁶ No significant impacts are indicated from the reported subsoil concentration of pyrene.

TDD No.: F3-9101-19

.: .

Cadmium was detected in on-site subsoil up to 2.8 mg/kg. Cadmium is a metal that can affect the blood, kidney, and prostate after high-level exposure.¹ Significant impacts are not indicated from the reported subsoil concentrations, even if 100 mg of soil were ingested daily by a 70-kilogram adult, based on the risk reference dose (RfD).⁴

8.2.2 Surface Water and Sediment Contaminants

Table 8.1 (below) displays notable levels of inorganic analytes detected in surface water. It can be seen that aluminum in most water samples exceeded the AWQC of 87 ug/l.⁷ Other metals that exceeded AWQCs were copper, iron, and lead in the east lagoon and lead in the west lagoon and one outfall area sample.⁸ Interestingly, the highest concentrations of metals were reported in the sample farthest upstream of the site (SW-6). In that sample, aluminum, beryllium, cadmium, chromium, copper, iron, lead, nickel, silver, zinc, and cyanide exceeded AWQCs.^{7,8} It is important to note that this sample was described as containing much sediment. Sediment in a surface water sample may artificially elevate metal concentrations by providing an adsorptive surface for these contaminants. Only a portion of the metals reported in SW-6 may actually be dissolved in water.

Analyte ^{7,8} (WQC)	SW-6 tributary dairy pasture upstream	SW-7 tributary dairy pasture	SW-1 east lagoon	SW-2 west lagoon	SW-3 outfall	SW-4 outfall
aluminum (87)	189,000 (J)	175 (J)	1,330 (J)	190 (J)	1 33 (J)	141 (J)
barium	1,980					
beryllium (5.3)	14.6					
cadmium (1.1)	18.2					
chromium (11-hex)	321					
cobalt	472		17.4			
copper (12)	361		29.3			
iron (1,000)	414,000 (J)		1,960 (J)			
lead (3.2)	739		41.3	5	3.5	
manganese	27,400					
nickel (160)	181					
silver (0.12)	1.2 (L)					
vanadium	419					
zinc (110)	1,990					
cyanide (5.2)	121					

Table 8.1
Notable Concentrations of Inorganic Analytes in Surface Water (ug/l)

WQC - Chronic fresh-water AWQC or lowest observed effect level (LOEL). For hardness-dependent criteria, 100 mg/l was assumed.

hex - hexavalent

When AWQCs are exceeded, potential effects on sensitive aquatic species cannot be ruled out. Bioconcentration of metals such as lead and cadmium can also be a potential concern; however, concentration of such metals in fish tissue is best assessed by fish-tissue analysis.^{9,10}

A suggested guideline for surface water used for consumption and the support of edible fish (1,000 ug/l) was the only barium water guideline available.⁸ This level was exceeded only by the barium level in SW-6, the upstream sample. Manganese also has no surface water quality criteria.⁸ However, low-pH irrigation water containing 1,000 ug/l or more of manganese has been reported to affect plants.¹⁰ Aquatic species have varying sensitivities to manganese; some can tolerate up to 1,000,000 ug/l.¹⁰

No AWQCs have been developed for cobalt or vanadium. Typical cobalt levels in United States rivers reportedly range from less than 1 to 99 ug/l, with 87 percent of the samples having 5 ug/l or less.¹¹ Another study found cobalt in raw United States surface waters ranging from 1 to 48 ug/l, with a mean of 17 ug/l.¹¹ Cobalt was detected at 17.4 ug/l in the east lagoon and at 472 ug/l in the upstream sample. Typical vanadium water levels have been reported to range from 2 to 300 ug/l, with a mean of 40 ug/l; vanadium was reported in the upstream sample at 419 ug/l.¹¹

Table 8.2 (page 8-4) displays organic compounds detected in surface water samples. It can be seen that the chlorinated VOC concentrations [1,1,1-trichloroethane (1,1,1-TCEA), 1,2-DCE, TCE, and PCE] are well below AWQCs or levels reported to be toxic to aquatic life.⁸ No AWQCs have been developed for bromodichloromethane (BDCM) or dibromochloromethane (DBCM), which are trihalomethanes.⁸ The trihalomethane chloroform has a fresh-water chronic LOEL of 1,240 ug/l.⁸ It can be seen that some reported concentrations of phthalates, diethyl phthalate (DEP) in the east lagoon (32 ug/l) and bis(2-ethylhexyl) phthalate (DEHP) at the outfall (160 ug/l), exceeded the AWQC for total phthalates of 3 ug/l.⁸ Potential effects on sensitive aquatic species cannot be ruled out; bioconcentration may also be potentially significant.^{9,10} Of the organic surface water contaminants, DEHP, BDCM, TCE, and PCE are classified as Group B2 carcinogens. Theoretically, a potential increase in cancer risk following long-term exposure cannot be ruled out.

Of the above contaminants, TCE and PCE were measured in one or both tributary aqueous samples obtained in the dairy pasture. While bioconcentration of TCE and PCE in the meat and milk of cattle cannot totally be ruled out, note that bioconcentration is not considered an important fate process relative to volatilization for these contaminants in surface waters.⁹ Biotransfer factors (BTFs) for meat and milk are proportional to octanol water partition coefficients; BTFs estimated for TCE/PCE are three to four orders of magnitude lower than BTFs estimated for PCBs and organochlorine pesticides such as DDT, contaminants that are known to bioconcentrate to a significant degree in the food chain.¹²

TDD No.: F3-9101-19

RICINAL

Table 8.2

Chemical ⁸ (WQC)	SW-7 tributary dairy pasture	SW-1 east lagoon	SW-2 west lagoon	SW-5 west lagoon drain	SW-3 outfall	SW-4 outfail	SW-8 downstream dairy pasture
BDCM		4 (J)					
DBCM		3 (J)	1				
1,1,1-TCEA (ma-31,200)			3 (J)				
1,2-DCE (fa-11,600)				2 (J)			
TCE (21,900)			18	6	15	7	7
PCE (840)	1 (J)			89		1 (J)	5 (J)
DEP (tot-3)		32					
DEHP (tot-3)	T T				160		

Organic Compounds in Surface Water (ug/l)

ma - marine acute

fa - fresh-water acute

tot - total phthalates

Of the organic compounds detected in surface water, three were also detected in sediment: DEHP (east lagoon, approximately 410 ug/kg), TCE (west lagoon, approximately 7 ug/kg; west lagoon drain, up to approximately 5 ug/kg; downstream of the site in the dairy pasture, approximately 2 ug/kg), and PCE (west lagoon drain, up to 46 ug/kg; outfall, approximately 5 ug/kg). Potential increases in carcinogenic risk cannot be ruled out. TCE and PCE are mobile in the environment but, as previously noted, tend to volatilize from surface media.⁹

Toluene (130 ug/kg) and 4-methylphenol (4-MP) (approximately 270 ug/kg) were also detected in downstream sediment. Toluene is a VOC that can cause irritation and neurotoxicity at high levels; 4-MP is a semivolatile irritant.^{1,2} Based on incidental ingestion of 100 mg sediment, significant human health impacts due to toluene and 4-MP would not be expected.⁴ Toluene concentrations in water reported to affect aquatic or marine life exceed 5,000 ug/l.⁸ There is no evidence to suggest that significant impacts on aquatic organisms due to toluene or 4-MP should be expected.

Cadmium was detected in the west lagoon drain sediment up to 3.3 mg/kg. This cadmium concentration is comparable to reported soil levels. Cadmium was reported above the AWQC in surface water only in the upstream tributary sample.

े**ः:):**NAL *िन्त*)

8.2.3 Groundwater

Nonpotable monitoring wells (MWs), potable production wells (PWs), and potable HWs were sampled in the Black and Decker site area. Table 8.3 (pages 8-6 and 8-7) summarizes notable concentrations of groundwater chemicals, including analytes that exceeded drinking water criteria or guidelines and all organic compounds. All the organic compounds were VOCs; these compounds have irritant, neurotoxic, and some hepatotoxic properties.^{1,2} PCE can degrade to TCE, DCE, and vinyl chloride_in_groundwater_13 It can be seen that the_following equaled or exceeded drinking water criteria or guidelines: 1,1-DCE in PW-3; TCE in MW-8/10 (duplicates), MW-9, MW-B1, MW-12, PW-3, PW-4, and PW-6 [the Maximum Contaminant Level (MCL) was exceeded by factors of 2 to 2,400]; PCE in MW-8/10, MW-9, MW-81, MW-12, PW-5, PW-6, and PW-7/8 (the MCL was exceeded by factors of about 3 to 360).14,15,16 Criteria have not been established for chloromethane or 1,1-dichloroethane (1,1-DCEA). Using an estimated exposure of 2 liters per day for a 70-kilogram adult, the RfD would not be exceeded for reported groundwater levels of 1,1-DCEA.⁴ As of August 30, 1991, no oral RfD has been established for chloromethane.¹⁷ However, a provisional RfD of 9 X 10-3 mg/kg/day, derived using the Layton method from an oral rat LD50 (lethal dose to 50 percent of an experimental population) of 1,800 mg/kg, suggests that the 2 ug/l reported in PW-2 poses no serious threats. Few oral toxicity data are available for chloromethane; however, this VOC is described as mildly toxic via inhalation and it is permitted as an additive in food for human consumption.²

For the organic compounds that exceeded drinking water criteria, the following would also exceed RfDs, assuming 2-liter daily consumption by a 70-kilogram adult: PCE in MW-B1 and PW-7/8.4 No RfD has been developed for TCE.4 Water exceeding MCLs would not be recommended for consumption in an untreated state. The PWs are reported to be treated through air stripping, which is designed to remove VOCs (see section 2.6). The RfD for PCE was based on hepatotoxicity.⁴

TCE and PCE are also classified as Group B2 carcinogens. Table 8-4 (page 8-8) demonstrates estimated oral cancer risks for these compounds if it is assumed that all the groundwater wells were potable in an untreated state.⁴ Two-liters-per-day consumption by a 70-kilogram adult was assumed. Inhalation of carcinogenic VOCs through showering and cooking, etc. can further increase carcinogenic risk.

Site Name: Black and Decker, Incorporated TDD No.: F3-9101-19

ł

Table 8.3

۰.

Notable Concentrations of Reported Analytes in Groundwater (ug/l)

Organics (DW)	HW-1	HW-2	HW-3	HW-5	HW-6	HW-7	Н [.] -8	HW-9	HW-10
1,1,1-TCEA (200)		4 (J)							
TCE (5)	2 (J)	2 (J)	1 (J)						
PCE (5)		0.9 (J)				4 (J)			
Inorganics (DW)									
aluminum (S-50)					139				
antimony (P-10/5)	19.6	12.8	22.8	25	10.4 (K)		18.4		15.2
arsenic (50)				3 (L)	3				
beryllium (P-1)					2.1				
cobalt							21.4		
iron (S-300)		501							1,110
lead (50, A-15)	3.5	2.8	7		4.6		278	2.6	2.3
manganese (S-50)	76.3	1	49.9		361		4,260		108

Site Name: Black and Decker, Incorporate TDD No.: F3-9101-19

i.

Table 8.3 (continued) Notable Concentrations of Reported Analytes in Groundwater (ug/l)

Organics (DW)	MW-2A*	MW-2B*	MW-8/10*	MW-9*	MW-B1* HNU	MW-12* HNU	PW-3	PW-4	PW-5	PW-6	PW-7/8	PW-22
chloromethane								2 (J)				
1,1-DCE (7)						4 (J)	7					
1,1-DCEA			4 (J)/ND	8			1		· · · · · ·	1		
1,2-DCE (70-C, 100-T)			29/21 (J)	12	15 (J)	12	5 (J)	4 (J)		5 (J)	1	
1,1,1-TCEA (200)			7/ND	3 (J)	1	2 (J)	37	15			1	
TCE (5)			1,800/2,000	18	33 (J)	12,000	50	28	3 (J)	9	1	
PCE (5)			36/35 (J)	19	1,800	210 (J)		2 (J)	13 (J)	40	1,600/ 1,500	
toluene (1,000)		6					1				1	
Inorganics (DW)						••••••••••••••••••••••••••••••••••••••	A	.				
aluminum (S-50)			ND/132			r —	T T	1				
arsenic (50)	4.1 (L)	3 (L)	3.8 (L)/ND		4.3 (L)		1	[·			1	
iron (S-300)		10,500			775		612				1	
lead (50, A-15)							2.2 (L)	2.9 (L)				
manganese (S-50)		804		543	196		l			1	T	
sodium (G-20,000)		25,300	90,100/ 99,500	29 ,100			22,200	25,200			24,800/ 24,600	

ND - Not detected

DW - Drinking water criterion or guideline [MCL or National Primarily Drinking Water Regulation (NPDWR) unless otherwise indicated]

S - Secondary MCL

P - Proposed MCL

A - Action level

G - Guideline

C - Cis isomer

T - Trans isomer

*Inorganic MW results are from filtered samples.

Site Name: Black and Decker, Incorporated TDD No.: F3-9101-19

ORIGINAL (Red)

Table 8.4

Chemical	emical Q(oral)4 Well Number (mg/kg/day)-1		Concentration (ug/l)	Risk (oral)		
PCE	5.1 X 10-2	MW-8/10	up to 36	5 X 10-5		
		MW-9	19	3 X 10-5		
		MW-B1	1,800 -	3 X 10-3 -		
		MW-12	210	3 X 10-4		
		PW-4	2	3 X 10-6		
		PW-5	13	2 X 10-5		
		PW-6	40	6 X 10-5		
		PW-7/8	up to 1,600	2 X 10-3		
		HW-2	0.9	1 X 10-6		
		HW-7	4	6 X 10-6		
TCE	1.1 X 10-2	MW-8/10	up to 2,000	6 X 10-4		
		MW-9	18	6 X 10-6		
		MW-B1	33	1 X 10-5		
		MW-12	12,000	4 X 10-3		
		PW-3	50	1 X 10-5		
		PW-4	28	9 X 10-6		
		PW-5	3	9 X 10-7		
		PW-6	9	3 X 10-6		
		HW-1	2	6 X 10-7		
		HW-2	2	6 X 10-7		
				-		

Estimated Oral Cancer Risks for TCE and PCE in Groundwater

Table 8-3 also displays notable concentrations of inorganics in groundwater. Several metals in unfiltered MWs (aluminum, arsenic, cadmium, chromium, iron, lead, manganese, sodium) exceeded drinking water criteria or guidelines. Unfiltered MW samples often contain particulates that do not represent dissolved metals. Most of the MW samples for this case were described as "gray brown," "rust colored," or "reddish brown" (see sample log). Therefore, only filtered inorganic MW sample results were presented in table 8-3 and discussed in detail. It can be seen that reported concentrations of antimony in HW-1, HW-2, HW-3, HW-5, HW-6, HW-8, and HW-10 (10.4 to 25 ug/l) and beryllium in HW-8 (2.1 ug/l) exceed proposed MCLs of 10 or 5 ug/l and 1 ug/l, respectively. If 2 liters per day were consumed by a 70-kilogram adult, the RfD for beryllium would not be exceeded.⁴ Assuming 2-liter-per-day consumption by a 70-kilogram adult, the antimony RfD would be exceeded by HW-1, HW-3, HW-5, HW-8, and HW-10 and would be so nearly exceeded by HW-2 that increasing consumption to 2.5 liters or reducing weight to 60 kilograms (132 pounds) would result in a dose exceeding the RfD.⁴

°°'GIN∙ (**Red**)

Lead in HW-8 exceeds the action level of 15 ug/l and the NPDWR of 50 ug/l.^{16,18} Lead is a metal that has been associated with gastrointestinal, hematopoietic, and nervous system toxicity.^{1,2,5} Because no threshold has been established for lead-related effects, it is generally considered desirable to minimize lead exposure. Sometimes lead can be seen in domestic wells from parts of the distribution system such as lead solder.¹¹ Although the lead levels in HW-1, HW-2, HW-3, HW-6, HW-9, HW-10, PW-3, and PW-4 exceed the ideal exposure of zero, they do not exceed the action level or the NPDWR.^{15,16,18} However, the reported level in HW-8 (278 ug/l, before treatment) exceeds the action level by more than 18 times and the NPDWR by more than 5 times; such water would not be recommended for use as a potable supply in an untreated state.

Manganese in HW-8 (4,260 ug/l) would also exceed the RfD, assuming 2-liters-per-day consumption by a 70-kilogram adult.⁴ Manganese is not usually seen at such levels in drinking water and would impart a very disagreeable taste at such concentrations. Irritation and neurotoxicity have been reported for high-level manganese exposure.²

Arsenic is classified as a Group A carcinogen, and beryllium and lead are classified as Group B2 carcinogens. According to the no-threshold theory of carcinogenicity, any contact with carcinogens can increase overall cancer risk. Oral cancer risks of approximately 2 X 10⁻⁴ for wells with arsenic (3 to 4.3 ug/l) and 3 X 10⁻⁴ for beryllium in HW-6 (2.1 ug/l) can be estimated; no oral cancer slope factor has been proposed for lead by EPA at this time.⁴

Sodium in three filtered MWs (up to 99,500 ug/l) and three PWs (up to 25,200 ug/l) exceeded a guideline of 20,000 ug/l.¹⁹ This guideline has been recommended by the American Heart Association to minimize the contribution of drinking water to total sodium intake.¹⁹ Adverse effects on the general population would not be expected (assuming MWs were potable).

Aluminum, iron, and manganese in several wells exceeded the Secondary Maximum Contaminant Levels (SMCLs) of 50 ug/l, 300 ug/l, and 50 ug/l, respectively. SMCLs are aesthetic criteria related to organoleptic effects such as taste, staining, and corrosivity. Although these guidelines are not health based, it must be reiterated that manganese in one HW (HW-8; 4,260 ug/l) also exceeded the RfD if 2liters-per-day consumption by a 70-kilogram adult was assumed.⁴

Site Name: Black and Decker, incorpora GIN, TDD No.: F3-9101-19 Red)

Cobalt was detected at 21.4 ug/l in HW-8. No drinking water criteria have been established for cobalt. It is an essential element not usually detected at significant levels in drinking water.5.11 However, the cobalt concentration in this HW is well below levels reported to be cardiotoxic in beer (in excess of 1,000 ug/l).¹¹

Report prepared by Jennifer Hubbard, Toxicologist

Report reviewed by

-1 1.11 Elizabeth A. Quinn, Senior Toxicologist