Quarterly Groundwater Monitoring Report

Prepared for

Black & Decker (U.S.) Inc.

Hampstead, Maryland October 2017

Prepared by

WESTON SOLUTIONS, INC.

West Chester, Pennsylvania 19380-1499

TABLE OF CONTENTS

Sec	tion		Page
1.	INT	RODUCTION	1-1
2.	SITI	E CHARACTERISTICS	2-1
	2.1	HYDRAULIC PROPERTIES	2-1
	2.2	EFFLUENT CHARACTERISTICS	2-1
	2.3	GROUNDWATER QUALITY DATA	2-1
3.	OPE	RATION AND MAINTENANCE OF THE TREATMENT SYSTEM	3-1
4.	REC	OMMENDATIONS	4-1

LIST OF APPENDICES

APPENDIX A - GROUNDWATER TREATMENT SYSTEM PUMPING RECORDS

APPENDIX B - DISCHARGE MONITORING REPORTS

APPENDIX C - GROUNDWATER TREATMENT SYSTEM ANALYTICAL RESULTS

APPENDIX D - GROUNDWATER ANALYTICAL DATA PACKAGE

iii

LIST OF TABLES

Table		Page
Table 2-1	Treatment System Pumping Records – 3rd Quarter 2017	2-2
Table 2-2	Groundwater Elevation Data – 3rd Quarter 2017	2-3
Table 2-3	Effluent Characteristics Summary – 3rd Quarter 2017	2-4
Table 2-4	Summary of Groundwater Analytical Results - August 2017	2-5
Table 3-1	Treatment System Maintenance Activities – 3rd Quarter 2017	3-2

1. INTRODUCTION

This Groundwater Monitoring Report has been prepared to meet the requirements of Condition IV.G of the Administrative Consent Order between the State of Maryland Department of the Environment (MDE) and Black & Decker (U.S.) Inc. (April 1995) (Consent Order). Specifically, Condition IV.G calls for preparation of a Groundwater Monitoring Report containing the following information for each reporting period:

- The quantities of groundwater pumped, treated, and discharged.
- The calculation of quantities of contaminants removed from groundwater.
- A summary of all sampling analyses.
- An explanation of all operational or other problems encountered, and the manner in which each problem was resolved.
- Copies of all reports submitted to the Department of Natural Resources in conjunction with the Groundwater Appropriations Permit.
- Recommendations for changes to the Interim Groundwater Treatment System.

This document is one of several which are being prepared in response to the Consent Order; each of these documents are to be submitted to the MDE in accordance with the schedule outlined in the Consent Order. This document will become part of the Administrative Record for the site, which is maintained at the Hampstead Public Library.

1-1

2. SITE CHARACTERISTICS

2.1 HYDRAULIC PROPERTIES

In accordance with the Consent Order and the Water Appropriation Permit issued to the Black and Decker (U.S.) Inc. Hampstead, Maryland, facility, the following pumping and water level information is included for the period of July through September 2017.

Pumping records showing the total gallons pumped per month of treatment system operation are presented in Table 2-1. The complete groundwater treatment system pumping records are included in Appendix A.

Monthly water levels for wells included in the water level monitoring plan are presented in Table 2-2. For the reporting period of July through September 2017, the extraction wells were pumping at an average combined rate of approximately 148 gallons per minute (gpm).

2.2 EFFLUENT CHARACTERISTICS

Effluent characteristics of the NPDES discharge points are recorded monthly on Discharge Monitoring Reports (DMRs) and are submitted to MDE, Water Management Administration, on a quarterly basis. A summary of the sample results from the DMRs is presented in Table 2-3. DMRs for the period of July through September 2017 are included in Appendix B.

2.3 GROUNDWATER QUALITY DATA

For the reporting period of July through September 2017, approximately 7.23 pounds of total volatile organic compounds (VOCs) were removed from the groundwater by the extraction and treatment system. In general, the total VOCs removed from the groundwater were comprised primarily of trichloroethene (TCE) (65.1 %) and tetrachloroethene (PCE) (34.9 %). Analytical results of the groundwater collected from the air stripper for the period of July through September 2017 are included in Appendix C.

A summary of the analytical results from the third quarter (August 2017) groundwater sampling round of the extraction and monitor wells is included in Table 2-4. The complete

Table 2-1 Treatment System Pumping Records - 3rd Quarter 2017 Black & Decker Hampstead, Maryland

Date	Water Pumped (gallons)
July 2017	6,388,023
August 2017	6,260,425
September 2017	5,968,433

Table 2-2 Groundwater Elevation Data - 3rd Quarter 2017 Black & Decker Hampstead, Maryland

WELL	TOC	TOTAL	7/7/2	2017	8/2/2	017	9/8/2	2017
NO.	ELEV.	DEPTH	DTW	ELEV	DTW	ELEV	DTW	ELEV
EW-1	847.21	55	DRY	NC	DRY	NC	DRY	NC
EW-2	849.21	110	89.40	759.81	89.50	759.71	89.75	759.46
EW-3	846.64	118	95.00	751.64	96.60	750.04	96.50	750.14
EW-4	858.01	97.5	PC	NC	PC	NC	PC	NC
EW-5	864.17	98	92.00	772.17	91.72	772.45	92.24	771.93
EW-6	831.98	115	104.20	727.78	105.00	726.98	105.00	726.98
EW-7	818.38	78	72.43	745.95	73.55	744.83	73.69	744.69
EW-8	811.13	98	90.95	720.18	92.00	719.13	92.00	719.13
EW-9	811.35	141	103.00	708.35	101.50	709.85	103.00	708.35
EW-10	807.74	INA	60.59	747.15	62.50	745.24	62.79	744.95
RFW-1A	864.37	78	53.86	810.51	54.26	810.11	54.34	810.03
RFW-1B	864.23	200	53.89	810.34	54.28	809.95	54.39	809.84
RFW-2A	857.41	35	17.43	839.98	17.70	839.71	17.84	839.57
RFW-2B	857.73	75	18.15	839.58	18.45	839.28	18.59	839.14
RFW-3B	839.21	153	35.90	803.31	36.86	802.35	36.84	802.37
RFW-4A	830.37	62	37.25	793.12	37.70	792.67	37.72	792.65
RFW-4B	830.37	120	37.09	793.28	37.50	792.87	37.58	792.79
RFW-5A	817.50	30	DRY	NC	DRY	NC	DRY	NC
RFW-6	785.04	120	5.27	779.77	4.16	780.88	4.43	780.61
RFW-7	805.14	29	7.07	798.07	6.69	798.45	6.58	798.56
RFW-8	860.07	56	DRY	NC	DRY	NC	DRY	NC
RFW-9	862.02	49	27.68	834.34	28.18	833.84	28.24	833.78
RFW-10	852.06	58	DRY	NC	DRY	NC	DRY	NC
RFW-11A	849.32	72	Damaged	NC	Damaged	NC	Damaged	NC
RFW-11B	849.62	116	64.98	784.64	65.63	783.99	65.47	784.15
RFW-12B	844.87	264	60.35	784.52	50.45	794.42	51.02	793.85
RFW-13	849.11	150	66.25	782.86	66.37	782.74	66.43	782.68
RFW-14B	812.39	281	56.37	756.02	56.25	756.14	56.60	755.79
RFW-16	856.14	41	DRY	NC	DRY	NC	DRY	NC
RFW-17	834.66	60.5	26.82	807.84	27.65	807.01	27.54	807.12
RFW-20	842.49	142	34.96	807.53	35.75	806.74	35.63	806.86
RFW-21	832.65	102	22.94	809.71	23.52	809.13	23.41	809.24
PH-7	805.94	89	30.24	775.70	30.72	775.22	30.62	775.32
РН-9	814.94	98	52.08	762.86	52.48	762.46	52.56	762.38
PH-11	820.68	78	52.43	768.25	53.61	767.07	53.73	766.95
PH-12	828.35	87	51.85	776.50	52.09	776.26	52.11	776.24
B-3	803.02	83	NA	NC	NA	NC	NA	NC
Amoco	842.29	INA	NA	NC	NA	NC	NA	NC
Hamp. Town #22	804.96	INA	1.89	803.07	2.74	802.22	1.69	803.27
Pembroke #1	INA	INA	10.56	NC	10.75	NC	11.02	NC
Pembroke #2	INA	INA	Damaged	NC	Damaged	NC	Damaged	NC
N. Houcks. Rd.	INA	INA	10.83	NC	11.19	NC	11.25	NC
E. Century St.	INA	INA	19.26	NC	19.26	NC	19.22	NC
Lwr. Beckleys. Rd.	INA	INA	54.77	NC	55.04	NC	55.51	NC

NA - Not Available/Not Accessible

NC - Not Calculable

INA - Information not available

PC - Pump Cycles

* - Well not pumping

Effluent Characteristics Summary - 3rd Quarter 2017 Hampstead, Maryland Black & Decker **Table 2-3**

Dischargo	Dovemeter	ojiu]1	Dormit		DMP DATE	
Number	Talamood	3	Limite	Inly	Anonst	Sentember
				2017	August 2017	2017
001	FLOW average	MGD	NA	0.185	0.244	0.134
	maximum	MGD	NA	1.255	0.912	999.0
	1,1,1-Trichloroethane	ug/1	5	< 1	< 1	< 1
	Tetrachloroethylene	ug/1	5	< 1	< 1	< 1
	Trichloroethylene	ug/1	5	< 1	< 1	< 1
	Total Residual Chlorine	mg/l	< 0.1	< 0.1	< 0.1	< 0.1
	Oil & Grease maximum	mg/l	15	< 5	< 5	< 5
	monthly average	mg/l	10	< 5	< 5	< 5
	muminim Hq	QLS	0.9	7.9	7.2	6.8
	maximum	STD	8.5	8.3	8.3	7.2
	BOD	mg/l	15	7.0	5.0	9.0
	TSS maximum	mg/l	30	7	10	8
	monthly average	mg/l	20	13	4	8
101	FLOW average	MGD	NA	0.022	0.232	0.036
(Monitoring	maximum	MGD	NA	0.220	2.0	0.440
Point)	Fecal Coliform	MPN/100ml	200	1.0	1.4	< 1
201	FLOW average	MGD	NA	NR	NR	0.202
(Monitoring	maximum	MGD	NA	NR	NR	0.246
Point)	1,1,1-Trichloroethane	ug/l	NA	NR	NR	< 1
	Tetrachloroethylene	ug/1	NA	NR	NR	< 1
	Trichloroethylene	ug/1	NA	NR	NR	< 1

DMR - Discharge Monitoring Report NA - Not Applicable

NR - Not Reported

Summary of Groundwater Analytical Results - August 2017 Black & Decker Hampstead, Maryland

PARAMETER	Umits	EW-1	EW-2	EW-3	EW-4	EW-S	EW-6	EW-7	EW-8	EW-9	EW-9 (DUP)	EW-10
Chloromethane	ug/L	NS	n n	ΩI	ות	1 0	1.0	1.0	1 U	1.0	a -	1 U
Bromomethane	ng/L	NS	1.0	ות	1 U	1.0	1.0	1.0	1 U	1 U	n 1	1.0
Vinyl Chloride	ug/L	NS	l U	ΩI	1 U	n 1	1.0	1.0	l U	1 U	1 U	1 U
Chloroethane	ng/L	NS	1 U	ו ת	1.0	1 U	1.0	1 U	1 U	1.0	n n	1 U
Methylene Chloride	1/gn	NS	2 U	7 N	7 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Acetone	ug/L	NS	ΩŚ	7	i s	5 U	5 U	5.2	n s	១៩	5.8	0 S
Carbon Disulfide	ug/L	SN	5.0	១៩	n s	ns	0 S	N 5	ΩS	n s	5.0	5 U
1,1-Dichloroethene	ng/L	NS	n i	กเ	0.1	n i	1.0	nι	ΩI	ñТ	ΩI	ΩI
1,1-Dichloroethane	ug/L	NS	1.0	าเ	1.0	1 U	1.0	0.6 J	0.0 J	1.0	1.0	1.0
1,2-Dichloroethenc (total)	ug/L	SN	3.2	2.1	nı	ΩI	1.0	7.1	34	กเ	1.0	1.0
Chloroform	1/gn	SN	1.0	1.0	ΩI	ΩI	n i	n I	A I	กเ	1 U	1 U
1,2-Dichloroethane	ng/L	NS	1.0	กเ	กเ	ΩI	10	n 1	กเ	וח	l U	1.0
2-Butanone	ug/L	NS	s U	2.0	0 S	2.0	5.0	5.0	2 U	5.0	5.0	5.0
1,1,1-Trichloroethane	ug/L	NS	1.0	1.0	nι	กเ	กเ	1.0	กเ	1.0	n I	1.0
Carbon Tetrachloride	ug/L	NS	1 U	1 U	กเ	l U	1.0	1.0	U I	nι	1 U	1.0
Bromodichloromethane	ng/L	ŠN	1.0	n 1	กเ	กเ	1.0	1.0	nι	ΩI	1.0	n n
1,2-Dichloropropane	ng/L	NS	1 U	1.0	1 U	1.0	1 U	10	រ ប	ΩI	n i	1.0
cis-1,3-Dichloropropene	ug/L	NS	1.0	1.0	กเ	១៖	1.0	1.0	1 U	n 1	1.0	U 1
Trichloroethene	ug/L	NS	66	28	180	81	5.5	4.5	7.7	9.0	0.7	1.0
Dibromochloromethane	ug/L	NS	1.0	1 U	กเ	១៖	1.0	1.0	n 1	n i	1.0	1.0
1,1,2-Trichloroethane	J/Bn	NS	1.0	n 1	nι	ា រ	וח	1.0	ΩI	n ı	1.0	1.0
Benzene	ug/L	NS	1.0	0.2 J	1.0	1 U	n	n I	U 1	n -	n n	1 U
Trans-1,3-Dichloropropene	ng/L	NS	1.0	n 1	กเ	១ ៖	1.0	חת	1 U	n n	1 D	1.0
Вготобогт	ug/L	NS	1 U	n 1	1.0	n n	1 C	n 1	1 O	1.0	1 U	1.0
4-Methyl-2-pentanone	ng/L	NS	5 U	5 U	N 5	១៩	5 U	5 U	5 U	s u	5.0	5.0
2-Hexanone	ug/L	SN	s U	s U	5 U	5.0	5 U	5 U	5 U	5 U	5 U	\$ U
Tetrachloroethene	ug/L	NS	53	1.3	4	2.2	9.6	Ξ	99	70	72	8.1
1,1,2,2-Tetrachloroethane	ng/L	NS	1.0	nι	1.0	ΩI	1 U	1.0	1 U	n n	1 U	1.0
Toluene	ug/L	SN	រា ព	0.2 J	n i	ា រ	n 1	1.0	ΩI	ΠI	l U	1.0
Chlorobenzene	ng/L	SN	n i	n I	ΩT	n 1	ΠI	1 U	ñΙ	ΩI	1 U	1.0
Ethylbenzene	ug/L	SN	ומ	1 U	1 U	1 U	1 U	nι	1.0	1 U	n -	n n
Styrene	ug/L	NS	1.0) I	1 U	n n	l U	1 U	1 U	n 1	n n	1 U
Xylene (total)	ug/L	NS	1.0	ก เ	1.0	1 U	1.0	1.0	1 U	n 1	1.0	1.0

Notes: U = Compound was analyzed for but not detected. Value shown is the method detection limit for quantification. J = Indicates an estimated value. NS = Not Sampled

Summary of Groundwater Analytical Results - August 2017 Black & Decker Hampstead, Maryland Table 2-4

		RFW-1A	RFW-IB	RFW-1A RFW-1B RFW-2A RFW-2B RFW-3B RFW-4A RFW-4A RFW-4B RFW-5A RFW-6	RFW-2B	RFW-3B	RFW-4A	RFW-4A	RFW-4B	RFW-5A	RFW-6	RFW-7	RFW-8	RFW-9	RFW-10
PARAMETER	Cmits							(and)							
Chloromethane	ng/L	nι	nı	ΩI	n ı	n n	ΩI	n I	1 U	SN	n 1	1 U	SN	1.0	SN
Bromomethane	ng/L	1.0	กเ	กเ	กเ	กเ	nι	1.0	1.0	SN	1 U	1 U	NS	1.0	SN
Vinyl Chloride	ug/L	n .	ות	n -) I) I	1 U	1.0	1.0	SN	1.0	1 U	NS	ΩI	SN
Chloroethane	ug/L	1.0	ו ה	n 1	1.0	1.0	1.0	1 U	1.0	SN	1.0	1 U	NS	A I	SN
Methylene Chloride	ug/L	2 U	2.0	2 U	2 U	2 U	ΩI	1.0	1.0	SN	1.0	1.0	SN	ΩI	SN
Acetone	ng/L	5 U	0.5	5 U	กร	ា ទ	ns	2.0	s U	SN	5.0	5 U	SN	s u	SN
Carbon Disulfide	ug/L	5 U	2.0	5.0	N 8	กร	ា ទ	2.0	SU	SN	n s	0 S	SN	A 5	SN
1,1-Dichloroethene	ug/L	1.0	กเ	กเ	กเ	N 1	n 1	0.1	1.0	SN	1.0	1.0	SN	0.7 J	NS
1,1-Dichloroethane	ng/L	1 U	ก	nΙ	กเ	กเ	n i	1.0	1.0	SN	1.0	1.0	NS	0.5 J	NS
1,2-Dichloroethene (total)	ug/L	n n	n n	ם	ומ	10	1.1	l J	3.5	SN	1.0	1 U	NS	16	NS
Chloroform	ng/L	1.0	n n	חח	חח	ות	1.1 J	1.1 J	1.7 J	SN	1.0	1.0	NS	1.0	NS
1,2-Dichloroethane	ug/L	n 1	1 U	n 1	1 U	ות	1 U	nı	1.0	SN	1.0	1 0	SN	กเ	SN
2-Butanone	ug/L	5 U	5 U	5 U	N 5	5 U	ΩS	กร	SU	SN	su	5.0	NS	១១	SN
1,1,1-Trichloroethane	ug/L	1.0	1 U	1.0	1 U	1 U	1 U	nı	1.0	SN	1.0	10	SN	กา	NS
Carbon Tetrachloride	ug/L	1 U	n n	nι	n I	nι	ΩI	N 1	1.0	SN	1.0	1.0	NS	ΩI	SN
Bromodichloromethane	ug/L	1.0	ΠI	n n	1.0	l U	1 U	n 1	10	SN	וה	1.0	NS	กเ	SN
1,2-Dichloropropane	ug/L	1.0	n 1	1.0	ñı	ΩI	n i	1 U	1.0	SN	1.0	1.0	NS	n i	NS
cis-1,3-Dichloropropene	ug/L	1 U	1 C	n n	n n	1 U	1 U	ΩI	l U	SN	1.0	1.0	NS	กเ	NS
Trichloroethene	ug/L	1.0	กไ	0.7	0.7	n i	3.1	18	19	SN		1.2	SN	8.5	SN
Dibromochloromethane	ug/L	1.0	n 1	ΩI	กเ	ΩI	กา	กเ	1.0	SN	l u	nı	NS	ΩI	SN
1,1,2-Trichloroethane	ug/L	1.0	1 U	1 C	1 C	1 U	1 U	1 U	1.0	SN	1.0	1.0	NS	ΩI	NS
Benzene	ug/L	<u>ء</u>	O I	n n) 	n I	n n	n n	1.0	NS	1.0	1.0	NS	n i	NS
Trans-1,3-Dichloropropene	ng/L	n 1	O I	n -	O 1	n I	n n	1 U	1 U	NS	l U	ומ	NS	nι	NS
Bromoform	ug/L	1.0	l U	1 U	1 U	1 U	1 U	1.0	l U	SN	l U	10	NS	n r	SN
4-Methyl-2-pentanone	ug/L	5 U	5 U	5.0	l U	su	5 U	5 U	5 U	SN	5 U	5 U	NS	រា ទ	SN
2-Hexanone	ug/L	5 U	5.0	5.0	s U	5 U	5 U	5 U	s U	SN	su	5 U	NS	n s	NS
Tetrachloroethene	ng/L	n n	n n	חח	n 1	n I	9.5	6.7	78	SN	1.2	n r	NS	\$	SN
1,1,2,2-Tetrachloroethane	ug/L	1.0	N 1	ΩI	ΩI	n I	ΩI	n I	1.0	SN	ΩI	ח	SN	<u> ១ </u>	SN
Toluene	ng/L	_	_	1 U	n 1) I	1 U	n n	10	SN	1 C	n n	NS	กเ	SN
Chlorobenzene	ug/L	1 U	1 U	1 C	1 C	ıυ	1 U	1 U	1.0	SN	l U	1.0	NS	N 1	NS
Ethylbenzene	ug/L	l U	1 U	1.0	n I	n 1	1.0	1 U	1.0	NS	1.0	1.0	NS	1.0	NS
Styrene	ug/L	1.0	ΩI	1 U	1 U	1 U	1 U	n 1	1 U	SN	l U	nι	NS	nι	SN
Xylene (total)	ug/L	1.0	n 1	1.0	ו ה	1 U	1 U	l U	1.0	SN	l U	1 U	NS	n i	SN

Notes; DUP = Duplicate sample NS = Not sampled

U = Compound was analyzed for but not detected. Value shown is the method detection limit for quantification J = Indicates an estimated value.

Summary of Groundwater Analytical Results - August 2017 Hampstead, Maryland Black & Decker Table 2-4

		RFW-11A	1ARFW-11BRFW-12B RFW-13	RFW-12B	RFW-13	RFW-16 RFW-17	RFW-17	Leister	Leister	Leister	Trip	RFW-20	RFW-20 RFW-21	Town #22	Town #22 Town #23	Trip
PARAMETER	Units							Dairy	Res. #1	Res. #2	Blank					Blank
												O.	SEPA drin	USEPA drinking water method	method 524.	1.2
Chloromethane	ng/L	SN	n I	n i	n I	SN	1.0	ABD	ABD	ABD	ñΙ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	ng/L	SN	l U	l U	1 U	NS	חר	ABD	ABD	ABD	1 U	n n	1.0	1.0	1 U	1 U
Vinyl Chloride	ng/L	SN	1.0	1.0	וה	NS	ΩI	ABD	ABD	ABD	1.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	ug/L	NS	1.0	1 C	n -	SN	n -	ABD	ABD	ABD	1 U	n n	n n	1 U	1.0	_
Methylene Chloride	ng/L	NS	ח	2.0	2 U	NS	2 U	ABD	ABD	ABD	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Acetone	ug/L	SN	5 U	5.0	5 U	NS	5.0	ABD	ABD	ABD	5 U	6.7 J	6.3 J	10 U	5.9 J	10 U
Carbon Disulfide	ug/L	SN	5.0	5.0	2.0	SN	5 U	ABD	ABD	ABD	5.0	NA	NA	NA	NA	ΥN
1,1-Dichloroethene	ug/L	SN	1.0	1.0	1.0	NS	10	ABD	ABD	ABD	l U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	ug/L	SN	n I	n 1	n 1	SN	n -	ABD	ABD	ABD	1.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene (total)	ug/L	NS	1 U	2.2	1.3	NS	1.0	ABD	ABD	ABD	1.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	ug/L	SN	1.0	1.0	1.0	NS	n 1	ABD	ABD	ABD	I U	0.5 U	0.5 U	0.25 J	0.05 U	0.5 U
1,2-Dichloroethane	ug/L	NS	1.0	1.0	1 0	NS	1.0	ABD	ABD	ABD	1.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Butanone	ug/L	SN	5 U	5.0	5.0	NS	5 U	ABD	ABD	ABD	5 U	10 C	10 C	10 U	10 U	10 C
1,1,1-Trichloroethane	ug/L	SN	1.0	1 U	1 U	SN	n 1	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5.0	0.5 U	0.5 U
Carbon Tetrachloride	ug/L	NS	1.0	1.0	10	NS	1.0	ABD	ABD	ABD	n i	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	ug/L	SN	1 U	1.0	1.0	NS	1.0	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	T/gn	SN	1.0	1 U	1.0	NS	10	ABD	ABD	ABD	1.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	ug/L	SN	1.0	1.0	n n	NS	n I	ABD	ABD	ABD	1.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	ng/L	SN	2.7	160	2.8	NS	1 n	ABD	ABD	ABD	1.0	0.3 J	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	ng/L	NS	1.0	1 U	1.0	NS	nΙ	ABD	ABD	ABD	n i	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	ug/L	SN	1 U	1.0	1 0	NS	n I	ABD	ABD	ABD	กเ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Benzene	ng/L	SN	1 U	1 U	1 U	SN	ח	ABD	ABD	ABD	1.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trans-1,3-Dichloropropene	ug/L	NS	n n	2	n 1	SN	<u> </u>	ABD	ABD	ABD	1.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	ug/L	SN	ח	n -	n -	NS	n -	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
4-Methyl-2-pentanone	ug/L	SN	5.0	5 U	5 U	SN	5.0	ABD	ABD	ABD	5 U	10 O	10 O	10 U	10 U	10 O
2-Hexanone	ug/L	SN	5 U	5.0	5 U	SN	5 U	ABD	ABD	ABD	5 U	10 O	10 U	10 U	10 U	10 U
Tetrachloroethene	ng/L	SN	n 1	7	16	SN	0.4 J	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.41 J	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	ug/L	SN	2 -	n -	D -	SN	2	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	ug/L	NS	1.0	1.0	n n	SN	n 1	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	ug/L	SN	ח	2	D -	SN	2 -	ABD	ABD	ABD	n i	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	ug/L	NS	2	0.1	2	SN	n I	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Styrene	ng/L	SN	n i	n n	n -	SN	<u> </u>	ABD	ABD	ABD	ΩI	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylene (total)	ug/L	SN	1.0	1.0	1.0	NS	1 n	ABD	ABD	ABD	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

Notes: Samples from wells RFW-20 & 21, Town-22&23 are analyzed with the USEPA drinking water method 524.2 at the request of the MDE Source Protection and Appropriation Division. Samples from all of the other wells are analyzed with USEPA Method 8260.

NS = Not sampled

U = Compound was analyzed but not detected.

ABD = Well has been abandoned

RFW -20 was not sampled because it was damaged. The well is now repaired and will be sampled during the 4th quarter.

analytical data package is included in Appendix D.

As found in earlier sampling events at the Black & Decker facility, TCE and PCE were the VOCs detected at the highest concentrations in the groundwater samples. The highest concentration of TCE was detected in the groundwater samples collected from wells RFW-12B and EW-4, the highest concentration of PCE was detected in the groundwater sample collected from RFW-4B and EW-9. The remainder of VOCs present were detected at levels below the Federal Maximum Contaminant Levels (MCL).

2-8

3. OPERATION AND MAINTENANCE OF THE TREATMENT SYSTEM

A summary of the maintenance activities which were undertaken with the extraction and treatment system during the reporting period (July through September 2017) is provided in Table 3-1. This table is comprehensive in summarizing significant maintenance events or activities, while not including those activities considered unworthy of note (such as replacement of light bulbs, lubrication of moving parts as appropriate or other routine activities).

Table 3-1 Treatment System Maintenance Activities - 3rd Quarter 2017 Black & Decker Hampstead, Maryland

Date	Event/Corrective Action
Sep-17	Replace the pitless adaptor in well EW-7. The well is back online.
Sep-17	EW-2 was off for a day to repair a leaking fitting, the well is back online.

4. RECOMMENDATIONS

For the reporting period of July through September 2017, the treatment system continued to create a hydraulic boundary preventing off-site migration of groundwater. The extraction system will continue to operate as currently configured to pump and treat contaminated groundwater. Depth-to-water measurements will continue to be collected on a monthly basis in all site monitor wells to construct a groundwater elevation contour map for the site. The groundwater elevation contour map will be used to verify that the required area of groundwater capture is being maintained. If necessary, pumping rates will be adjusted to maintain groundwater capture due to seasonal fluctuations in groundwater elevations. The treatment system will also continue to operate as currently configured, as data collected have proven that the treatment system is fully effective in removing VOCs from the extracted groundwater.

APPENDIX A GROUNDWATER TREATMENT SYSTEM PUMPING RECORDS (JULY – SEPTEMBER 2017)

ENT ADMINISTRATION, 1800 WASHINGTON BLVD, BALTIMORE, MD 21230

Facility: BTR Capital Group (MD0001881) Maryland Environmental Service 259 Najoles Road, Millersville MD

Operated By:

Address; 627 Hanover Pike, Hampstead Maryland Additional Op's & cert # - Garrett Scheller 2500, Dorrance Jones 0763, Keith White 4609, Chris Dallas 6202, Andrew Bradley 0780

Month: July Year, 2017

Certification # 1662

				4	Final Effluent outfall 001	outfall 001										Outfall 101	101				Outfall 201	201		
Date App	Date Appearance Discharge MGD	arge pH D su	Cl2 mg/l	Fetrachloroethylen, 1,1-Trichloroethan Trichloroethane BODs ug/l ug/l ug/l mg/l	1,1-Trichloroethai ug/l	Trichloroethe ug/l	me BODs		ZY P	N+N mg/l	TP TN mg/l mg	TN O&G eColi mg/l mg/l mpn	eColi mpn	Flow	eColi mpn	Basin Inches	Alum E	Hypochianta Gpd	PostCE2 T	Tetrachloroethylene 1.1.1-Trichloroethan ug/f ug/f	(11-Trichlorochane	Trichloroethenc	Discharge mgd	Operator
1 C	Clear 0.07900	001												0.00000.0		3"	0.0	0.0	0.0				0.182333	DJ
2 C	Clear 0.16800	003												0.00000.0		2"	0.0	0.0	0.0				0.222715	ſΩ
3 C	Clear 0.10500	8.28	0.00											0.000000		2"	0.0	0.0	0.0				0.209278	GS
4 C	Clear 0.09100	8.14	0.00											0.000000.0		2".	0.0	0.0	0.0				0.189726	SS
. \$ C	Clear 0.12200	000												0.000000.0		2"	0.0	0.0	0.0				0.222116	GS
9	Clear 0.09600	000												0.007000	7	2,,	5.0	1.0	5.0				0.167414	κw
7 C	Clear 0.52000	000												0.00000.0		2	0.0	0.0	0.0				0.235374	ΚW
. 8	Clear 0.14200	00.												0.00000.0		2"	0.0	0.0	0.0				0.210686	GS
O 6	Clear 0.11200	00												0.000000.0		2".	0.0	0.0	0.0				0.206848	GS
10 C	Clear 0.09200	00												0.00000.0		3"	0.0	0.0	0.0				0.204005	GS
11 C	Clear 0.06900	7.97	0.00	⊽	⊽	~	7.00	0 12.8	1.35	0.36 0.	0.11 1.7	7 <5	1.0	0.001000	⊽	3"	5.0	0.1	5.0	l>	⊽	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.167732	GS
12 C	Clear 0.08700	700 8.15	0.00											0.000000.0		3"	5.0	1.0	5.0				0.242565	GS
13 C	Clear 0.07700	700												0.000000		3"	5.0	0.1	5.0				0.202961	GS
14 C	Clear 0.09000	000												0.012000		3".	5.0	1.0	5.0				0.204379	CS
15 C	Clear 0.27400	001												0.000000.0		3"	0.0	0.0	0:0				0.202544	AB
16 C	Clear 0.08600	00.												0.00000.0		3"	0.0	0.0	0.0				0.201303	AB
17 C	Clear 0.06600	8.05	0.00											0.00000.0		3	0.0	0.0	0.0				0.193808	CD
18 C	Clear 0.10800	300 7.92	0.00											0.013000	⊽	2	5.0	1.0	5.0				0.186631	GS
19 C	Clear 0.09100	00												0.000000		2"	0.0	0.0	0.0				0.244442	CD
20 C	Clear 0.05900	00,												0.00000.0		2"	0.0	0.0	0.0				0.196748	CD
21 C	Clear 0.06200	00												0.00000.0		2,,	0.0	0.0	0.0				0.204211	CD
22 C	Clear 0.05200	00:												0.000000.0		2,	0.0	0.0	0.0				0.182505	DJ
23 C	Clear 0.11100	00								\dashv				0.00000.0		0	0.0	0.0	0.0				0.235433	D
24 C	Clear 0.46800	00)												0.000000		0	0.0	0.0	0.0				0.203798	GS
25 C	Clear 0.08600	80.8	0.00											0.013000	⊽	<u>-</u>	5.0	1.0	5.0				0.164088	CS
26 C	Clear 0.08600	500 8.22	0.00											0.022000		3"	5.0	1.0	5.0				0.240556	GS
27 C	Clear 0.06100	00												0.00000.0		3"	0.0	0.0	0.0				0.191627	AB
28 C	Clear 0.42500	009												0.00000.0		33.	0.0	0.0	0:0				0.202517	AB
29 C	Clear 1.25500	00,					-							0.00000.0		<u> </u>	0.0	0.0	0.0				0.183440	GS
30 C	Clear 0.45000	000								· ·				0.00000.0		=	0.0	0.0	0.0				0.229714	GS
31 C	Clear 0.15100	00					-							0.00000.0		-	0.0	0.0	0.0				0.206526	GS
Total	5.74100	80					1							0.068000	1								6.338023	
Average	0.18519	611	<0.10	0	0	0	7	13		0	0 2	0	目	0.002194	0	#######	13	0.3	1.3	0.0	0.0	0.0	0.204452	
Minimum	0.05200	900 7.9	0.00	0	0	0	1	13		0	0 2	0		0.000000	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.164088	MOR

ENT ADMINISTRATION, 1800 WASHINGTON BLVD, BALTIMORE, MD 2123(Operated By:

Facility: BTR Capital Group (MD0001881)

Address: 627 Hanover Pike, Hampstead Maryland
Addrional Op's & cert # - Garrett Scheller 2500, Chris Dallas 6202, Dorrance Jones 0763, Andrew Bradley 0780, Alexander Storms 2095, Martin Whit 0666 Maryland Environmental Service 259 Najoles Road, Millersville MD

Month: August Year: 2017

					The Property of	100 H 200																	
Date Annearance Discharge	. Discharo	1	65	Transmitters and all the		unan oo	uoa	20	TEVNIN	at Mark	7.7	100000	L	H	-	_ -	l		_	Outfall 20]			
	MGD			ng/l	L/An	usamanananan nG)	lage	 l/gm					mpn MGD	mbu d	Inches	B B	Hypocitionid	mg/l		Letrachdorochtylene (1.1.1-Trichlorochan ug/l ug/l ug/l	richloroothene ug.7	Discharge	Operator
I Clear	0.10000	8.16	0.00	SECONDARIO COMPANIO CONTRACTOR CO									0.006000	1		5.0	1.0	5.0				0.167372	G. Scheller
2 Clear	0.14900	8.31	0.00										0.000000	0(2"	0.0	0.0	0.0				0.242460	G. Scheller
3 Clear	0.11200												0.000000	96	2".	0.0	0.0	0.0				0.201742	G. Scheller
4 Clear	0.09200									-			0.000000	9.	2"	0.0	0.0	0.0				0.202720	G. Scheller
5 Clear	0.35900												0.000000	Ω.	2,,	0.0	0.0	0.0				0.204617	A.Bradley
6 Clear	0.10900												0.000000	0(2,,	0.0	0.0	0.0				0.202637	A.Bradley
7 Clear	0.17500	8.30	0.00										0.00000	0(2"	0.0	0.0	0.0				0.198512	C. Dallas
8 Clear	0.26500	8.20	0.00	~	7	⊽	5.00	4.40	0.85 0.	0.78 <0.5	5 1.6	\$	<1 0.014000	00 6.40	2,,	0.0	0.0	0.0		:		0.204878	M Whitt
9 Clear	0.10700									_			0.000000	0,	2"	0.0	0.0	0.0				0.203034	C. Dallas
10 Clear	0.81800												0.000000	00	2"	0.0	0.0	0.0				0.202269	K. White
11 Clear	0.91200												0.000000	<u>Q</u>	2"	0.0	0.0	0.0				0.204510	K, White
12 Clear	0.58000	Ī							-	-			0.000000	<u>g</u>	3"	0.0	0.0	0.0				0.180390	D.Jones
13 Clear	0.13600	\int											0.000000	00	3"	0.0	0.0	0.0				0.230496	D.Jones
14 Clear	0.08500	8.15	0.00										0.000000	00	3"	0.0	0.0	0.0				0.198355	G. Scheller
15 Clear	0.22400	7.95	0.00							_	-		0.020000	00 <1	2"	5.0	1.0	5.0				0.169784	G. Scheller
16 Clear	0.51500												0.000000	<u>Q</u>	2"	0.0	0.0	0.0				0.235640	G. Scheller
17 Clear	0.15400												0.000000	Q	<u>"</u>	0.0	0.0	0.0				0.199253	G. Scheller
18 Clear	0.13900												0.000000	Q	1.1	0.0	0.0	0.0				0.199476	G. Scheller
19 Clear	0.52300												0.000000	0,0	=	0.0	0.0	0.0				0.215750	C. Dallas
20 Clear	0.35000												0.000000	Q.	-1	0.0	0.0	0.0				0.193492	C. Dallas
21 Clear	0.14400	7.43	00.00										0.000000	g g		0.0	0.0	0.0				0.201365	G. Scheller
22 Clear	0.10000	7.24	0.00					1					0.017000	7 00	2"	5.0	1.0	5.0				0.166527	G. Scheller
23 Clear	0.47000							-	+	\dashv			0.000000	g	2"	0.0	0.0	0.0				0.234612	G. Scheller
24 Clear	0.15200								+	\dashv			0.000000	Q	<u>.</u> 51	0.0	0.0	0.0				0.200834	K. White
25 Clear	0.08200								\dashv				0.000000	Q.	2,,	0.0	0.0	0.0				0.200300	K. White
26 Clear	0.09200									\dashv			0.000000	9	2"	0.0	0.0	0.0				0.202447	G. Scheller
27 Clear	0.07400								+	\dashv			0.000000	9	2"	0.0	0.0	0.0				0.195397	G. Scheller
28 Clear	0.09200	7.59	00.0			***************************************			-				0.000000	Q	2"	0.0	0.0	0.0				0.202559	A.Bradley
29 Clear	0.07600	7.50	00.00						+				0.015000	- V	2"	0.0	0.0	0.0				0.169263	G. Scheller
30 Clear	0.26500							+	+	+	_		0.000000	0	0	0.0	0.0	0.0				0.235428	A.Storms
31 Clear	0.10200												0.000000	0,	-1-	0.0	0.0	0.0				0.194306	A.Storms
Total	7.55300		1					1	1		4		0.072000	g								6.260425	
Average	0.24365		<0.10	0	0	0	\$	4	1	0	+	0	1 0.002323	4.1	#####		0.1	0.5	#DIA/0i	#DIA/0i	#DIA/0i	0.201949	
Minimum	0.07400	7.2	0.00	0	0	0	S	4			7	0	0.000000	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.166527	MOR

ENT ADMINISTRATION, 1800 WASHINGTON BLVD, BALTIMORE, MD 21230

Facility: BTR Capital Group (MD0001881)

Month: September Year: 2017

Certification # 1662

Address: 627 Hanover Pike, Hampstead Maryland

259 Najoles Road, Millersville MD

Maryland Environmental Service

Operated By:

Superintendent: David Coale Additional Op's & cert # - Garrett Scheller 2500, Chris Dallas 6202, Dorrance Jones 0763. Keith White 4609, Andrew Bradley 0780

Dave Coale G. Scheller A.Bradley A.Bradley A.Bradley K. White K. White K. White K. White Operator C. Dallas D.Jones D.Jones D.Jones MOR 0.198948 0.150812 Discharge 0.196062 0.192933 0.204857 0.150812 0.246147 0.206824 0.166786 0.165209 0.211396 0.195946 0.210471 0.195176 0.200814 0.161354 0.237605 0.197324 0.210338 0.153966 0.229340 0.160218 0.213937 0.213715 0.203536 0.212413 0.206321 0.199521 0.231060 0.194481 0.209931 0.189940pgu Trichloroethene #DIV/0! 0.0 ng/l Outfall 201 Tetrachloroethylene [1.1,1-Trichloroethane #DIV/0! 0.0 ng/l #DIA/0i 0.0 Ng/ Post C12 /Sm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.5 0.0 Hypochlorite 0.0 0.1 0.3 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 Gpd 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Alum Gpd 0.7 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 Outfall 101 ###### Basin Inches 0.0 = = =_ E = = = = 2. = = _ 2 2, 5 = 5 5 ž 0.0 5 2 Š ٢, ō 5 5 eColi 3.10 ndu 0.0 $\overline{\vee}$ V 0.00000.0 0.003567 0.021000 0.016000 0.107000 0.00000 0.00000.0 0.00000 0.00000 0.00000.0 0.044000 0.00000 0.00000.0 0.00000 0.00000.0 0.00000.0 0.00000 0.00000.00.00000 0.00000.0 0.00000.0 0.00000.0 0.026000 0.00000.0 0.00000 0.00000.0 0.00000.0 0.000000 0.000000 0.00000.0 0.00000.0 0.00000 0.00000 MGD Flow #### O&G eColi udai mg/l Ŷ 0 0 l/gm Z 8. ~ mg/l <0.0> Т 0 0 TKN N+N mg/l 1.02 mg/l 0.763 mg/l BOD₃ TSS 7.60 ∞ 00 ll/gm 8.92 6 6 Trichlomethene l/gn $\overline{\vee}$ 0 0 Final Effluent outfall 001 Ferrachloroethylene, 1, 1-Trichloroethan ug/l $\overline{\vee}$ 0 0 /gu 0 0 $\overrightarrow{\vee}$ <0.10 0.00 25 mg/l 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.09 6.78 6.93 7.15 6.85 6.93 6.85 8.9 7.06 Hd as Appearance Discharge 0.0860.0 0.05300 0.11500 0.08600 0.06400 0.08400 0.05300 0.10900 0.104000.10200 0.09000 0.13363 0.12300 0.10100 0.24400 0.66600 0.57200 0.15800 0.08800 0.11900 0.07000 0.09700 0.10900 0.09900 0.11500 0.08800 0.09000 0.06300 0.08600 0.07000 0.07000 0.07600 4.00900 MGD Clear Rain Clear Clear Clear Clear Clear Clear Average Date Total 6 2 7 ~ 4 15 16 17 8 19 20 23 22 23 24 25 26 27 28 29 30 9

Minimum

APPENDIX B DISCHARGE MONITORING REPORTS (JULY - SEPTEMBER 2017)

Parmit #: MD0001881 Major: No	Permittee: Permittee Address:	BTR HAMPSTEAD,LLC. 626 HANOVER PIKE HAMPSTEAD, MD 21074	JLC. KE 21074	Facility: Facility Location:	BTR HAMPSTEAD, LLC. 626 HANOVER PIKE HAMPSTEAD, MD 21074	. 2
Permitted Feature: 101 External Outfall	Discharge:	101-A 07-DP-0022, TRE	101-A 07-DP-0022, TREATED SANITARY WASTEWATER			
Report Dates & Status Monitoring Period: From 07/01/17 to 07/31/17	DMR Due Date:	10/28/17		Status:	NetDMR Validated	
Form Cam						
DISCHARGE SHALL BE LIMITED AND MONITORED AT END OF PHY PERSISTENT FOAM IS FOAM THAT DOES NOT DISSIPATE WITHIN	IYSICAL/CHEMICAL PLANT DISCHARGE PIPE.	DISCHARGE PIPE, THERI VT OF DISCHARGE	ESHALL BE NO DISCHARGE OF F	SICAUCHENICAL PLANT DISCHARGE PIPE THERE SHALL BE NO DISCHARGE OF FLOATING SOLIDS OR PERSISTENT FOAM IN OTHER THAN TRACE AMOUNTS. ONE HALF-HOUR OF POINT OF DISCHARGE.	OTHER THAN TRACE AMOUN	TS.
Principal Executive Officer						
First Name:	Title:			Telephone:		
Last Name:						
No Data Indicator (NODI)						
Form NODIS						
Parameter Monitoring Lacation Season # Parami Code Name	n NODI Qualifier t	Quantity or Loading Value 1 Quaitier 2		Quality or Concentration Units Qualifier 2 Value 2 Qualifier 3 Value 3 Units	# of Ex. Frequency of Analysis: Sample Type Units	sis Sample Type
Flow, in cor	Sample = 21 Permit Reg, Re	2194 = 22000 Req Mon MO AVG Req M	W.		0 01/30 - Weekly	GR - GRAB MS - MEASRD
51040 E. coli 1 - Effluent Gross 0	Vatue NODI. Sample Permit Reg.			= 1 30 - MPN/100mL	7100mL 01/07 - Weekiy	GR - GRAB GR - GRAB
Submission Note	Value NOD!					
If a parameter row does not contain any values for the Sample nor Effluent Trading, then none of the following fields will be submitted for that row. Units, Number of Excursions, Frequency of Analysis, and Sample Type.	uent Trading, then none of the	following fields will be sub	mitted for that row: Units, Number o	f Excursions, Frequency of Analysis, and Sample	Type	
Edit Chack Errors						
No errors,						
Comments						

3827626

pq

2017-06-25 14:34 (Time Zone: -04:00)

. Date/Time:

> JAYJANNEY Jay Janney jjann@menv.com

User: Name: E-Mail:

17BlackDeckerWWTP07.pdf Report Last Saved By BTR HAMPSTEAD.LLC.

Attachments

DMR Copy of Record

Permit											
Parmit #:	MD0001881			Permittee: Permittee Address:		BTR HAMPSTEAD, LLC. 626 HANCVER PIKE	Fac	Facility: Facility I ocetion:	BTRH/ 626 HA	BTR HAMPSTEAD, LLC.	
To T	2			Letonice Address:		HAMPSTEAD, MD 21074	Ė	nny Location:	HAMP	HAMPSTEAD, MD 21074	
Permitted Feature:	001 External Outfall	=		Discharge:	001-A 07-DP-002;	001-A 07-DP-0022, OUTFALL 001					The State of
Report Dates & Status											
Monitoring Period:	From 07/01/17 to 07/31/17	7 to 07/31/17		DMR Due Date:	11/27/17		Status:	us:	NetDM	NetDMR Validated	
Considerations for Form Compiletion DISCORDED AND MONITORED AT OUTFALL PIPE FROM PROCESSRESERYOR. FOR TOTAL RESIDUAL CHLORINE A FIELD MEASUREMENT OF LESS THAN 0.1 MGL SHALL BE CONSIDERED TOBE WITHIN THE PERMIT LIMIT. SHALLBE NO PROCESSORY OF THE PERMIT HERE AND MONITORED AT OUTFALL PIPE FROM PROCESSRESERYOR. FOR TOTAL RESIDUAL CHLORINE A FIELD MEASUREMENT OF LESS THAN 0.1 MGL SHALL BE CONSIDERED TOBE WITHIN THE PERMIT LIMIT. SHALLBE NO	D AND MONITORED	AT OUTFALL PIP	E FROM PROCE	SSRESERVOIR, FOR TO	TAL RESIDUAL CHLORINE A F	TELD MEASUREMENT OF	LESS THAN 0.1 MC	AL SHALL BE CONS	IDERED TOBE WIT	HIN THE PERMIT LI	MIT. SHALLBE NO
Principal Executive Officer	LIDSON PERSISI ET	TOAM IN OTHE	א והאו והאכה	AMOUNIS							e de
First Name:				Title:			T.	Telephone:			
Last Name;											andrij e
No Data Indicator (NODI)											
Form NOCH. Parameter	Monitoring Location	Monitoring Location Season # Param NOD!		Quantity or Loading		Qualify or Co.	Quality or Condentration			# of Ex. Frequency of	# of Ex. Frequency of Analysis. Sample Type
JD, 5-day, 20	1 - Effluent Gross	- 0	Sample Permit Req.	A STATE OF THE STA		A STATE OF THE STA	A dutter A	s 7 c= 15 DAILY MX	et 6	01/30 - Monthly 0 01/30 - Monthly	GR - GRANS GR - GRANS
			Value NODI Sample							02/07 - Twice E	02/07 - Twice Every Week GR - GRAB
00400 pH	1 - Effluent Gross	0	Permit Reg. Value NODI			>= 6.5 MINÍMUM		<= 8.5 MAXIMUM	M 12 - SU	0 02/07 - Twice E	very Week GR - GRAB
00530 Solids, total suspended	1 - Effluent Grass	- 0	Sample Permit Reg. Walles NOD!	16	7 26 - ib/d Req Mon DAILY MX 26 - ib/d	и 8	13 20 MO AVG	≈ 13 <= 30 DAILY MX	19 - mg/L 19 - mg/L	0 1/30 - Monthly 0 01/30 - Monthly	GR - GRAB GR - GRAB
00530 Solids, total suspended	1 - Effluent Gross		Sample Permit Req.	64	613 76 - Ib/ma Req Mon MO TOTAL 76 - Ib/mo	п с				01/30 - Monthly 0 01/30 - Monthly	CA - CALCTD CA - CALCTD
00530 Solids, total suspended	1 - Effluent Gross	2	Sample Permit Req.	я	1435 Seq Mon CUM TOTL 50 - lb/yr					01/30 - Monthly 0 01/30 - Monthly	CA · CALCTD CA · CALCTD
00556 Oil & Grease	1 - Effluent Gross	1 0	Sample Permit Reg			n "	0 10 MO AVG	= 0 <= 15 DAILY MX	19 - mg/L 19 - mg/L	01/30 - Monthly 0 01/30 - Monthly	GR - GRAB GR - GRAB
00600 Nitrogen, total [as N]	1 - Effluent Gross	0	Sample Permit Req.	ផ	1 Req Mon DAILY MX 26 - It/rd	н	2 Req Mon MO AVG	a	2 Req Mon DALLY MX 19 - mg/L	01/30 - Monthly 0 01/30 - Monthly	CP - COMPOS 08 - COMP-8
00600 Nitrogen, total [as N]	1 - Effluent Gross	1	Varius NODE Sample Permit Req	н	82 76 - Ib/ma Req Man MO TOTAL, 76 - Ib/ma					01/30 - Monthly 0 01/30 - Monthly	CA - CALCTD CA - CALCTD
00600 Nitrogen, Intal [as N]	1 - Effluent Grass	2	Sample Permit Req.	ME	1326 50 - Ibíyr Req Mon CUM TOTL 50 - Ibíyr					01/30 - Monthiy 0 01/30 - Monthiy	CA - CALCTD CA - CALCTD
00665 Phosphorus, total [as P]	1 - Effluent Gross	0	Sample Permit Reg.	44	0 26 - Ib/d Req Mon DAILY MX 26 - Ib/d	tr .	0 Req Mon MO AVG	ıı	0 Req Mon DAILY MX 19 - mg/L	01/30 - Monthly 0 01/30 - Monthly	08 - COMP-8 08 - COMP-8
00665 Phosphorus, total [as P]	1 - Effluent Gross	-	Sample Permit Req.		5 Req Mon MO TOTAL 76 - Ib/mo					01/30 - Monthly 0 01/30 - Monthly	CA · CALCTD CA · CALCTD
00665 Phosphorus, total [as P]	1 - Effluent Gross	2	Sumple Permit Req.		5 Req Mon CUM TOTL 50 - Ib/yr					01/30 - Monthiy 0 01/30 - Monthiy	CA - CALCTD CA - CALCTD
34475 Tetrachloroethylene	1 - Effluent Gross		Sample Permit Req.					o S DAILY MX	28 - ug/t. 28 - ug/t.	01/30 - Monthly 0 01/30 - Monthly	GR - GRAB GR - GRAB
34506 1,1,1-Trichloroethane	1 - Effluent Gross	0	Sample Permit Reg. Value NDDI					0 5 DAILY MX	28 - ug/L 28 - ug/L	01/30 - Monthly 0 01/30 - Monthly	GR - GRAB GR - GRAB
50050 Flow, in conduit or thru treatment plant 1 - Effluent Gross	plant 1 - Effluent Gross	- 0	Sample Permit Req.	0.1852 Reg Mon MO AVG	1,255 03 - MGD Req Mon DALLY MX 03 - MGD					01/30 - Monthly 0 01/30 - Monthly	MS - MEASRD MS - MEASRD
50060 Chlorine, total residual	1 - Effluent Gross	1	Value NODI Sample Permit Reg.			ij	0 0.1 MO AVG	0 <= 0.1 DAILY MX	19 - mg/L < 19 - mg/L	01/30 - Monthly 0 01/30 - Monthly	GR - GRAB GR - GRAB

		Value NODI Sminole		30 - MPN/100mL	01/30 - Monthly	GR - GRAB	
51040 E. coli	1 - Effluent Grass 0	Permit Raq. Marine MOII	Req Mon MO AVG	30 - MPN/100mL 0	01/30 - Monthly	GR . GRAB	
78391 Trichloroethene	1 - Effluent Gross 0	Simple Sample Varies MITO	0 <= 5 DAILY MX	28 - ug/L 28 - ug/L 0	01/30 - Monthly 01/30 - Monthly	GR - GRAB GR - GRAB	
Submission Note If a parameter row does not contain t	eny values for the Sample nor Effluen	Submission Note II a parameter row does not contain any values for the Sample not Effluent Trading, then none of the following fields will be submitted for that row. Units, Number of Excursions, Frequency of Analysis, and Sample Type.	ions. Frequency of Analysis, and Sample Type.				
Edit Check Errors No errors.							
Comments						- j. *j.	
Attachments		Name	Type		Sizo		
17BlackDeckerWWTP07.pdf			pdf	3827626			,
Last Sav AMPSTE		Date/Time	2017-08-25 14:34 (Time Zone: -04:00)			* ************************************	
Name: Jay Janney E-Mali: jjann@menv.com							

Pormit Permit #	MD0001881		6	Permittee	BTR HAMPSTEAD, LLC.	Facility	BTR HAMPSTEAD, LLC
Majori	2		ā	Permittee Address:	626 HANOVER PIKE HAMPSTEAD, MD 21074	Facility Location:	626 HANOVER PIKE CARROLL COUNTY HAMPSTEAD, MD 21074
Permitted Feature.	001 External Outfall		ă	scharge.	001-A 07-DP-0022, OUTFALL 001		
Report Dates & Status			÷ .				
Monitoring Period:	From 08/01/17 to 08/31/17	5 08/31/17	5	DMR Due Date:	12/27/17	Status:	NetDMR Validated
Considerations for Form Completion	uo,						
DISCHARGE SHALL BE LIMITED AND MONITORED AT OUTFALL PIPE FROM PROCESSRESERY/DISCHARGE OF FLOATING SOLIDSOR PERSISTENT FOAM IN OTHER THAN TRACE AMOUNTS.	ND MONITORED AT SOR PERSISTENT F	OUTFALL PIPE FROM	M PROCESSRES M TRACE AMOUI	SERVOIR. FOR TOTAL RESIDUAL (DISCHARGE SHALL BELIMITED AND MONITORED AT OUTFALL PIPE FROM PROCESSRESERVOIR. FOR TOTAL RESIDUAL CHLORINE A FIELD MEASUREMENT OF LESS THAN 0.1 MG/L SHALL BE CONSIDERED TOBE WITHIN THE PERMIT LIMIT. SHALLBE NO DISCHARGE OF FLOATING SOLIDSOR PERSISTENT FOAM IN OTHER THAN TRACE AMOUNTS.	0.1 MG/L SHALL BE CONSIDERED T	OBE WITHIN THE PERMIT LIMIT. SHALLBE NO
Principal Executive Officer							
First Name:			Ē	9		Telephone:	
Last Name:							
No Data Indicator (NODI)			1				
Form NODI:							

				Sample	men vane	CANADIDE TO VALUE TO CANADIDE A VALUE A VALUE A CANADIDE TO VALUE TO CANADIDE TO CANADIDATE TO	Juantier 1 Value 1 Cu	anner z vans	- Commi	Varie-2 Quartier-3 Value-3	Umits 19 - mg/L		01/30 - Monthly	GR - GRAB
00310 BOD, 5-day, 20 deg. C	1 - Effluent Gross	0	ł	Permit Reg.					II.	15 DALY MX	19 - mg/L	0	01/30 - Monthly	GR - GRAB
				Sample		и	= 7.2		st	8.3	12 - SU		02/07 - Twice Every Week GR - GRAB	ek GR - GRAB
00400 pH	1 - Effluent Gross	0	1	Permit Reu,		*	>= 6.5 MINIMUM		R.	8.5 MAXIMUM	12 - SU	0	02/07 - Twice Every Week GR - GRAB	ek GR - GRAB
				Value NODS			,	,	1	,	:			8
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5			and in a	is	D/GI - B7	14	4	it	4	18 - mg/L		01/30 - Monthly	GR - GRAB
iso spirus, rotal suspended	1 - Emuent Gross	0	ŧ	Value NOD!		Keq Mon DAILY MX 26 - 15/d	ii V	20 MO AVG		30 DAILY MX	19 - mg/L	0	01/30 - Monthly	GR - GRAB
				Sample	it	277 76 - lb/mo							01/30 - Monthiy	CA - CALCTE
00530 Solids, total suspended	1 - Effluent Gross	-	ı	Permit Req.		Req Mon MO TOTAL 76 - Ib/ma						0	01/30 - Monthly	CA - CALCTD
				Value NOD!										
				Sample	ıt	1712 50 - lb/yr							01/30 - Monthly	CA - CALCTD
00530 Solids, total suspended	1 - Effluent Gross	5	ı	Permit Req.		Req Mon CUM TOTL 50 - lb/yr						0	01/30 - Monthly	CA - CALCTD
				Value NOD!										
				Sample			п	0		0	19 - mg/L		01/30 - Monthly	GR - GRAB
00556 Oil & Grease	1 - Effluent Gross	c	1	Permit Req.			Α,	10 MO AVG	<i>11</i>	15 DAILY MX	19 - mg/L	0	01/30 - Monthly	GR - GRAB
				Sample	н	4 26 - fb/d	н	2	ıı	~	19 - mg/L		01/30 - Monthly	CP - COMPOS
00600 Nitrogen, total [as N]	1 - Effluent Gross	0	1	Permit Reg.		Reg Mon DAILY MX 26 - Ib/d		Reg Mon MO AVG	O AVG	Reg Mon DAILY MX 19 - mg/L	4X 19 - ma/L	0	01/30 - Monthly	08 - COMP-8
				Value NODI										
				Sample	н	103 76 - lb/ma							01/30 - Monthly	CA - CALCT
00600 Nitrogen, total [as N]	1 - Effluent Gross	-	1	Permit Req.		Reg Mon MO TOTAL 76 - Ib/mo						0	01/30 - Monthly	CA-CALCTD
				Value NOU!	1	1420							00000	10.140
0.0	5			and the second	•	0001-000							U 11.3U - MORIGIA	CA - CALCID
ordou narogen, total las Inj	- Emment Gross	7	Į.	Political Property		Keq Mon CUM TOTL 50 - 1byr						0	01/30 - Monthly	CA - CALCTD
				Sample	#1	0 26 - 15(4)	**	c	i	c	10 000		0400 Months	0 03400
00665 Phosphorus, Intal [as P]	1 - Effluent Gross	0	ł	Permit Reg.		ed Mon DAILY MX		Red Mon MO AVG	O AVG	Rea Mon DAILY MX 19 - mg/L	MX 19 - ma/l.	0	01/30 - Monthly	DB - COMP-8
				Vatue NOD!				-						
				Sample	"	0 76 - Ib/mo							01/30 - Monthly	CA - CALCT
00665 Phosphorus, total (as P)	1 - Effluent Gross	-	t	Permit Reg.		Req Mon MO TOTAL 76 - Ib/mo						0	01/30 - Monthly	CA - CALCTD
				Value NODI										
				Sample	tı	5 50 - lb/yr							01/30 - Monthly	CA-CALCTD
()()665 Phosphorus, total [as P]	1 - Effluent Gross	5	÷	Permit Req.		Req Mon CUM TOTL 50 - Ib/yr						0	01/30 - Monthly	CA - CALCTI
				Sample					41	0	28 - uq/L		01/30 - Monthly	GR - GRAB
34475 Tetrachloroethylene	1 - Effluent Gross	0	ş	Permit Req.					8	5 DAILY MX	28 - ug/L	0	01/30 - Monthly	GR - GRAB
				Value NOD!										
				Sample					В	0	28 - ug/L		01/30 - Monthly	GR - GRAB
345061,1,1-Trichloroethane	1 - Effluent Gross	0	1	Permit Req.					4.7	5 DAILY MX	28 - ug/L	0	01/30 - Monthly	GR - GRAB
				Value NOD!										
				Sample =	0.2436 =	0.912 03 - MGD							01/30 - Monthly	MS - MEASRD
50050 Flow, in conduit or thru freatment plant. 1 - Effluent Gross	plant 1 - Effluent Gross	0	1	Permit Reg	Req Mon MO AVG	Red Mon DAILY MX 03 - MGD						0	01/30 - Monthly	MS - MEAS
				Asine No.										
				CONTRACTOR OF CO.			*	-	ı	•	10 -000		04790 Manual.	0.00

50060 Chlorine, total residual	1 - Effluent Gross 0 returning	ë.	0.1 MO AVG	0.1 DAILY MX	19 - mg/L 0	01/30 - Monthly	GR - GRAB
51040 E. coli	1 - Efficient Gross 0 House in the manufacture i	И	1 Req Mon MO AVG		30 - MPN/100mL 30 - MPN/100mL 0	01/30 - Monthly 01/30 - Monthly	GR - GRAB GR - GRAB
78391 Trichloroethene	1 - Effuent Gross 0 - Ferencial Hamiltonian		# V	0 5 DAILY MX	26 - ug/l. 0	01/30 - Monthly 01/30 - Monthly	GR - GRAB GR - GRAB
Submission Note If a parameter row does not contain	Submission Note If a nationalist raw draw of contain any values for the Servete and Efficient Teading the followings find the solution for the Servete and Efficient Teading the followings find the solution for the Servete and Servet			# W. 100			
Edit Chack Errors No errors.	and second in which the control into the control of the control interest and the additional control of the cont	inuel of excell stones, re-	equency of Analysis,	and sample Type.			
Comments							
Attachments	Proving Provin						
17BlackDeckerWWTP08.pdf		Jpd	adá i		1716691	azio	
Report Last Saved By BTR HAMPSTEAD, L.C. LISSY							
	Order Filter	7	ZUT-195-21 US:10 (Time Zone: -04:00	ime 2.00e: -04.00)			

Facility: Facility Location: 626 HANOVER PIKE CARROLL COUNTY HAMPSTEAD, MD 21074		NetDMR Validated	PHYSICALCHEMICAL PLANT DISCHARGE PIPE. THERE SHALL BE NO DISCHARGE OF FLOATING SOLIDS OR PERSISTENT FOAM IN OTHER THAN TRACE AMOUNTS. HIN ONE HALF-HOUR OF POINT OF DISCHARGE.	(Albabionic)		# of Ex. Frequency of Analysis : Sample Type	01/39 - Monthly GR - GRAB 0 01/07 - Weeky MS - MEASRD	14 30 - MPN/100mL 01/07 - Weekly GR - GRAB 126 DALLY MX 30 - MPN/100mL 0 01/07 - Weekly GR - GRAB
Facility		Status:	ING SOLIDS OR PERSIS	Tele		Quality or Concentration		a 1.4
	INITARY WASTEWATER		BE NO DISCHARGE OF FLOAT			Quality or Concentrator Dutits Dualities 4 Value 1 Dualities 2 Value 2 Dualities 3	×	
BTR HAMPSTEAD,LLC. 626 HANOVER PIKE HAMPSTEAD, MD 21074	101-A 07-DP-0022, TREATED SANITARY WASTEWATER	10/28/17	(ARGE PIPE, THERE SHALL DISCHARGE			Guantity or Loading	u	
Permittee: Permittee Address:	Discharge:	DMR Due Date:	Considerations for Form Completion DISCHARGE SHALL BE LIMITED AND MONITORED AT END OF PHYSICAL/CHEMICAL PLANT DISCHARGE PIPE. PERSISTENT FOAM IS FOAM THAT DOES NOT DISSIPATE WITHIN ONE HALF-HOUR OF POINT OF DISCHARGE.	Titlet		l Qualifier 1 Valu	Sample = 2323 Permit Req Red Mon MO AVG Value NOTI	Sample Permit Roq. Value NODI
**************************************			RED AT END OF PHYSIC. T DISSIPATE WITHIN ONE			Monitoring Location Season # Param. NOBI	- 0 \$50.	ross ()
MD0001881 No	101 External Outfall	From 08/01/17 to 08/31/17	Considerations for Form Completion DISCHARGE SHALL BE LIMITED AND MONITORED AT END OF PERSISTENT FOAM IS FOAM THAT DOES NOT DISSIPATE WIT	ffcer	6	1	50350 Flow, in conduit or thru treatment plant 1 - Effluent Gross	1 - Effluent Gross
Permit #: Permit #: Major:	Permitted Feature: Report Dates & Status	Monitoring Period:	Considerations for Form Completion DISCHARGE SHALL BE LIMITED AND PERSISTENT FOAM IS FOAM THAT D	Principal Executive Officer First Name:	Last Name: No Data Indicator (NODI)	Form NODI: Parameter Code Name	50050 Flow, in conduit or thru	51040 E, coli

If a parameter row does not contain any values for the Sample nor Effluent Trading, then none of the following fields will be submitted for that row. Units, Number of Excursions, Frequency of Analysis, and Sample Type. Edit Check Errors Submission Note

No errors.

Comments

Date/Time. 2017-09:21 08:17 (Time Zone: -04:00) Type jjann@menv.com BTR HAMPSTEAD, LLC. JAYJANNEY Jay Janney Attachments 17BlackDeckerWWTP08.pdf Report Last Saved By Name: E-Mailt

Permit #:	Permittee:	BTR HAMPSTEAD,LLC.	Facility:	BTR HAMPSTEAD, LLC.
Major:	Permittee Address:	626 HANOVER PIKE HAMPSTEAD, MD 21074	Facility Location:	626 HANOVER PIKE HAMPSTEAD, MD 21074
Permitted Feature: 001 External Outfall	Discharge:	001-A 07-DP-0022, OUTFALL 001		
Report Dates & Status				
Monitoring Period: From 09/01/17 to 09/30/17	DMR Due Date:	01/27/18	Status:	NetDMR Validated

DISCHARGE SHALL BE LIMITED AND MONITORED AT OUTFALL PIPE FROM PROCESSRESERVOIR. FOR TOTAL RESIDUAL CHLORINE A FIELD MEASUREMENT OF LESS THAN 0.1 MG/L SHALL BE CONSIDERED TOBE WITHIN THE PERMIT LIMIT. SHALLBE NO DISCHARGE OF FLOATING SOLLDSOR PERSISTENT FOAM IN OTHER THAN TRACE AMOUNTS. |Telephone: Title: No Data Indicator (NODI) Principal Executive Officer First Name: Form NODI: Last Name:

Parameter	Monitoring Location Season # Param. NODI	tion Seaso	on # Param. NO	100	Quantity	Quantity or Loading		Quality or Concentration	ntration		# of E	# of Ex. Frequency of Analysis Sample Type	s Sample Type
Code Name					Qualifier 1 Quali	Value 1 Qualifier 2 Units Qua	Units Qualifier 1 Value 1 Qualifier 2	Value 2	Qualifier 3 Value 3				
				Sample				11				01/30 - Monthly	GR - GRAB
00310 BOD, 5-day, Z0 deg. C	1 - Effluent Gross	0	;	Permit Reg. Value NODI				•	<= 15 DAILY MX	19 - mg/L	0	01/30 - Monthly	GR - GRAB
				Sample		u		II	7.2	12 - SU		02/07 - Twice Every Week GR - GRAB	k GR - GRAB
00400 pH	1 - Effluent Gross	0	ı	Permit Req.		I.	6.5 MINIMUM	v	<= 8.5 MAXIMUN		0	02/07 - Twice Every Week GR - GRAB	k GR - GRAB
				Sample	н	5 26 - lb/d	н	H 00	80	19 - mg/L		01/30 - Monthly	GR - GRAB
00530 Solids, total suspended	1 - Effluent Gross	0	1	Permit Reg. Value NODI		Req Mon DAILY MX 26 - Ib/d	"	20 MO AVG	<= 30 DAILY MX		0	01/30 - Monthly	GR - GRAB
				Sample	at	254 76 - Ib/mo						01/30 - Monthly	CA - CALCTD
00530 Solids, total suspended	1 - Effluent Gross	-	1	Permit Req.		Req Mon MO TOTAL 76 - Ib/mo					0	01/30 - Monthly	CA-CALCTD
				Sample	11	1966 50 - lb/yr						01/30 - Monthly	CA - CALCTD
00530 Solids, total suspended	1 - Effluent Gross	2	:	Permit Req.		Req Mon CUM TOTL 50 - lb/yr					0	01/30 - Monthly	CA - CALCTD
				Value NODI			ı		c	10		04/30 Moothly	9490
00556 Oil & Grease	1 - Effluent Gross	0	ı	Permit Req.			ı .) MO AVG	15 DAILY MX		0	01/30 - Monthly	GR - GRAB
				Value NODI									
				Sample	18	1 26 - Ib/d	н	2 =====================================		19 - mg/L		01/30 - Monthly	CP - COMPOS
00600 Nitrogen, total [as N]	1 - Effluent Gross	0	ı	Permit Req.		Req Mon DAILY MX 26 - Ib/d		Req Mon MO AVG	Req Mon DAI	Req Mon DAILY MX 19 - mg/L	0	01/30 - Monthly	08 - COMP-8
				Sample	H	60 76 - lb/mo						01/30 - Monthly	CA - CALCID
00600 Nitrogen, total [as N]	1 - Effluent Gross	-	1	Permit Reg.		Mon MO TOTAL					0	01/30 - Monthly	CA - CALCTD
				Value NODI									
				Sample	n	1488 50 - lb/yr						01/30 - Monthly	CA - CALCTD
00600 Nitrogen, total [as N]	1 - Effluent Gross	2	1	Permit Req.		Req Mon CUM TOTL 50 - lb/yr					0	01/30 - Monthly	CA - CALCTD
				Value NODI						;		:	
				Sample	II	0 26 - lb/d	н	0		19 - mg/L		01/30 - Monthly	08 - COMP-8
00665 Phosphorus, total [as P]	1 - Effluent Gross	0	;	Permit Reg. Value NODI		Req Mon DAILY MX 26 - lb/d		Req Mon MO AVG	Req Mon DAI	Req Mon DAILY MX 19 - mg/L	0	01/30 - Monthly	08 - COMP-8
				Sample	11	0 76 - Ib/mo						01/30 - Monthly	CA - CALCTD
00665 Phosphorus, total [as P]	1 - Effluent Gross	-	1	Permit Reg.		Req Mon MO TOTAL 76 - lb/mo					0	01/30 - Monthly	CA - CALCTD
				Sample	II	5 50 - Ib/vr						01/30 - Monthly	CA - CALCTD
00665 Phosphorus, total [as P]	1 - Effluent Gross	2	ı	Permit Reg.		eq Mon CUM TOTL					0	01/30 - Monthly	CA - CALCTD
				Value NODI									
				Sample				н		28 - ug/L		01/30 - Monthly	GR - GRAB
34475 Tetrachloroethylene	1 - Effluent Gross	0	1	Permit Req.				•	<= 5 DAILY MX	28 - ug/L	0	01/30 - Monthly	GR - GRAB
				Sample				II	c	28 - 110/1		01/30 - Monthly	GB GBAB
34506 1 1 1-Trichloroethane	1 - Effluent Gross	c	;	Dermit Red						28 - 110/L	_	01/30 - Monthly	GR - GRAB
200000000000000000000000000000000000000				Value NODI				,		70. 08.1	•	A COLO	9000 - 20
				Sample =	0.1336 =	0.666 03 - MGD						01/30 - Monthly	MS - MEASRD
50050 Flow, in conduit or thru treatment plant 1 - Effluent Gross	ant 1 - Effluent Gross	0	:	Permit Req.	Req Mon MO AVG	Req Mon DAILY MX 03 - MGD					0	01/30 - Monthly	MS - MEASRD
				Value NOD! Sample			н	0	0	19 - mg/L		01/30 - Monthly	GR - GRAB
50060 Chlorine, total residual	1 - Effluent Gross	0	1	Permit Req.			ů	1 MO AVG			0	01/30 - Monthly	GR - GRAB

Permit					
Permit #:	MD0001881	Permittee:	BTR HAMPSTEAD, LLC.	Facility:	BTR HAMPSTEAD, LLC.
Major:	No	Permittee Address:	626 HANOVER PIKE HAMPSTEAD, MD 21074	Facility Location:	626 HANOVER PIKE HAMPSTEAD, MD 21074
Permitted Feature:	101 External Outfall	Discharge:	101-A 07-DP-0022, TREATED SANITARY WASTEWATER		
Report Dates & Status					
Monitoring Períod:	From 09/01/17 to 09/30/17	DMR Due Date:	10/28/17	Status:	NetDMR Validated

DISCHARGE SHALL BE LIMITED AND MONITORED AT END OF PHYSICAL/CHEMICAL PLANT DISCHARGE PIPE. THERE SHALL BE NO DISCHARGE OF FLOATING SOLIDS OR PERSISTENT FOAM IN OTHER THAN TRACE AMOUNTS.
PERSISTENT FOAM IS FOAM THAT DOES NOT DISSIPATE WITHIN ONE HALF-HOUR OF POINT OF DISCHARGE. Considerations for Form Completion

Telephone: Principal Executive Officer First Name: Last Name:

No Data Indicator (NODI)

Form NODI:										
Parameter Monitoring Locati	Monitoring Location Season # Param. NODI	igo	Quantity	Quantity or Loading		Quality or Concentration	itration	10 #	# of Ex. Frequency of Analysis Sample Type	rsis Sample Type
Code			Value 1 Qua	lifier 2 Value 2	Qualifier 1 Value 1 Qualifier 2 Value 2 Units Qualifier 1 Value 2 Qualifier 3 Value 3 Value 3	alifier 2 Value 2 Qualifie	r 3 Value 3	Units		
		Sample =	3567 =	44000 07 - gal/d	07 - gal/d				01/30 - Monthly	GR - GRAB
50050 Flow, in conduit or thru treatment plant 1 - Effluent Gross 0	0	ğ	Req Mon MO AVG	Req Mon DAILY MX 07 - gal/d	MX 07 - gal/d			0	01/07 - Weekly	MS - MEASRD
		Value NOD!								
		Sample					1.3	30 - MPN/100mL	01/07 - Weekly	GR - GRAB
51040 E. coli 1 - Effluent Gross 0	0	Permit Req.				Ü	126 DAILY MX	126 DAILY MX 30 - MPN/100mL 0 01/07 - Weekly	01/07 - Weekly	GR - GRAB
		Value NODI								

If a parameter row does not contain any values for the Sample nor Effluent Trading, then none of the following fields will be submitted for that row: Units, Number of Excursions, Frequency of Analysis, and Sample Type. Submission Note

Edit Check Errors

No errors.

Comments

Name Type Signature Name Type Signature Signature
pod jpd
Type
7ype pdf
. 6153387
S (153387
10.0

Report Last Signed By User:

2017-10-26 08:21 (Time Zone: -04:00)

Date/Time:

E-Mail:

jjann@menv.com

JAYJANNEY Jay Janney Jjann@menv.com

2017-10-26 08:23 (Time Zone: -04:00)

Date/Time:

E-Mail:

User: Name:

1 - Effluent Gross 0 Permit Req. Req Mon MO AVG 30 - MP	30 - MPN/100mL		01/30 - Monthly	GR - GRAB
Sample		30 - MPN/100mL 0	0 01/30 - Monthly	GR - GRAB
1 - Effuent Gross 0 Permit Req. <= 5 DALLY MX Value NODI	= 0 28 - ug/L		01/30 - Monthly	GR - GRAB
Submission Note	5 DAILY MX	28 - ug/L 0	0 01/30 - Monthly	GR - GRAB
If a parameter row does not contain any values for the Sample nor Effluent Trading, then none of the following fields will be submitted for that row: Units, Number of Excursions, Frequency of Analysis, and Sample Type.	by of Analysis, and Sample Type.	Type.		

No errors. Comments

	,	
	1	
		2
		115
		SILIS
		ents
		Jens
		nents
		ments
		ments
		nments
		Suments
	- Property	cuments
		acuments
	Acres de constantes	acuments
	the state of the s	racuments
	Annaham ta	Hachments
	A Administration Assessment	Allachments
	A 44	Attachments
	A Administration Assessment	Attachments
	A Administration Assessment	Attachments
	Attended to	Attachments
	A Administration of the Party o	Attachments
	A Administration Assessment	Attachments
	A Address to the same of the	Attachments
	A Administration Assessment	Attachments
	Attendente	Attachments

17BlackDecker/WVTP09.pdf	User:	Name: E-Mail:	Date/Time:	Report Last Signed By	User	Name:	E-Mail:	i
Name Type	JAYJANNEY CONTRACTOR OF THE CO	Janney jjann@menv.com	2017-10-26 08:20 (Time Zone -04:00)		JAYJANNEY	Association of the control of the co	jjann@menv.com	MONDO OF THE PROPERTY OF THE P
Size 6153387								

Permit							
Permit #:	MD0001881	Permittee:	BTR HAMPSTEAD, LLC.	Facility:	BTR	BTR HAMPSTEAD, LLC.	
Major:	No. 1	Permittee Address:	626 HANOVER PIKE HAMPSTEAD, MD 21074	Facility Location:		626 HANOVER PIKE HAMPSTEAD, MD 21074	
Permitted Feature:	201 External Outfall	Discharge:	201.A 07-DP-0022, TREATED GROUND WATER				
Report Dates & Status							
Monitoring Period:	From 07/01/17 to 09/30/17	DMR Due Date:	10/28/17	Status:	NetDI	NetDMR Validated	
Considerations for Form Completion TESTING SHALL BE CONDUCTED IN	Considerations for Form Completion TESTING SHALL RE CONDUCTED IN ACCORDANCE WITH THE PROCEDURES DESCRIBED IN FEA METHODS 624	OCEDURES DESCRIBED IN FPA MET	HODS 624				
Principal Executive Officer	J80						
First Name:		Title:		Telephone:			
Last Name:							
No Data Indicator (NODI)	A Company of the Comp						
Form NODI:							
Parameter	Monitoring Location Season # Param. NODI		Quantity or Loading	Quality or Concentration	o #	# of Ex. Frequency of Analysis Sample Type	s Sample Type
Code		Qualifier 1 Value 1	Value 1 Qualifier 2 Value 2 Units Qualifier 1 Value 1 Qualifier 2	r 2 Value 2 Qualifier 3 Value 3	Value 3 Units		
		Sample	H	н		01/30 - Monthly	GR - GRAB
34475 Tetrachloroethylene	1 - Effluent Gross 0	Permit Req. Value NODI		Reg Mon MO AVG <= 5 [5 DAILY MX 28 - ug/L	01/30 - Monthly	GR - GRAB
		Sample	***	0	28 - ug/L	01/30 - Monthly	GR - GRAB
34506 1,1,1-Trichloroethane	1 - Effluent Gross 0	Permit Reg. Value NOD!		Reg Mon MO AVG <= 5 [5 DAILY MX 28 - ug/L	01/30 - Monthly	GR - GRAB
		Sample = 201814	= 246147 07 - gal/d			99/99 - Continuous	MS - MEASRD
50050 Flow, in conduit or thru to	50050 Flow, in conduit or thru treatment plant 1 - Effluent Gross 0	Permit Reg. Reg Mon QRTR AVG	: AVG Req Mon DAILY MX 07 - gal/d			99/99 - Continuous	MS - MEASRD
		Value NODI Sample	и	0	28 - uq/L	01/90 - Quarterly	GR - GRAB
51415 Volatile Organic Compound [VOC]	und [VOC] 1 - Effluent Gross 0	Permit Req.		Req Mon QRTR AVG <= 10	100 DAILY MX 28 - ug/L	01/90 - Quarterly	GR - GRAB
		Value NODI					
		Sample	22	ij		01/30 - Monthly	GR - GRAB
78391 Tríchloroethene	1 - Effluent Gross 0	Permit Reg. Value NODI		Req Mon MO AVG <= 5 [5 DAILY MX 28 - ug/L	01/30 - Monthly	GR - GRAB
Submission Note							

If a parameter row does not contain any values for the Sample nor Effluent Trading, then none of the following fields will be submitted for that row. Units, Number of Excursions, Frequency of Analysis, and Sample Type.

Edit Check Errors

Comments No errors.

	ø		
	Ty.		
		Jpd	
	Мате		
	2		
		WVTP09.pdf	aved By
Attachments		17BlackDeckerW	Report Last Saved
•			

Size

6153387

jjann@menv.com 2017-10-26 08:23 (Time Zone: -04:00) Jay Janney

Date/Time:

E-Mail:

Name:

JAYJANNEY

BTR HAMPSTEAD,LLC.

JAYJANNEY Report Last Signed By

jjann@menv.com 2017-10-26 08:23 (Time Zone: -04:00) Jay Janney Date/Time:

E-Mail:

Name: User:

APPENDIX C GROUNDWATER TREATMENT SYSTEM ANALYTICAL RESULTS (JULY - SEPTEMBER 2017)

CHERYL GRIFFIN

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

MILLERSVILLE,MD 21108

MARYLAND ENVIRONMENTAL SERVICE B

Analytical Report

Serialized: 08/02/2017 11:20am DE36

Order Number:

L6926420

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

07-25-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6926420

Authorized by: Raphael C. Fratti, Laboratory Director

Eurofins QC, Inc.

CHERYL GRIFFIN

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

Analytical Report

Printed 08/02/17 11:20 DE36

Order Number:

L6926420

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

07-25-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

Account No:AL0341, MARYLAND ENVIRONMENTAL SERVICE A

MARYLAND ENVIRONMENTAL SERVICE B

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

P.O. No:

Inv. No: PWSID No:

: MES_AL0341 PI

Sample ID

Sample Description

L6926420-1 BTR 101

Received Date/Time 07/25/17 12:55pm

Samp. Date/Time/Temp Sampled by

07/25/17 09:20am NA C Customer

Parameter

Result

Qual Units

Method

DF RL

Test Date, Time, Analyst

ENVIRONMENTAL MICROBIOLOGY

E. Coli, MPN Cel(Delaware)

<1.0

MPN/100ml SM 9223B

07/25/17 02:02PM SUB

Sample Comments | Result Qualifiers:

L6926420-1:

E. coli was an analyzed by Chesapeake Environmental Lab, Inc in Stevensville, MD.

PIN: 17237

Serial Number: 6353725

CHERYL GRIFFIN

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

MILLERSVILLE,MD 21108

MARYLAND ENVIRONMENTAL SERVICE B

Analytical Report

Serialized: 07/26/2017 05:37pm DE36

Order Number:

L6920865

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

07-18-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6920865

Authorized by: Raphael C. Fratti, Laboratory Director

Eurofins QC, Inc.

CHERYL GRIFFIN

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

Analytical Report

Printed 07/26/17 17:37 DE36

Order Number:

L6920865

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

07-18-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

Account No:AL0341, MARYLAND ENVIRONMENTAL SERVICE A

MARYLAND ENVIRONMENTAL SERVICE B

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

P.O. No:

Inv. No: **PWSID No:**

Samp. Date/Time/Temp Sampled by

MES_AL0341

Sample Description BTR 101

Sample ID L6920865-1

Received Date/Time 07/18/17 01:15pm

RL

Parameter

Result

Qual Units Method DF

Test Date, Time, Analyst

ENVIRONMENTAL MICROBIOLOGY

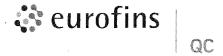
E. Coli, MPN Cel(Delaware)

<1.0

MPN/100ml SM 9223B

07/18/17 02:07PM SUB

Sample Comments | Result Qualifiers:


L6920865-1:

E. coli was an analyzed by Chesapeake Environmental Lab, Inc in Stevensville, MD.

PIN: 17237

Serial Number: 6348866

CHERYL GRIFFIN

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

MILLERSVILLE,MD 21108

MARYLAND ENVIRONMENTAL SERVICE B

Analytical Report

Serialized: 07/20/2017 03:47pm DE36

Order Number:

L6900470

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

07-11-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6900470

Authorized by: Raphael C. Fratti, Laboratory Director

CHERYL GRIFFIN

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

Analytical Report

Order Number:

L6900470

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

07-11-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

Account No:AL0341, MARYLAND ENVIRONMENTAL SERVICE A

MARYLAND ENVIRONMENTAL SERVICE B

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

P.O. No:

Inv. No: **PWSID No:** MES_AL0341

Sample ID Sample Description

L6900470-1 BTR 201

Received Date/Time/Temp 07/11/17 04:30pm 4.4 C lced (Y/N): Y

Samp. Date/Time/Temp Sampled by

--SUBCONTRACTED RESULT REFERENCES--

See attached reports for the following Subcontract Laboratories:

Eurofins - Lancaster Laboratories, Environmental (ELLE) EPA METHOD 624

Sample Comments | Result Qualifiers:

L6900470-1:

PIN: 17237

Serial Number: 6345828

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: L6900470-1 Grab Wastewater

BTR 201 BTR 201 LL Sample # WW 9096553 LL Group # 1823730 Account # 21318

Project Name: L6900470

Collected: 07/11/2017 09:45

by BM

Eurofins QC Laboratories

702 Electronic Drive

Horsham PA 19044

Submitted: 07/11/2017 19:19 Reported: 07/19/2017 18:27

2BTR1

CAT No.	Analysis Name	CAS Number	Result	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles EPA 624		ug/l	ug/l	
10371	Benzene	71-43-2	N.D.	1	1
10371	Bromodichloromethane	75-27-4	N.D.	1	1
10371	Bromoform	75-25-2	N.D.	1	1
10371	Bromomethane	74-83-9	N.D.	1	1
10371	Carbon Tetrachloride	56-23-5	N.D.	1	1
10371	Chlorobenzene	108-90-7	N.D.	1	1
10371	Chloroethane	75-00-3	N.D.	1	1
10371	2-Chloroethyl Vinyl Ether	110-75-8	N.D. Q4	1	1
	2-Chloroethyl vinyl ether may not preserve this sample.				
10371	Chloroform	67-66-3	N.D.	1	1
10371	Chloromethane	74-87-3	N.D.	1	1
10371	Dibromochloromethane	124-48-1	N.D.	1	1
	1,2-Dichlorobenzene	95-50-1	N.D.	1	1
	1,3-Dichlorobenzene	541-73-1	N.D.	1	1
10371	1,4-Dichlorobenzene	106-46-7	N.D.	1.	1
10371	1,1-Dichloroethane	75-34-3	N.D.	1	1
10371	1,2-Dichloroethane	107-06-2	N.D.	1	1
10371	1,1-Dichloroethene	75-35-4	N.D.	1	1
10371	trans-1,2-Dichloroethene	156-60-5	N.D.	1	1
10371	1,2-Dichloropropane	78-87-5	N.D.	1	1
10371	cis-1,3-Dichloropropene	10061-01-5	N.D.	1	1
10371	trans-1,3-Dichloropropene	10061-02-6	N.D.	1	1
10371	Ethylbenzene	100-41-4	N.D.	1	1
10371	Methylene Chloride	75-09-2	N.D.	1	1
10371	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1	1
10371	Tetrachloroethene	127-18-4	N.D.	1	1
10371	Toluene	108-88-3	N.D.	1	1
10371	1,1,1-Trichloroethane	71-55-6	N.D.	1	1
10371	1,1,2-Trichloroethane	79-00-5	N.D.	1	1
10371	Trichloroethene	79-01-6	N.D.	1	1
10371	Trichlorofluoromethane	75-69-4	N.D.	1	1
10371	Vinyl Chloride	75-01-4	N.D.	1	1

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	ne	Analyst	Dilution Factor
	VOCs- 5ml Water by 624	EPA 624	1	E171994AA	07/18/2017	22:46	Jason M Long	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Eurofins QC Laboratories

Reported: 07/19/2017 18:27

Group Number: 1823730

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	LOQ
	ug/l	ug/l
Batch number: E171994AA	Sample num	mber(s): 9096553
Benzene	N.D.	1
Bromodichloromethane	N.D.	1
Bromoform	N.D.	1
Bromomethane	N.D.	1
Carbon Tetrachloride	N.D.	1
Chlorobenzene	N.D.	1
Chloroethane	N.D.	1
2-Chloroethyl Vinyl Ether	N.D.	1
Chloroform	N.D.	1
Chloromethane	N.D.	1
Dibromochloromethane	N.D.	1
1,2-Dichlorobenzene	N.D.	1
1,3-Dichlorobenzene	N.D.	1
1,4-Dichlorobenzene	N.D.	1
1,1-Dichloroethane	N.D.	1
1,2-Dichloroethane	N.D.	1
1,1-Dichloroethene	N.D.	1
trans-1,2-Dichloroethene	N.D.	1
1,2-Dichloropropane	N.D.	1
cis-1,3-Dichloropropene	N.D.	1
trans-1,3-Dichloropropene	N.D.	1
Ethylbenzene	N.D.	1
Methylene Chloride	N.D.	1
1,1,2,2-Tetrachloroethane	N.D.	1
Tetrachloroethene	N.D.	1
Toluene	N.D.	1
1,1,1-Trichloroethane	N.D.	1
1,1,2-Trichloroethane	N.D.	1
Trichloroethene	N.D.	1
Trichlorofluoromethane	N.D.	1
Vinyl Chloride	N.D.	1

LCS/LCSD

Analysis Name	LCS Spike	LCS	LCSD Spike	LCSD	LCS	LCSD	LCS/LCSD	RPD	RPD
	Added	Conc	Added	Conc	%REC	%REC	Limits		Max
	ug/l	ug/l	ug/l	ug/l					

^{*-} Outside of specification

P###### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 + 717-656-2300 + Fax: 717-656-2681 + www.LancasterLabs.com

Quality Control Summary

Client Name: Eurofins QC Laboratories

Reported: 07/19/2017 18:27

Group Number: 1823730

LCS/LCSD

Added Conc Added Conc %REC Limits ${ t ug/1} { t ug/1} { t ug/1}$	Max
Batch number: E171994AA Sample number(s): 9096553	
Benzene 20 18.45 92 80-120	
Bromodichloromethane 20 18.62 93 80-120	
Bromoform 20 18.49 92 66-125	
Bromomethane 20 17.55 88 61-137	
Carbon Tetrachloride 20 17.8 89 72-128	
Chlorobenzene 20 19.74 99 80-120	
Chloroethane 20 17.32 87 60-136	
2-Chloroethyl Vinyl Ether 20 19.17 96 65-120	
Chloroform 20 17.95 90 80-120	
Chloromethane 20 16.15 81 57-124	
Dibromochloromethane 20 19.12 96 78-120	
1,2-Dichlorobenzene 20 19.22 96 78-125	
1,3-Dichlorobenzene 20 19.08 95 77-120	
1,4-Dichlorobenzene 20 19.51 98 80-120	
1,1-Dichloroethane 20 17.8 89 70-128	
1,2-Dichloroethane 20 18.05 90 80-120	
1,1-Dichloroethene 20 19.34 97 69-122	
trans-1,2-Dichloroethene 20 18.33 92 73-124	
1,2-Dichloropropane 20 18.83 94 80-120	
cis-1,3-Dichloropropene 20 19.35 97 80-120	
trans-1,3-Dichloropropene 20 19.25 96 80-120	
Ethylbenzene 20 20.47 102 80-120	
Methylene Chloride 20 18.01 90 69-120	
1,1,2,2-Tetrachloroethane 20 19.62 98 80-120	
Tetrachloroethene 20 19.73 99 77-122	
Toluene 20 19.9 99 80-120	
1,1,1-Trichloroethane 20 17.91 90 77-123	
1,1,2-Trichloroethane 20 19.76 99 80-120	
Trichloroethene 20 18.23 91 80-120	
Trichlorofluoromethane 20 18.05 90 61-136	
Vinyl Chloride 20 17.43 87 59-127	

MS/MSD

 ${\tt Unspiked} \ \ ({\tt UNSPK}) \ = \ {\tt the} \ \ {\tt sample} \ \ {\tt used} \ \ {\tt in} \ \ {\tt conjunction} \ \ {\tt with} \ \ {\tt the} \ \ {\tt matrix} \ \ {\tt spike}$

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: E171994AA	Sample numb	er(s): 9096	553 UNSP	K: P094181						
Benzene	N.D.	20	19.25	20	19.19	96	96	80-120	0	30
Bromodichloromethane	N.D.	20	18.68	20	18.58	93	93	80-120	1	3.0
Bromoform	N.D.	20	18.24	20	18.12	91	91	66-125	1	30
Bromomethane	N.D.	20	17.7	20	18.14	89	91	61-137	2	3 0

^{*-} Outside of specification

P###### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA.17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Eurofins QC Laboratories

Reported: 07/19/2017 18:27

Group Number: 1823730

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

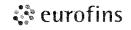
Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Carbon Tetrachloride	N.D.	20	18.87	20	19.03	94	95	72-128	1	30
Chlorobenzene	N.D.	20	19.99	20	20.19	100	101	80-120	1	3.0
Chloroethane	N.D.	20	17.76	20	17.94	89	90	60-136	1	3.0
2-Chloroethyl Vinyl Ether	N.D.	20	N.D.	20	N.D.	0*	0 *	65-120	0	30
Chloroform	N.D.	20	18.26	20	18.29	91	91	80-120	0	30
Chloromethane	N.D.	20	16.56	20	16.62	83	83	57-124	0	30
Dibromochloromethane	N.D.	20	19.07	20	19.39	95	97	78-120	2	30
1,2-Dichlorobenzene	N.D.	20	19.26	20	19.66	96	98	78-125	2	30
1,3-Dichlorobenzene	N,D.	20	19.26	20	19.48	96	97	77-120	1	30
1,4-Dichlorobenzene	N.D.	20	19.43	20	19.79	97	99	80-120	2	30
1,1-Dichloroethane	N.D.	20	18.33	20	18.7	92	93	70-128	2	3 0
1,2-Dichloroethane	N.D.	20	18.12	20	18.41	91	92	80-120	2	30
1,1-Dichloroethene	N.D.	20	20.69	20	20.75	103	104	69-122	0	30
trans-1,2-Dichloroethene	N.D.	20	19.23	20	18.94	96	95	73-124	1	3 0
1,2-Dichloropropane	N.D.	20	19.37	20	19.37	97	97	80-120	0	30
cis-1,3-Dichloropropene	N.D.	20	19.22	20	19.41	96	97	80-120	1	30
trans-1,3-Dichloropropene	N.D.	20	18.71	20	19.14	94	96	80-120	2	30
Ethylbenzene	N.D.	20	21.15	20	21.11	106	106	80-120	0	3.0
Methylene Chloride	N.D.	20	18.41	20	18.37	92	92	69-120	0	30
1,1,2,2-Tetrachloroethane	N.D.	20	19.13	20	19.54	96	98	80-120	2	30
Tetrachloroethene	N.D.	20	20.31	20	20.59	102	103	77-122	1	3 0
Toluene	N.D.	20	20.43	20	20.28	102	101	80-120	1	30
1,1,1-Trichloroethane	N.D.	20	18.94	20	18.87	95	94	77-123	0	3 0
1,1,2-Trichloroethane	N.D.	20	19.86	20	20.26	99	101	80-120	2	3 0
Trichloroethene	N.D.	20	19.39	20	19.41	97	97	80-120	0	3 0
Trichlorofluoromethane	N.D.	20	18.51	20	18.66	93	93	61-136	1	3 0
Vinyl Chloride	N.D.	20	17.64	20	17.84	88	89	59-127	1	3.0

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: VOCs- 5ml Water by 624

Batch number: E171994AA


	1,2-Dichloroethane-d4	Fluorobenzene	4-Bromofluorobenzene
9096553	97	100	101
Blank	98	100	100
LCS	97	101	100
MS	101	100	99
MSD	102	101	99
Limits:	78-118	88-107	80-118

^{*-} Outside of specification

P##### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

Group Number: 1823730

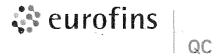
2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Eurofins QC Laboratories

Reported: 07/19/2017 18:27

*- Outside of specification


P##### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

30
237
<u>%</u>
5

	C Maryland	HAIN C	CHAIN OF CUSTODY / SAMPLE INFORMATION FORM FORM Environmental Service - 529 Najoles Rd. • Millersville, MD 21108 • (410) 729-8200 • FAX (410) 729	AMPL Millersville	E INF. MD 2110	ORN :08 - (410)	ATIC 729-8200	CHAIN OF CUSTODY / SAMPLE INFORMATION FORM Maryland Environmental Service 529 Najoles Rd · Millersville, MD 21108 · (410) 729-8200 · FAX (410) 729-8340 LG 9004 10
"Lab#		- Client Gode			Sample	ß'n	av M	Sampler Brign Muss/Man
Client N	Client Name/Phone/FAX Maryland Environmental Service	ronmental Se	arvice		Project Name		BTR WW	BTR WWTP (Quarterly)
Client Address	ddress				Project	Project Number 2559-2085-1700	2559-208	1700
Invoice	Invoice Address				Sample	Sample Turnaround Time	nd Time	
Station No./ Sample ID	Station Location	Grab or Composite	Container Description/ Preservation Status	· Matrix	# of Containers	Date	Time	Analyses Required/Comm ents
BTR-8	BTR 201	Quarterly Grab	40ml Glass VOA Vial, HCI	ΜM	က	5H2 U-11-Z	0945	MDE Table 1 VOC's-EPA 624 Purgeables Full List
				.,,				
					Transport of the spatial control of the spati			
Transferred by:	rred by: A. M	Received by:	Mest in	Date 7-11-17	Time /	Cooler Re Sufficient ice? - (FE)No	Cooler ce? - (Ves)	Cooler Receipt Information (LAB USE ON LY)
Transfei	Transferred by:	Received by:	The Jan	Date 7/4/4/2	Time + 550	Sample co Gustedy-S	intainers pi eal-presen	Sample containers pres'd? - (GS)No If No. explain Custody Seal present/intact? - Yes/No
Transferred by:	rred by:	Received	100 C	Date	T 3	initials:		Date:
20	MECCUS MillE	SKM LI)	Cooleg 26	1919				

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

MARYLAND ENVIRONMENTAL SERVICE B

Analytical Report

Serialized: 07/24/2017 02:54pm DE36

Order Number:

L6913238

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

07-11-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6913238

CHERYL GRIFFIN

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

Analytical Report

Printed 07/24/17 14:54 DE36

Order Number:

L6913238

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

07-11-2017

Client Code:

MES_A

14120______

Project Location:

BTR HAMPSTEAD WWTP

Account No:AL0341, MARYLAND ENVIRONMENTAL SERVICE A

MARYLAND ENVIRONMENTAL SERVICE B

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

P.O. No:

Inv. No: PWSID No:

Samp. Date/Time/Temp Sampled by

MES_AL0341

Sample ID Sam

Sample Description

L6913238-1 BTR 101

Received Date/Time 07/11/17 12:24pm

07/11/17 09:15am NA C Customer

Parameter

Result

Qual Units

Method

DF RL

Test Date, Time, Analyst

ENVIRONMENTAL MICROBIOLOGY

E. Coli, MPN Cel(Delaware)

<1.0

MPN/100ml SM 9223B

07/11/17 01:41PM SUB

Sample Comments | Result Qualifiers:

L6913238-1:

E. coli was an analyzed by Chesapeake Environmental Lab, Inc in Stevensville, MD.

PIN: 17237

Serial Number: 6347512

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

QC.

MARYLAND ENVIRONMENTAL SERVICE B

Analytical Report

Serialized: 07/24/2017 02:53pm DE36

Order Number:

L6913235

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

07-11-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6913235

CHERYL GRIFFIN

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

Analytical Report

Printed 07/24/17 14:53 DE36

Order Number:

L6913235

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

07-11-2017

Client Code:

MES A

Project Location:

BTR HAMPSTEAD WWTP

Account No:AL0341, MARYLAND ENVIRONMENTAL SERVICE A

MARYLAND ENVIRONMENTAL SERVICE B

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

P.O. No:

Inv. No: PWSID No: MES_AL0341

Sample ID Sample Description

L6913235-1

BTR 001 Received Date/Time 07/11/17 12:24pm Samp. Date/Time/Temp Sampled by

07/11/17 09:14am NA C Customer

Parameter

Result

Qual Units Method

DF

RL

Test Date, Time, Analyst

ENVIRONMENTAL MICROBIOLOGY

E. Coli, MPN Cel(Delaware)

1.0

MPN/100ml SM 9223B

07/11/17 01:38PM SUB

Sample Comments | Result Qualifiers:


L6913235-1:

E. coli was an analyzed by Chesapeake Environmental Lab, Inc in Stevensville, MD.

PIN: 17237

Serial Number: 6347511

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

MARYLAND ENVIRONMENTAL SERVICE B

Analytical Report

Serialized: 07/21/2017 12:32pm DE36

Order Number:

L6854931

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

07-11-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6854931

CHERYL GRIFFIN

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

Analytical Report

Printed 07/21/17 12:32 DE36

Order Number:

L6854931

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

07-11-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

Account No: AL0341, MARYLAND ENVIRONMENTAL SERVICE A

MARYLAND ENVIRONMENTAL SERVICE B

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

P.O. No:

Inv. No: PWSID No:

MES_AL0341

Sample ID Sample Description

L6854931-1

BTR 001 GRAB

Received Date/Time/Temp 07/11/17 04:30pm 4.4 C iced (Y/N): Y

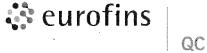
Samp. Date/Time/Temp Sampled by

07/11/17 09:09am NA C Customer

Parameter GENERAL CHEMISTRY	Result	Qual Units	Method	DF	RL	Test Date, Time, Analyst
Total Suspended Solids (Delaware)	12.8	mg/l	SM 2540D	1	4.00	07/13/17 11:11AM MS3
Biochemical Oxygen Demand, 5 Day (Del.)	7.00	mg/l	SM 5210B	1.5	2.00	07/12/17 09:45AM SKJ

--SUBCONTRACTED RESULT REFERENCES--

See attached reports for the following Subcontract Laboratories:


Eurofins - Lancaster Laboratories, Environmental (ELLE)

EPA METHOD 624

METHOD 1664, HEXANE EXTRACTABLES (O+G)

Sample ID	Sample Description		Samp. Date/Time/Temp	Sampled by
L6854931-2	BTR 001 COMP		07/11/17 09:22am NA C	Customer
	Received Date/Time/Temp 07/11/17 04:30pm 4.4 C	Iced (Y/N): Y		

Parameter	Result	Qual Units	Method	DF	RL	Test Date, Time, Analyst
GENERAL CHEMISTRY						
Kjeldahl nitrogen, as N (Delaware)	1.35	mg/l	EPA 351.2	1	0.200	07/14/17 12:03PM ALW
Phosphorus total as P (Delaware)	0.113	mg/l	EPA 365.4	1	0.0500	07/14/17 12:03PM ALW
Ammonia, as N (Delaware)	ND	mg/l	SM 4500NH3-G	1	0.200	07/12/17 03:01PM ALW

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

MARYLAND ENVIRONMENTAL SERVICE B

Analytical Report

Serialized: 07/13/2017 11:21am DE36

Order Number:

L6901515

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

07-06-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6901515

Analytical Report

Order Number:

L6901515

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

07-06-2017

Client Code:

 $\mathsf{MES}_{_}\mathsf{A}$

Project Location:

BTR HAMPSTEAD WWTP

Account No: AL0341, MARYLAND ENVIRONMENTAL SERVICE A

MARYLAND ENVIRONMENTAL SERVICE B

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

P.O. No:

Inv. No: **PWSID No:** MES_AL0341

Sample ID

Sample Description

CHERYL GRIFFIN

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

BTR 101 L6901515-1

Received Date/Time 07/06/17 02:30pm

07/06/17 09:58am NA C Customer

RL

Samp. Date/Time/Temp Sampled by

Parameter

Result

Qual Units

Method

DF

Test Date, Time, Analyst

ENVIRONMENTAL MICROBIOLOGY

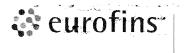
E. Coli, MPN Cel(Delaware)

<1.0

MPN/100ml SM 9223B

07/06/17 03:08PM SUB

Sample Comments | Result Qualifiers:


L6901515-1:

E. coli was an analyzed by Chesapeake Environmental Lab, Inc in Stevensville, MD.

PIN: 17237

Serial Number: 6341397

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

QC

MARYLAND ENVIRONMENTAL SERVICE B

Analytical Report

Serialized: 07/21/2017 12:32pm DE36

Order Number:

L6854931

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

07-11-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6854931

CHERYL GRIFFIN

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

Analytical Report

Order Number:

L6854931

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

07-11-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

Account No:AL0341, MARYLAND ENVIRONMENTAL SERVICE A

MARYLAND ENVIRONMENTAL SERVICE B

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

P.O. No:

Inv. No: PWSID No: MES_AL0341

Sample ID Sample Description

L6854931-1 BTR 001 GRAB

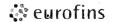
Received Date/Time/Temp 07/11/17 04:30pm 4.4 C | Iced (Y/N): Y

Samp. Date/Time/Temp Sampled by

07/11/17 09:09am NA C Customer

Parameter GENERAL CHEMISTRY	Result	Qual Units	Method	DF	RL	Test Date, Time, Analyst
Total Suspended Solids (Delaware)	12.8	mg/l	SM 2540D	1	4.00	07/13/17 11:11AM MS3
Biochemical Oxygen Demand, 5 Day (Del.)	7.00	mg/l	SM 5210B	1.5	2.00	07/12/17 09:45AM SKJ

--SUBCONTRACTED RESULT REFERENCES--


See attached reports for the following Subcontract Laboratories:

Eurofins - Lancaster Laboratories, Environmental (ELLE)

EPA METHOD 624

METHOD 1664,HEXANE EXTRACTABLES(O+G)

Sample ID Sample Description L6854931-2 BTR 001 COMP Received Date/Time/Temp 07/11/17 04:30pm 4.4 C				Iced (Y/N): Y	•	ate/Time/Temp 09:22am NA C			
Parameter		Result	Qual Units	Method	DF	RL	Test Date, Time, Analyst		
GENERAL (CHEMISTRY								
Kjeldahl nitrog (Delaware)	gen, as N	1.35	mg/l	EPA 351.2	1	0.200	07/14/17 12:03PM ALW		
Phosphorus to (Delaware)	otal as P	0.113	mg/l	EPA 365.4	1	0.0500	07/14/17 12:03PM ALW		
Ammonia, as	N (Delaware)	ND	mg/l	SM 4500NH3-G	1	0.200	07/12/17 03:01PM ALW		

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Eurofins QC Laboratories 702 Electronic Drive Horsham PA 19044

Report Date: July 20, 2017

Project: L6854931

Submittal Date: 07/13/2017 Group Number: 1825488 PO Number: L6854931 State of Sample Origin: MD

> Lancaster Labs (<u>LL) #</u> 9102766

<u>Client Sample Description</u> L6854931-2 Composite Wastewater

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our current scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/. To request copies of prior scopes of accreditation, contact your project manager.

Electronic Copy To

Eurofins QC Laboratories


Attn: Nicki Smith

Respectfully Submitted,

Wendy A. Kozma

Principal Specialist Group Leader

Wendy a. Kenn

Case Narrative

Project Name: L6854931 LL Group #: 1825488

General Comments:

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below. Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are not included in this data set

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

The temperature of the temperature blank bottle(s) upon receipt at the lab was 7.7C using a digital thermometer. The sample bottles were then measured using an IR thermometer and were recorded at 10.9-20.6 C.

Analysis Specific Comments:

No additional comments are necessary.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: L6854931-2 Composite Wastewater

BTR 001

LL Sample # WW 9102766 LL Group # 1825488

Account # 21318

Project Name: L6854931

Collected: 07/11/2017 09:22

by BM

Eurofins QC Laboratories

702 Electronic Drive

Horsham PA 19044

Submitted: 07/13/2017 18:25

Reported: 07/20/2017 12:30

CAT No.

Analysis Name

CAS Number

Result

Limit of Quantitation Dilution Factor

Wet Chemistry 07882 Total Nitrite/Nitrate Nitrogen

EPA 353.2

mg/10.36

0.10

Sample Comments

The temperature of the temperature blank bottle(s) upon receipt at the lab was 7.7C using a digital thermometer. The sample bottles were then measured using an IR thermometer and were recorded at 10.9-20.6 C.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

Method Trial# Batch# CAT Analysis Name Analysis Analyst Dilution Date and Time Factor 07882 Total Nitrite/Nitrate EPA 353.2 17200118102A 07/19/2017 18:39 Brianna A White Nitrogen

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • .717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Eurofins QC Laboratories

Group Number: 1825488

Reported: 07/20/2017 12:30

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

LOO Analysis Name Result mq/l mg/l Batch number: 17200118102A Sample number(s): 9102766 Total Nitrite/Nitrate Nitrogen N.D. 0.10

LCS/LCSD

Analysis Name	LCS Spike Added mg/l	LCS Conc mg/l	LCSD Spike Added mg/l	LCSD Conc mg/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 17200118102A	Sample numbe	r(s): 9102	766						
Total Nitrite/Nitrate Nitrogen	2.50	2.45			98		90-110		

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc	MS Spike Added	MS Conc	MSD Spike Added	MSD Conc	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
	mg/l	mg/l	mg/l	mg/l	mg/1					
Batch number: 17200118102A	Sample numb	er(s): 9102	766 UNSE	K: P101168						
Total Nitrite/Nitrate Nitrogen	2.00	1.00	2.90			91		90-110		

Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	BKG Conc	DUP Conc	DUP RPD	DUP RPD Max
	mg/l	mg/1		
Batch number: 17200118102A	Sample number(s): 9	9102766 BKG: P10116	8	

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

P###### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Eurofins QC Laboratories 702 Electronic Drive Horsham PA 19044

Report Date: July 18, 2017

Project: L6854931

Submittal Date: 07/11/2017 Group Number: 1823728 PO Number: L6854931 State of Sample Origin: MD

> Lancaster Labs (<u>LL) #</u> 9096543 9096544

Client Sample Description L6854931-1 Grab Wastewater L6854931-3 Grab Wastewater

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our current scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/. To request copies of prior scopes of accreditation, contact your project manager.

Electronic Copy To

Eurofins QC Laboratories

Attn: Nicki Smith

Respectfully Submitted,

Wendy A. Kozma

Principal Specialist Group Leader

Wendy a. Kenn

Case Narrative

Lancaster Laboratories Environmental

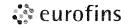
Project Name: L6854931 LL Group #: 1823728

General Comments:

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below. Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are included in this data set


Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

Analysis Specific Comments:

No additional comments are necessary.

Analysis Report

2425 New Holland Pike, Cancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: L6854931-1 Grab Wastewater

BTR 001

LL Sample # WW 9096543 LL Group # 1823728

Account # 21318

Project Name: L6854931

Collected: 07/11/2017 09:09

by BM

Eurofins QC Laboratories

702 Electronic Drive

Horsham PA 19044

Submitted: 07/11/2017 19:19

Reported: 07/18/2017 13:12

BT711

CAT No.	Analysis Name			CAS Number	Result	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	EPA	624		ug/l	ug/l	
10371	Tetrachloroethene			127-18-4	N.D.	1	1
10371	1,1,1-Trichloroetha	ne		71-55-6	N.D.	1	1
10371	Trichloroethene			79-01-6	N.D.	1	1
Wet Cl 08079	nemistry HEM (oil & grease)	EPA	1664B	n.a.	mg/l N.D.	mg/l 5.0	1

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10371	VOCs- 5ml Water by 624	EPA 624	1	U171971AA	07/16/2017 23:58	Hu Yang	1
08079	HEM (oil & grease)	EPA 1664B	1	17195807902A	07/14/2017 17:16	Huyen Dao-Kendig	1

Sample Description: L6854931-3 Grab Wastewater

BTR 001 Matrix Spike

LL Sample # WW 9096544

LL Group # 1823728

Account # 21318

Project Name: L6854931

Collected: 07/11/2017 09:11

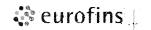
by BM

Eurofins QC Laboratories

702 Electronic Drive

Horsham PA 19044

Submitted: 07/11/2017 19:19


Reported: 07/18/2017 13:12

BT711

CAT No.	Analysis Name		CAS Number	Result	Limit of Quantitation	Dilution Factor
Wet C	hemistry	EPA 1664B		mg/l	mg/l	
08079	HEM (oil & grease)		n.a.	33.3	5.0	1

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Laboratory Sample Analysis Record

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Eurofins QC Laboratories

Reported: 07/18/2017 13:12

Group Number: 1823728

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	LOQ
	ug/l	ug/l
Batch number: U171971AA	Sample number	(s): 9096543
Tetrachloroethene	N.D.	1
1,1,1-Trichloroethane	N.D.	1
Trichloroethene	N.D.	1
	mg/l	mg/l
Batch number: 17195807902A	Sample number	(s): 9096543-9096544
HEM (oil & grease)	N.D.	5.0

LCS/LCSD

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: U171971AA	Sample numbe	r(s): 9096	543						
Tetrachloroethene	20	23.42	20	21.76	117	109	77-122	7	30
1,1,1-Trichloroethane	20	18.72	20	17.5	94	87	77-123	7	30
Trichloroethene	20	20.28	20	19.59	101	98	80-120	3	30
	mg/l	mg/l	mg/l	mg/l					
Batch number: 17195807902A	Sample numbe	r(s): 9096	543-9096544						
HEM (oil & grease)	40	40.2	40	37.7	101	94	78-114	6	13

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc mg/l	MS Spike Added mg/l	MS Conc mg/l	MSD Spike Added mg/l	MSD Conc mg/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: 17195807902A HEM (oil & grease)	Sample numb N.D.	er(s): 9096 40.4	543-9096 33.33	544 UNSPK: 9	9096543	83		78-114		

^{*-} Outside of specification

P##### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Eurofins QC Laboratories

Reported: 07/18/2017 13:12

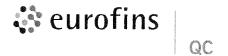
Group Number: 1823728

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: VOCs- 5ml Water by 624

Batch number: U171971AA


	1,2-Dichloroethane-d4	Fluorobenzene	4-Bromofluorobenzene
9096543	103	98	97
Blank	104	99	99
LCS	101	101	102
LCSD	104	101	99
Limits:	78-118	88-107	80-118

P##### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analytical Report

Serialized: 09/14/2017 10:18am DE36

Order Number: L6949596

Project Name: BTR HAMPSTEAD WWTP

Receive Date: 08-29-2017
Client Code: MES_A

Project Location: BTR HAMPSTEAD WWTP

CHERYL GRIFFIN
MARYLAND ENVIRONMENTAL SERVICE B
259 NAJOLES ROAD
RE: BTR HAMPSTEAD WWTP
MILLERSVILLE,MD 21108

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6949596

CHERYL GRIFFIN

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

Analytical Report

Order Number:

L6949596

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

08-29-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

Account No: AL0341, MARYLAND ENVIRONMENTAL SERVICE A

MARYLAND ENVIRONMENTAL SERVICE B

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

P.O. No:

Inv. No: **PWSID No:**

Samp. Date/Time/Temp Sampled by

MES_AL0341 PI

Sample Description Sample ID

L6949596-1 BTR 101

Received Date/Time 08/29/17 01:12pm

Qual Units

Method

08/29/17 09:24am NA C Customer

RL

DF

Test Date, Time, Analyst

ENVIRONMENTAL MICROBIOLOGY

E. Coli, MPN Cel(Delaware)

<1.0

Result

MPN/100ml SM 9223B

08/29/17 02:05PM SUB

Sample Comments | Result Qualifiers:

L6949596-1:

Parameter

E. coli was an analyzed by Chesapeake Environmental Lab, Inc in Stevensville, MD.

PIN: 17237 Serial Number: 6373854

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

MARYLAND ENVIRONMENTAL SERVICE B

Analytical Report

Serialized: 08/30/2017 10:32am DE36

Order Number:

L6943882

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

08-22-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6943882

Analytical Report

Order Number: L6943882

Project Name: BTR HAMPSTEAD WWTP

Receive Date: 08-22-2017 Client Code: MES_A

Project Location: BTR HAMPSTEAD WWTP

CHERYL GRIFFIN MARYLAND ENVIRONMENTAL SERVICE B 259 NAJOLES ROAD

RE: BTR HAMPSTEAD WWTP MILLERSVILLE, MD 21108

Account No: AL0341, MARYLAND ENVIRONMENTAL SERVICE A

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

P.O. No:

Inv. No: **PWSID No:** MES_AL0341 PI

Sample ID Sample Description

L6943882-1 BTR 101

Received Date/Time 08/22/17 01:15pm

Samp. Date/Time/Temp Sampled by

Parameter Result Qual Units Method DF RL Test Date, Time, Analyst

ENVIRONMENTAL MICROBIOLOGY

E. Coli, MPN Cel(Delaware) < 1.0 MPN/100ml SM 9223B 08/22/17 02:01PM SUB


Sample Comments | Result Qualifiers:

L6943882-1:

E. coli was an analyzed by Chesapeake Environmental Lab, Inc in Stevensville, MD.

PIN: 17237 Serial Number: 6367819

Analytical Report

Serialized: 08/22/2017 10:51am DE36

Order Number: L6940298

Project Name: BTR HAMPSTEAD WWTP

Receive Date: 08-15-2017
Client Code: MES_A

Project Location: BTR HAMPSTEAD WWTP

CHERYL GRIFFIN
MARYLAND ENVIRONMENTAL SERVICE B
259 NAJOLES ROAD
RE: BTR HAMPSTEAD WWTP
MILLERSVILLE,MD 21108

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6940298

Analytical Report

Printed 08/22/17 10:51 DE36

Order Number: L6940298

Project Name: BTR HAMPSTEAD WWTP

Receive Date: 08-15-2017
Client Code: MES_A

Project Location: BTR HAMPSTEAD WWTP

CHERYL GRIFFIN
MARYLAND ENVIRONMENTAL SERVICE B
259 NAJOLES ROAD
RE: BTR HAMPSTEAD WWTP

RE: BTR HAMPSTEAD WWTP MILLERSVILLE, MD 21108

Account No:AL0341, MARYLAND ENVIRONMENTAL SERVICE A Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

P.O. No:

Inv. No: PWSID No:

Samp. Date/Time/Temp Sampled by

08/15/17 09:15am NA C Customer

MES AL0341 PI

Sample ID Sample Description

L6940298-1 BTR 101

Received Date/Time 08/15/17 12:35pm

Parameter Result Qual Units Method DF RL Test Date, Time, Analyst

ENVIRONMENTAL MICROBIOLOGY

E. Coli, MPN Cel(Delaware)

MPN/100ml SM 9223B

08/15/17 02:01PM SUB

Sample Comments | Result Qualifiers:

L6940298-1:

E. coli was an analyzed by Chesapeake Environmental Lab, Inc in Stevensville, MD.

< 1.0

PIN: 17237 Serial Number: 6364075

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

MARYLAND ENVIRONMENTAL SERVICE B

Analytical Report

Serialized: 08/16/2017 10:24am DE36

Order Number:

L6936820

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

08-08-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6936820

CHERYL GRIFFIN

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

Analytical Report

Order Number:

L6936820

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

08-08-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

Account No: AL0341, MARYLAND ENVIRONMENTAL SERVICE A

MARYLAND ENVIRONMENTAL SERVICE B

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

P.O. No:

Inv. No: **PWSID No:**

MES_AL0341 PI

Sample ID Sample Description

L6936820-1 BTR 001

Received Date/Time 08/08/17 01:30pm

Result

Samp. Date/Time/Temp Sampled by

Method

RL DF

Test Date, Time, Analyst

ENVIRONMENTAL MICROBIOLOGY

E. Coli, MPN Cel(Delaware)

<1.0

MPN/100ml SM 9223B

Qual Units

08/08/17 02:15PM SUB

Sample Comments | Result Qualifiers:

L6936820-1:

Parameter

E. coli was an analyzed by Chesapeake Environmental Lab, Inc in Stevensville, MD.

PIN: 17237 Serial Number: 6361191

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

MILLERSVILLE,MD 21108

MARYLAND ENVIRONMENTAL SERVICE B

Analytical Report

Serialized: 08/16/2017 01:47pm DE36

Order Number:

L6913479

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

08-08-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6913479

CHERYL GRIFFIN

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

Analytical Report

Printed 08/16/17 13:47 DE36

Order Number:

L6913479

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

08-08-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

Account No: AL0341, MARYLAND ENVIRONMENTAL SERVICE A

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

MARYLAND ENVIRONMENTAL SERVICE B

P.O. No:

Inv. No: PWSID No: MES_AL0341 PI

Sample ID Sample Description

L6913479-1 BTR 001 GRAB

Received Date/Time/Temp 08/08/17 04:40pm 3.2 C | Iced (Y/N): Y

Samp. Date/Time/Temp Sampled by

Parameter GENERAL CHEMISTRY	Result	Qual Units	Method	DF	RL	Test Date, Time, Analyst
Total Suspended Solids (Delaware)	4.40	mg/l	SM 2540D	1	4.00	08/11/17 04:27PM MS3
Biochemical Oxygen Demand, 5 Day (Del.)	5.00	mg/l	SM 5210B	1.5	2.00	08/09/17 09:10AM SKJ

--SUBCONTRACTED RESULT REFERENCES--

See attached reports for the following Subcontract Laboratories:

Eurofins - Lancaster Laboratories, Environmental (ELLE)

EPA METHOD 624

METHOD 1664, HEXANE EXTRACTABLES (O+G)

Samp. Date/Time/Temp Sampled by

Sample ID Sample Description

L6913479-2 BTR 001 COMP

Received Date/Time/Temp 08/08/17 04:40pm 3.2 C Iced (Y/N): Y

Parameter Result Qual Units Method DF RL Test Date, Time, Analyst GENERAL CHEMISTRY Nitrate/nitrite, total as N 0.782 EPA 300.0 mg/l 10 0.500 08/09/17 12:05AM SLD (Delaware) Kjeldahl nitrogen, as N 0.853 mg/l EPA 351.2 0.200 08/11/17 02:38PM ALW (Delaware) Phosphorus total as P ND EPA 365.4 mg/l 1 0.0500 08/11/17 02:38PM ALW (Delaware) Ammonia, as N (Delaware) ND mg/l SM 4500NH3-G 0.200 08/10/17 10:40AM ALW

PIN: 17237 Serial Number: 6361352

Analytical Report Printed 08/16/17 13:47

Account No:AL0341, MARYLAND ENVIRONMENTAL SERVICE A Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

P.O. No:

Inv. No: PWSID No: MES_AL0341 PI

Sample Comments | Result Qualifiers:

L6913479-1:

PIN: 17237 Serial Number: 6361352

Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYSIS REPORT

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Eurofins QC Laboratories 702 Electronic Drive Horsham PA 19044

Report Date: August 15, 2017

Project: L6913479

Account #: 21318 Group Number: 1835474 PO Number: L6913479 State of Sample Origin: MD

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our current scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/. To request copies of prior scopes of accreditation, contact your project manager.

Electronic Copy To

Eurofins QC Laboratories

Attn: Nicki Smith

Respectfully Submitted,

Wendy A. Kozma

Principal Specialist Group Leader

Wendy a. Tenn

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

SAMPLE INFORMATION

<u>Client Sample Description</u> L6913479-1 Grab Wastewater

Collection Information 08/08/2017 09:08

ELLE# 9145003

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Lancaster Laboratories Environmental

Project Name: L6913479 LL Group #: 1835474

General Comments:

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below. Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are included in this data set

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

For dual column analyses, the surrogate (for multi-surrogate tests, at least one surrogate) must be within the acceptance limits on at least one of the two columns.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

Analysis Specific Comments:

EPA 1664B, Wet Chemistry

Batch #: 17226807903A (Sample number(s): 9145003 UNSPK: P146368)

The recovery(ies) for the following analyte(s) in the MS were below the acceptance window: HEM (oil & grease)

Lancaster Laboratories Environmental

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: L6913479-1 Grab Wastewater

BTR 001

ELLE Sample # WW 9145003 ELLE Group # 1835474 Account # 21318

Project Name: L6913479

Collected: 08/08/2017 09:08

Eurofins QC Laboratories 702 Electronic Drive Horsham PA 19044

Submitted: 08/08/2017 19:43

Reported: 08/15/2017 10:04

00942

CAT No. Analysis Name		CAS Numb	er Result	Limit of Quantitation	Dilution Factor
GC/MS Volatiles	EPA	624	ug/l	ug/l	
10371 Tetrachloroethene		127-18-4	N.D.	1	1
10371 1,1,1-Trichloroetha	ne	71-55-6	N.D.	1	1
10371 Trichloroethene		79-01-6	N.D.	1	1
Wet Chemistry 08079 HEM (oil & grease)	EPA :	1664B	mg/l N.D. Q4	mg/l 5.0	1

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	VOCs- 5ml Water by 624 HEM (oil & grease)	EPA 624 EPA 1664B	1	U172251AA 17226807903A	08/13/2017 20:15 08/14/2017 22:43	-	1

2425 New Holland Pike, Lancaster, PA 17601 + 717-656-2300 + Fax: 717-656-2681 + www.LancasterLabs.com

Quality Control Summary

Client Name: Eurofins QC Laboratories Group Number: 1835474

Reported: 08/15/2017 10:04

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

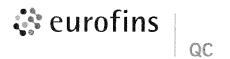
Analysis Name	Result	roð
	ug/l	ug/l
Batch number: U172251AA	Sample	number(s): 9145003
Tetrachloroethene	N.D.	1
1,1,1-Trichloroethane	N.D.	1
Trichloroethene	N.D.	1
	mg/l	mg/l
Batch number: 17226807903A	Sample	number(s): 9145003
HEM (oil & grease)	N.D.	5.0

LCS/LCSD

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: U172251AA	Sample numbe	r(s): 9145	003						
Tetrachloroethene	20	18.6	20	18.3	93	91	77-122	2	3.0
1,1,1-Trichloroethane	20	19.76	20	18.95	99	95	77-123	4	3.0
Trichloroethene	20	18.8	20	18.69	94	93	80-120	1.	30
	mg/l	mg/l	mg/l	mg/l					
Batch number: 17226807903A	Sample numbe	r(s): 9145	003						
HEM (oil & grease)	40	37	40	35.5	93	89	78-114	4	13

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike


Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: U172251AA	Sample numb	er(s): 9145	003 UNSE	K: 9145003						
Tetrachloroethene	N.D.	20	20.47	20	21.67	102	108	77-122	6	3.0
1,1,1-Trichloroethane	N.D.	20	22.06	20	23.03	110	115	77-123	4	3.0
Trichloroethene	N.D.	20	21.55	20	22.52	108	113	80-120	4	3 0

^{*-} Outside of specification

P###### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

CHERYL GRIFFIN

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

MILLERSVILLE,MD 21108

MARYLAND ENVIRONMENTAL SERVICE B

Analytical Report

Serialized: 08/16/2017 10:25am DE36

Order Number:

L6936822

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

08-08-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6936822

CHERYL GRIFFIN

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

Analytical Report

Order Number:

L6936822

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

08-08-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

Account No:AL0341, MARYLAND ENVIRONMENTAL SERVICE A

MARYLAND ENVIRONMENTAL SERVICE B

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

P.O. No:

Inv. No: **PWSID No:** MES_AL0341 PI

Sample ID Sample Description

L6936822-1 BTR 101

Received Date/Time 08/08/17 01:30pm

Samp. Date/Time/Temp Sampled by

08/08/17 09:53am NA C Customer

Parameter

Result

Qual Units

Method

DF RL

Test Date, Time, Analyst

ENVIRONMENTAL MICROBIOLOGY

E. Coli, MPN Cel(Delaware)

6.4

MPN/100ml SM 9223B

08/08/17 02:17PM SUB

Sample Comments | Result Qualifiers:

L6936822-1:

E. coli was an analyzed by Chesapeake Environmental Lab, Inc in Stevensville, MD.

PIN: 17237 Serial Number: 6361192

CHERYL GRIFFIN

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

MARYLAND ENVIRONMENTAL SERVICE B

Analytical Report

Serialized: 08/16/2017 10:26am DE36

Order Number:

L6936795

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

08-01-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6936795

Analytical Report

Printed 08/16/17 10:26 DE36

Order Number:

L6936795

Project Name:

BTR HAMPSTEAD WWTP

Receive Date:

08-01-2017

Client Code:

MES_A

Project Location:

BTR HAMPSTEAD WWTP

Account No:AL0341, MARYLAND ENVIRONMENTAL SERVICE A

MARYLAND ENVIRONMENTAL SERVICE B

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

CHERYL GRIFFIN

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

P.O. No:

Inv. No: PWSID No: MES_AL0341 PI

Sample ID Sample Description

L6936795-1 BTR 101

Received Date/Time 08/01/17 01:20pm

Samp. Date/Time/Temp Sampled by

08/01/17 09:17am NA C Customer

Parameter

Result

Qual Units

Method

DF

RL

Test Date, Time, Analyst

ENVIRONMENTAL MICROBIOLOGY

E. Coli, MPN Cel(Delaware)

<1.0

MPN/100ml SM 9223B

08/01/17 02:04PM SUB

Sample Comments | Result Qualifiers:

L6936795-1:

E. coli was an analyzed by Chesapeake Environmental Lab, Inc in Stevensville, MD.

PIN: 17237

Serial Number: 6361194

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: L6900470-1 Grab Wastewater

LL Sample # WW 9096553 BTR 201 LL Group # 1823730 BTR 201 Account # 21318

Project Name: L6900470

Collected: 07/11/2017 09:45 by BM Eurofins QC Laboratories

> 702 Electronic Drive Horsham PA 19044

Submitted: 07/11/2017 19:19 Reported: 07/19/2017 18:27

2BTR1

CAT No.	Analysis Name			CAS Number	Result	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	EPA	624		ug/l	ug/l	
10371	Benzene			71-43-2	N.D.	1	1
10371	Bromodichloromethane	е		75-27-4	N.D.	1	1
10371	Bromoform			75-25-2	N.D.	1	1
10371	Bromomethane			74-83-9	N.D.	1	1
10371	Carbon Tetrachloride	е		56-23-5	N.D.	1	1
10371	Chlorobenzene			108-90-7	N.D.	1	1
10371	Chloroethane			75-00-3	N.D.	1	1
10371	2-Chloroethyl Vinyl	Ether	r	110-75-8	N.D. Q4	1	1
	2-Chloroethyl vinyl preserve this sample		r may no	t be recovered	if acid was used to		
10371	Chloroform			67-66-3	N.D.	1	1
10371	Chloromethane			74-87-3	N.D.	1	1
10371	Dibromochloromethane	е		124-48-1	N.D.	1	1
10371	1,2-Dichlorobenzene			95-50-1	N.D.	1	1
10371	1,3-Dichlorobenzene			541-73-1	N.D.	1	1
10371	1,4-Dichlorobenzene			106-46-7	N.D.	1	1
10371	1,1-Dichloroethane			75-34-3	N.D.	1	1
10371	1,2-Dichloroethane			107-06-2	N.D.	1	1
10371	1,1-Dichloroethene			75-35-4	N.D.	1	1
10371	trans-1,2-Dichloroet	thene		156-60-5	N.D.	1	1
10371	,			78-87-5	N.D.	1	1
10371	cis-1,3-Dichloroprop	pene		10061-01-5	N.D.	1	1
10371	trans-1,3-Dichlorop	ropene	9	10061-02-6	N.D.	1	1
10371	Ethylbenzene			100-41-4	N.D.	1	1
10371	Methylene Chloride			75-09-2	N.D.	1	1
10371	1,1,2,2-Tetrachloroe	ethane	e	79-34-5	N.D.	1	1
10371	Tetrachloroethene			127-18-4	N.D.	1	1
10371	Toluene			108-88-3	N.D.	1	1
10371	1,1,1-Trichloroetham	ne		71-55-6	N.D.	1	1
	1,1,2-Trichloroethan	ne		79-00-5	N.D.	1	1
10371	Trichloroethene			79-01-6	N.D.	1	1
10371	Trichlorofluorometha	ane		75-69-4	N.D.	1	1
10371	Vinyl Chloride			75-01-4	N.D.	1	1

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution	
No.					Date and Time		Factor	
10371	VOCs- 5ml Water by 624	EPA 624	1	E171994AA	07/18/2017 22:46	Jason M Long	1	

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Eurofins QC Laboratories Group Number: 1823730

Reported: 07/19/2017 18:27

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	LOQ
	ug/l	ug/l
Batch number: E171994AA	Sample number	r(s): 9096553
Benzene	N.D.	1
Bromodichloromethane	N.D.	1
Bromoform	N.D.	1
Bromomethane	N.D.	1
Carbon Tetrachloride	N.D.	1
Chlorobenzene	N.D.	1
Chloroethane	N.D.	1
2-Chloroethyl Vinyl Ether	N.D.	1
Chloroform	N.D.	1
Chloromethane	N.D.	1
Dibromochloromethane	N.D.	1
1,2-Dichlorobenzene	N.D.	1
1,3-Dichlorobenzene	N.D.	1
1,4-Dichlorobenzene	N.D.	1
1,1-Dichloroethane	N.D.	1
1,2-Dichloroethane	N.D.	1
1,1-Dichloroethene	N.D.	1
trans-1,2-Dichloroethene	N.D.	1
1,2-Dichloropropane	N.D.	1
cis-1,3-Dichloropropene	N.D.	1
trans-1,3-Dichloropropene	N.D.	1
Ethylbenzene	N.D.	1
Methylene Chloride	N.D.	1
1,1,2,2-Tetrachloroethane	N.D.	1
Tetrachloroethene	N.D.	1
Toluene	N.D.	1
1,1,1-Trichloroethane	N.D.	1
1,1,2-Trichloroethane	N.D.	1
Trichloroethene	N.D.	1
Trichlorofluoromethane	N.D.	1
Vinyl Chloride	N.D.	1

LCS/LCSD

Analysis Name	LCS Spike Added	LCS Conc	LCSD Spike Added	LCSD Conc	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
	ug/l	ug/l	ug/l	ug/l					

^{*-} Outside of specification

P##### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Eurofins QC Laboratories Group Number: 1823730

Reported: 07/19/2017 18:27

LCS/LCSD

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: E171994AA	Sample number	r(s): 90965	553						
Benzene	20	18.45			92		80-120		
Bromodichloromethane	20	18.62			93		80-120		
Bromoform	20	18.49			92		66-125		
Bromomethane	20	17.55			88		61-137		
Carbon Tetrachloride	20	17.8			89		72-128		
Chlorobenzene	20	19.74			99		80-120		
Chloroethane	20	17.32			87		60-136		
2-Chloroethyl Vinyl Ether	20	19.17			96		65-120		
Chloroform	20	17.95			90		80-120		
Chloromethane	20	16.15			81		57-124		
Dibromochloromethane	20	19.12			96		78-120		
1,2-Dichlorobenzene	20	19.22			96		78-125		
1,3-Dichlorobenzene	20	19.08			95		77-120		
1,4-Dichlorobenzene	20	19.51			98		80-120		
1,1-Dichloroethane	20	17.8			89		70-128		
1,2-Dichloroethane	20	18.05			90		80-120		
1,1-Dichloroethene	20	19.34			97		69-122		
trans-1,2-Dichloroethene	20	18.33			92		73-124		
1,2-Dichloropropane	20	18.83			94		80-120		
cis-1,3-Dichloropropene	20	19.35			97		80-120		
trans-1,3-Dichloropropene	20	19.25			96		80-120		
Ethylbenzene	20	20.47			102		80-120		
Methylene Chloride	20	18.01			90		69-120		
1,1,2,2-Tetrachloroethane	20	19.62			98		80-120		
Tetrachloroethene	20	19.73			99		77-122		
Toluene	20	19.9			99		80-120		
1,1,1-Trichloroethane	20	17.91			90		77-123		
1,1,2-Trichloroethane	20	19.76			99		80-120		
Trichloroethene	20	18.23			91		80-120		
Trichlorofluoromethane	20	18.05			90		61-136		
Vinyl Chloride	20	17.43			87		59-127		

MS/MSD

 ${\tt Unspiked} \ ({\tt UNSPK}) \ = \ {\tt the} \ {\tt sample} \ {\tt used} \ {\tt in} \ {\tt conjunction} \ {\tt with} \ {\tt the} \ {\tt matrix} \ {\tt spike}$

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: E171994AA	Sample numb	er(s): 9096	5553 UNSF	K: P094181						
Benzene	N.D.	20	19.25	20	19.19	96	96	80-120	0	30
Bromodichloromethane	N.D.	20	18.68	20	18.58	93	93	80-120	1	30
Bromoform	N.D.	20	18.24	20	18.12	91	91	66-125	1	30
Bromomethane	N.D.	20	17.7	20	18.14	89	91	61-137	2	30

^{*-} Outside of specification

P##### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Eurofins QC Laboratories Group Number: 1823730

Reported: 07/19/2017 18:27

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Carbon Tetrachloride	N.D.	20	18.87	20	19.03	94	95	72-128	1	30
Chlorobenzene	N.D.	20	19.99	20	20.19	100	101	80-120	1	30
Chloroethane	N.D.	20	17.76	20	17.94	89	90	60-136	1	30
2-Chloroethyl Vinyl Ether	N.D.	20	N.D.	20	N.D.	0*	0*	65-120	0	30
Chloroform	N.D.	20	18.26	20	18.29	91	91	80-120	0	30
Chloromethane	N.D.	20	16.56	20	16.62	83	83	57-124	0	30
Dibromochloromethane	N.D.	20	19.07	20	19.39	95	97	78-120	2	30
1,2-Dichlorobenzene	N.D.	20	19.26	20	19.66	96	98	78-125	2	30
1,3-Dichlorobenzene	N.D.	20	19.26	20	19.48	96	97	77-120	1	30
1,4-Dichlorobenzene	N.D.	20	19.43	20	19.79	97	99	80-120	2	30
1,1-Dichloroethane	N.D.	20	18.33	20	18.7	92	93	70-128	2	30
1,2-Dichloroethane	N.D.	20	18.12	20	18.41	91	92	80-120	2	30
1,1-Dichloroethene	N.D.	20	20.69	20	20.75	103	104	69-122	0	30
trans-1,2-Dichloroethene	N.D.	20	19.23	20	18.94	96	95	73-124	1	30
1,2-Dichloropropane	N.D.	20	19.37	20	19.37	97	97	80-120	0	30
cis-1,3-Dichloropropene	N.D.	20	19.22	20	19.41	96	97	80-120	1	30
trans-1,3-Dichloropropene	N.D.	20	18.71	20	19.14	94	96	80-120	2	30
Ethylbenzene	N.D.	20	21.15	20	21.11	106	106	80-120	0	30
Methylene Chloride	N.D.	20	18.41	20	18.37	92	92	69-120	0	30
1,1,2,2-Tetrachloroethane	N.D.	20	19.13	20	19.54	96	98	80-120	2	30
Tetrachloroethene	N.D.	20	20.31	20	20.59	102	103	77-122	1	30
Toluene	N.D.	20	20.43	20	20.28	102	101	80-120	1	30
1,1,1-Trichloroethane	N.D.	20	18.94	20	18.87	95	94	77-123	0	30
1,1,2-Trichloroethane	N.D.	20	19.86	20	20.26	99	101	80-120	2	30
Trichloroethene	N.D.	20	19.39	20	19.41	97	97	80-120	0	30
Trichlorofluoromethane	N.D.	20	18.51	20	18.66	93	93	61-136	1	30
Vinyl Chloride	N.D.	20	17.64	20	17.84	88	89	59-127	1	30

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: VOCs- 5ml Water by 624

Batch number: E171994AA

	1,2-Dichloroethane-d4	Fluorobenzene	4-Bromofluorobenzene
9096553	97	100	101
Blank	98	100	100
LCS	97	101	100
MS	101	100	99
MSD	102	101	99
Limits:	78-118	88-107	80-118

*- Outside of specification

P##### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Eurofins QC Laboratories Group Number: 1823730

Reported: 07/19/2017 18:27

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

) Marylan	CHAIN OF (OF CUSTODY / SAMPLE INFORMATION FORM tal Service • 529 Najoles Rd. • Millersville, MD 21108 • (410) 729-8200 • FAX (410) 729	SAMPL · Millersville	E INF	-ORN	1AT10 729-8200	CHAIN OF CUSTODY / SAMPLE INFORMATION FORM Maryland Environmental Service • 529 Najoles Rd • Millersville, MD 21108 • (410) 729-8200 • FAX (410) 729-8340 LG 9004.10
Lab#	E .	- Clent Code	O		···Sample	r Bri	an Mi	Sampler Brien Muss/men
Client No	Client Name/Phone/FAX Maryland Environmental Service	vironmental Se	arvice		Project	Project Name	BTR WWT	BTR WWTP (Quarterly)
Client Address	idress				Project	Number	Project Number 2559-2085-1700	-1700
Invoice Address	Address		To the state of th		Sample	Sample Turnaround Time	nd Time	
Station No./ Sample ID	Station Location	Grab or Composite	Container Description/ Preservation Status	- Matrix	# of Containers	Date	Time	Analyses Required/Comm ents
BTR-8	BTR 201	Quarterly Grab	40ml Glass VOA Vial, HCI	ww	ю	11-11-2	MDE 711-7 0945 List	MDE Table 1 VOC's-EPA 624 Purgeables Full List
T. C. Catalana								AND THE PROPERTY OF THE PROPER
1								
								12
41			t					·
			10-4					
			-					
Transferred by:	red by: RML	Received by:	Mrs. How	Date 7-11-17	Time 25	Sufficient	Time Cooler Re	Cooler Receipt Information (LAB USE ON LY)
Transferred by:	red by: The	Received by	July 30	Date 7	Time	Sample ox Custody-S	Sample containers pres'd? - & Custody Seal present/Intact?	Sample containers pres'd? - ¿@s/No If No, explain Custody Seal-present/Intact? - Yes/No
Transferred by:	red by:	Regeived by:	SOU O	Date	Time	- Interior		

JAMORCO Juli 145 Goles 26 7-11-7 1919

Date:

urofins

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

Doc Log ID:

188

Group Number(s): 19237

Client: EQCL

Delivery and Receipt Information

Delivery Method:

EQCL Drop Off

Arrival Timestamp:

07/11/2017 19:19

Number of Packages:

1

Number of Projects:

5

Arrival Condition Summary

Shipping Container Sealed:

Yes

Sample IDs on COC match Containers:

Yes

Custody Seal Present: Custody Seal Intact:

Yes Yes Sample Date/Times match COC:

Yes No

Samples Chilled:

Yes

Total Trip Blank Qty:

0

Paperwork Enclosed:

Yes

Air Quality Samples Present:

VOA Vial Headspace ≥ 6mm:

No

Samples Intact:

Yes No

Missing Samples:

Extra Samples:

No

Discrepancy in Container Qty on COC:

No

Unpacked by Cory Jeremiah (10469) at 20:56 on 07/11/2017

Samples Chilled Details

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Thermometer ID

Corrected Temp

Therm. Type

Ice Type

Ice Present?

Ice Container

Elevated Temp?

DT42-01

4.0

DT

Wet

Y

Bagged

N

2425 New Holland Pike Lancaster, PA 17605-2425 Environmental Explanation of Symbols and Abbieviations

The following defines common symbols and abbreviations used in reporting technical data:

BMQL Below Minimum Quantitation Level mq milligram(s) degrees Celsius mĹ milliliter(s) C cfu colony forming units MPN Most Probable Number **CP Units** cobalt-chloroplatinate units N.D. none detected degrees Fahrenheit nanogram(s) ng NTU nephelometric turbidity units gram(s) q IÙ International Units pg/L picogram/liter kg kilogram(s) RL Reporting Limit liter(s) TNTC Too Numerous To Count lb. pound(s) microgram(s) μg m3 cubic meter(s) microliter(s) μL milliequivalents umhos/cm micromhos/cm meg

< less than
> greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Dry weight Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

as-received basis.

Laboratory Data Qualifiers:

C - Result confirmed by reanalysis

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value ≥ the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

W - The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Environmental Additional Data Quantition

Qualifier	Definition
В	Detection in the Blank
Q0	LCS/LCSD Low
Q1	LCS/LCSD High
Q4	MS/MSD Out of Range
Q7	LCS/LCSD RPD
Q8	DUP RPD
Q9	MS/MSD RPD
Z	Laboratory Defined - see analysis report

Analytical Report

Serialized: 09/14/2017 10:17am DE36

Order Number: L6949606

Project Name: BTR HAMPSTEAD WWTP

Receive Date: 09-06-2017
Client Code: MES_A

Project Location: BTR HAMPSTEAD WWTP

CHERYL GRIFFIN
MARYLAND ENVIRONMENTAL SERVICE B
259 NAJOLES ROAD
RE: BTR HAMPSTEAD WWTP
MILLERSVILLE,MD 21108

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6949606

Authorized by: Raphael C. Fratti, Laboratory Director

CHERYL GRIFFIN

Analytical Report

Order Number: L6949606

Project Name: BTR HAMPSTEAD WWTP

Receive Date: 09-06-2017 Client Code: MES_A

Project Location:

P.O. No:

259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP MILLERSVILLE, MD 21108

MARYLAND ENVIRONMENTAL SERVICE B

Account No: AL0341, MARYLAND ENVIRONMENTAL SERVICE A

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

MES_AL0341 PI **PWSID No:**

Inv. No:

Sample ID **Sample Description**

L6949606-1 BTR 101

Received Date/Time 09/06/17 02:30pm

Samp. Date/Time/Temp Sampled by

BTR HAMPSTEAD WWTP

09/06/17 09:50am NA C Customer

Parameter Result **Qual Units** Method DF RL Test Date, Time, Analyst

ENVIRONMENTAL MICROBIOLOGY

E. Coli, MPN Cel(Delaware) MPN/100ml SM 9223B 09/06/17 03:30PM SUB 3.1

Sample Comments | Result Qualifiers:

E. coli was an analyzed by Chesapeake Environmental Lab, Inc in Stevensville, MD.

PIN: 17237 Serial Number: 6373853

DELIMITEDING

Eurofins QC, Inc. (EQC)

The following terms or abbreviations are used in this report:

MPN	Most pro	obable number		
CFU	Colony	forming unit	DF	Dilution Factor (For Microbiology, DF = volume of sample tested)
POS	Positive	/ Present	QUAL	Qualifier (Q)
NEG	Negative	e / Absent	NTU	Nephelometric turbidity units
PRES	Presump	otive	RL	Laboratory reporting limit or Limit of Quantitation (LOQ)
MF	Membra	ne Filtration	MCL	EPA recommended "Maximum Contaminant Level"
TNTC	Too nun	nerous to count	MDL	Method Detection Limit
DRY	The resu	ılt was reported on a dry weight basis.	ND	Analyte concentration not detected greater than the RL / MDL
TON	Thresho	ld Odor Number	ND	For the odor test: No Odor Observed
ppm (mg/l) Parts per million: equivalent to 1 milligram per samples.			kilogram (mg/Kg) for solids or one milligram per liter (mg/L) for aqueous
ppb (ug/	L)	Parts per billion: equivalent to 1 microgram per samples.	kilogram ((ug/Kg) for solids or one microgram per liter (ug/L) for aqueous
<		Less than: In conjunction with a numerical value	e, indicate	es a concentration less than RL / MDL.
>		Greater than: In conjunction with a numerical va	alue, indica	ates a concentration greater than RL / MDL.
D (0	1.0			

Data Qualifiers

J	Estimated value \geq MDL but \leq RL.
T	Temperature receipt exceedance, refer to Sample Comments/ Results Qualifiers section.
Е	Microbiology: estimated CFU count
Q	Qualifier: defined in Sample Comment section on report

Warranties, Terms, and Conditions

- Unless otherwise indicated in the Parameter Field, analyses for environmental microbiology, odor, and pharmaceutical microbiology are performed at the EQCI Horsham facility (702 Electronic Dr. Horsham, PA 19044).
- Analyses for Field Parameters is performed by EQC Field staff and when the chain of custody identifies the field staff with the code: "ERF", that field staff performs tests under State certification # NJ 02015
- The test results meet all TNI or other applicable regulatory agency requirements, including holding times and preservation, unless otherwise
 indicated.
- The report shall not be reproduced, except in full, without the written consent of the laboratory.
- All samples are collected as "grab" samples unless otherwise identified.
- The reported results relate only to the sample as tested. EQCI is not responsible for sample integrity unless sampling has been performed by a member of our staff.
- EQCI is not responsible for sampling and/or testing omissions. Note that regulatory authorities may assess substantial fines for testing omissions. Please track your sample collection schedules and results on a regular basis (e.g. weekly, monthly, or quarterly) to ensure compliance. EQCI's internet program "LIVE ACCESS" will provide you with real-time access to collection dates and testing results. Please contact Customer Service for further information.
- The following personnel or their deputies have approved the results of the tests performed by EQCI: Nicki Smith (Environmental Chemistry), Amanda Berd (Pharmaceutical), Sue Abbott (EQCI Delaware), and Bhavita Shah (EQCI Horsham, Microbiology).

EQC Accreditations

Horsham, PA NELAP IDs:

PA: 46-05499 NJ: PA093

New Castle, DE State IDs: DE 00011; MD 138 Wind Gap, PA State IDs: PA 48-01334; NJ PA001

East Rutherford, NJ State ID: NJ 02015 Vineland, NJ State ID: NJ 06005

	166845	Maryland Water	Quality	nmen Data	a Sheet	Lab ID No.	
						Project No. 255°	1_2085-1700
99/12/96 Facili	ity Name (Source):	Black and I	Decker (B	TR) V	v wtp	Collectors ID #:	5514
Samp	le Location:	Final 10	11-Grab				
Bottle	e Numbers:	Chem:		1	Bact: BTR-1	Total Bottles:	1
Comp	oosite Sample Star	t Date:		7	Cime:	Name:	
Comp	oosite Sample End	Date:		7	Time:	Name:	
	Sample	Date: 9-6-	-17	7	Time: 0950	Name: Bhan	Musselm
	le Type:	Drinking Water:	Effluent: 7		influent:	Other:	1 -9,000
Field	Tests:	pH: 7.40	DO:		Chlorine Residua	al: Free:	mg/l
	Flow	r: mgd	Temp: 2).	0 °C	Before DeCl2 (ダ)	n) Total: > 5.0	mg/l
Pres.	Analysis	Method*	Result	Units	EGE PROPERTY OF THE PROPERTY O	20000000000	Company Commission Commission
	BOD5	SM5210B		mg/L	,		
	TSS	SM2540D		mg/L	,		
	MLSS					·	
	Total Coliform	SM9223B/ 9221B		-			
<u> </u>	Fecal Coliform	SM9221E		MPN/100r			
9	E. Coli	SM9223B/9221F	3.	MPN/100r	nl 9-617 330	10 9-7-17 114	15a JS
	<u> </u>						
	-	-					
					-		
	<u> </u>	* Please make	sure metho	d utiliz	zed is circled or v	written	
Ргеѕе	rvatives:	Comments:	Jaro mone	7G GEIII2			
1. No					Cit	esapeake Environment	tal Lab, Inc.
	ne - iced Il H2SO4/liter iced			•		(410) 643-0800 1-800-300-TES	
4. 5m	l HNO3/liter iced	<i>l l l l l l l l l l</i>	· 1	Mis			1
5. Ste	erile w/thio her	Reviewed by			Date <u>G-8-</u>	17	
		dures are in accordance wi	th 40 CFR. Part	136 'Gpide	lines Establishing Test	Procedures for the Analysi	s of Polintents
	n of Custody:	Relinquished by			Accepted by:	1 Toccures for the Amerys.	s of foliations.
	Name:	Date:	Time:		Name /	Date:	Time:
1	BMI	9.6.17	1240		Colitio	9617	1240
2	al the	9-6-17	230		9h_	9-617	2:35
3							7)
4	·						
5					····		

Analytical Report

Serialized: 10/20/2017 11:15am DE36

Order Number: L6961096

Project Name: BTR HAMPSTEAD WWTP

Receive Date: 09-12-2017 Client Code: MES_A

Project Location: BTR HAMPSTEAD WWTP

CHERYL GRIFFIN
MARYLAND ENVIRONMENTAL SERVICE B
259 NAJOLES ROAD
RE: BTR HAMPSTEAD WWTP
MILLERSVILLE,MD 21108

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6961096

Authorized by: Ronald T. Fazio, President

MII

Analytical Report

Printed 10/20/17 11:15 DE36

Order Number: L6961096

Project Name: BTR HAMPSTEAD WWTP

Receive Date: 09-12-2017
Client Code: MES_A

Project Location: BTR HAMPSTEAD WWTP

CHERYL GRIFFIN MARYLAND ENVIRONMENTAL SERVICE B 259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

Account No: AL0341, MARYLAND ENVIRONMENTAL SERVICE A

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

PWSIE

P.O. No:

Inv. No: PWSID No:

MES_AL0341 PI

Sample ID Sample Description L6961096-1 FINAL 101 - GRAB

Received Date/Time 09/12/17 01:35pm

Samp. Date/Time/Temp Sampled by 09/12/17 09:14am NA C Customer

--SUBCONTRACTED RESULT REFERENCES--

See attached reports for the following Subcontract Laboratories:

Chesapeake Environmental Lab, Inc. (CHESAPEAKE)

E. COLI-MPN (DELAWARE)

Sample Comments | Result Qualifiers:

L6961096-1:

E. coli was an analyzed by Chesapeake Environmental Lab, Inc in Stevensville, MD.

PIN: 17237 Serial Number: 6384281

DELIMITEDING

Eurofins QC, Inc. (EQC)

The following terms or abbreviations are used in this report:

MPN	Most pro	obable number		
CFU	Colony	forming unit	DF	Dilution Factor (For Microbiology, DF = volume of sample tested)
POS	Positive	/ Present	QUAL	Qualifier (Q)
NEG	Negative	e / Absent	NTU	Nephelometric turbidity units
PRES	Presump	otive	RL	Laboratory reporting limit or Limit of Quantitation (LOQ)
MF	Membra	ne Filtration	MCL	EPA recommended "Maximum Contaminant Level"
TNTC	Too nun	nerous to count	MDL	Method Detection Limit
DRY	The resu	ılt was reported on a dry weight basis.	ND	Analyte concentration not detected greater than the RL / MDL
TON	Thresho	ld Odor Number	ND	For the odor test: No Odor Observed
ppm (mg/l) Parts per million: equivalent to 1 milligram per samples.			kilogram (mg/Kg) for solids or one milligram per liter (mg/L) for aqueous
ppb (ug/	L)	Parts per billion: equivalent to 1 microgram per samples.	kilogram ((ug/Kg) for solids or one microgram per liter (ug/L) for aqueous
<		Less than: In conjunction with a numerical value	e, indicate	es a concentration less than RL / MDL.
>		Greater than: In conjunction with a numerical va	alue, indica	ates a concentration greater than RL / MDL.
D (0	1.0			

Data Qualifiers

J	Estimated value \geq MDL but \leq RL.
T	Temperature receipt exceedance, refer to Sample Comments/ Results Qualifiers section.
Е	Microbiology: estimated CFU count
Q	Qualifier: defined in Sample Comment section on report

Warranties, Terms, and Conditions

- Unless otherwise indicated in the Parameter Field, analyses for environmental microbiology, odor, and pharmaceutical microbiology are performed at the EQCI Horsham facility (702 Electronic Dr. Horsham, PA 19044).
- Analyses for Field Parameters is performed by EQC Field staff and when the chain of custody identifies the field staff with the code: "ERF", that field staff performs tests under State certification # NJ 02015
- The test results meet all TNI or other applicable regulatory agency requirements, including holding times and preservation, unless otherwise
 indicated.
- The report shall not be reproduced, except in full, without the written consent of the laboratory.
- All samples are collected as "grab" samples unless otherwise identified.
- The reported results relate only to the sample as tested. EQCI is not responsible for sample integrity unless sampling has been performed by a member of our staff.
- EQCI is not responsible for sampling and/or testing omissions. Note that regulatory authorities may assess substantial fines for testing omissions. Please track your sample collection schedules and results on a regular basis (e.g. weekly, monthly, or quarterly) to ensure compliance. EQCI's internet program "LIVE ACCESS" will provide you with real-time access to collection dates and testing results. Please contact Customer Service for further information.
- The following personnel or their deputies have approved the results of the tests performed by EQCI: Nicki Smith (Environmental Chemistry), Amanda Berd (Pharmaceutical), Sue Abbott (EQCI Delaware), and Bhavita Shah (EQCI Horsham, Microbiology).

EQC Accreditations

Horsham, PA NELAP IDs:

PA: 46-05499 NJ: PA093

New Castle, DE State IDs: DE 00011; MD 138 Wind Gap, PA State IDs: PA 48-01334; NJ PA001

East Rutherford, NJ State ID: NJ 02015 Vineland, NJ State ID: NJ 06005

	CEL	Water	Quality	Data	ta Sheet Lab ID No. 10694			
Lab:			-			Project No. <u>2559</u> -	{{	
9/12/96		· · · · · · · · · · · · · · · · · · ·						
Facili	y Name (Source):					Collectors ID #: GS	2500	
Samp	e Location:	Final	101 - (s ra	b			
Bottle	Numbers:	Chem:		1	Bact: BTR-1	Total Bottles:	·	
Comp	osite Sample Star	Date:		7	lime:	Name:		
Comp	osite Sample End	Date:		7	lime:	Name:		
Grab	Sample	Date: 9-12-	17	7	Time: 0914	Name: Garrett So	heller	
Samp	le Type:	Drinking Water:	Effluent:	601]	nfluent:	Other:		
Field	Tests:	pH:	DO: r	ng/l	Chlorine Residual:	Free:	mg/i	
	Flow	mgd	Temp:	°C	Before DeCl2 ((y) n)	Total: > 5.0	mg/l	
Pres.	Analysis	Method*	Result	Units	Test Start D/T	Test End D/T	Tech	
	BOD5	SM5210B		mg/I				
	TSS	SM2540D		mg/L				
	MLSS							
	Total Coliform	SM9223B/ 9221B					 	
	Fecal Coliform	SM9221E	М	PN/100z	ո1			
<u>a</u>	E. Coli	SM9223B) 9221F	<1.0 M	PN/100a	1 9-17-17 2200	9-BD 1130c	26	
<u></u>								
<u></u> _							<u> </u>	
<u> </u>							<u> </u>	
						<u> </u>	<u> </u>	
<u></u>]		<u> </u>	
<u></u>			sure method	utiliz	zed is circled or wri	tten		
1. No 2. No 3. 2m 4. 5m	ne <u>iced</u> 1 H2SO4/liter iced 1 HNO3/liter iced	l k		4		peake Environmental L (410) 643-0800 1-800-300-TEST	ab, inc	
5. Ste 6. Ot	rile w/thio her	Reviewed b	me the	M	Date 9-14-1			
All anal	ytical and sampling proce	dures are in accordance wi	ih 40 CFR, Part 13	6 "Guid	elines Establishing Test Pro	ecedures for the Analysis of P	ollutants."	
Chair	of Custody:	Relinquished by	•		Accepted by:			
<u></u>	Name:	Date:	Time:		Name:	Date:	Time:	
1_	Darrito Sylve	9-12-17	11:19		Sfirk	9-12-17	11:10	
2	Jour	912-17	1:35		Phoke	9.12.17	1.35	
3_	<i>"</i>	1 7					\	
4	,						 	
5				ľ				

Major Control of Control	CEL	Water	Quality	Dat	ta Sheet	I	ab ID No	. 10694	18
Lab:						T	Project No	. 2559	2085-1700
9/12/96		81				· T			
Facili	ty Name (Source):	Black and	Decker (BTR") WWTP		Collectors	ID #: GS	2500
Sampl	le Location:	Final	101 -	Gra	ab				
Bottle	Numbers:	Chem:		_	Bact: BTR-	1	Total Bot	tles:	
Сотр	osite Sample Start	Date:			Time:		Name:		
Comp	osite Sample End	Date:			Time:		Name:		
Grab	Sample	Date: 9-12-	17		Time: 6914	1	Name: G	sarrett Sc	heller
Samp	le Type:	Drinking Water:	Effluent:	F1/001	Influent:		Other:		
Field	Tests:	pH:	DO:	mg/l	Chlorine Resid	dual:	Free:		mg/l
¥-25 m	Flow	: mgd	Temp:	°C	Before DeCl2 (6	ý) n)	Total:	> 5,0	mg/l
Pres.]	Method*	Result	Uni	seems become an arrangement		na panagagagagagagagagag	End D/T	Tech
	BOD5	SM5210B		mg	/L				
	TSS	SM2540D		mg	/L				
	MLSS								
	Total Coliform	SM9223B/ 9221B							
	Fecal Coliform	SM9221E		MPN/10	11				
9	E. Coli	SM9223B/9221F	41.0	MPN/10	00ml 9-12-17 c	2200	9-13-1	2 1130a	72
						<i>y</i>	, , ,		
			sure meth	od util	lized is circled	or writ	tten		
1. No 2. No 3. 2m 4. 5m	ervatives: one one one iced I H2SO4/liter iced of HNO3/liter iced erile w/thio	Comments:		h .A	Date 9-16	Chesa	(410) 6	ronmental La 43-0800 300-TEST	ab, Inc
6. Ot		- Keviewed by	Yhairan .	11/19	Date /				
All ana	lytical and sampling proce	dures are in accordance wi	th 40 CFR, Part	136 "Gu	uidelines Establishing	Test Pro	cedures for th	e Analysis of P	oliutants."
Chai	n of Custody:	Relinquished by	:		Accepted by:				T
	Name:	Date:	Time:		Name:		Date:		Time:
1	David Syller	9-12-17	11:18)	1 Sight	_	9-12	47	11.10
2	Jones	9-12-17	1:35		Corpo	<u> </u>	9.1.	2-17	1:35
3					-	.,			-
4	ļ								-
5	· ·								

Analytical Report

Serialized: 10/04/2017 01:05pm DE36

Order Number: L6940195

Project Name: BTR HAMPSTEAD WWTP

Receive Date: 09-19-2017
Client Code: MES_A

Project Location: BTR HAMPSTEAD WWTP

CHERYL GRIFFIN MARYLAND ENVIRONMENTAL SERVICE B 259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

MILLERSVILLE,MD 21108

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6940195

Authorized by: Ronald T. Fazio, President

MII

Analytical Report

Printed 10/04/17 13:05 DE36

Order Number: L6940195

Project Name: BTR HAMPSTEAD WWTP

Receive Date: 09-19-2017
Client Code: MES A

Project Location: BTR HAMPSTEAD WWTP

CHERYL GRIFFIN

MARYLAND ENVIRONMENTAL SERVICE B

259 NAJOLES ROAD

RE: BTR HAMPSTEAD WWTP MILLERSVILLE, MD 21108

Account No: AL0341, MARYLAND ENVIRONMENTAL SERVICE A

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

P.O. No:

Inv. No: PWSID No: MES AL0341 PI

Sample ID

Sample Description

L6940195-1 BTR 001 GRAB

Received Date/Time/Temp 09/19/17 04:30pm 3.3 C lced (Y/N): Y

00/10

Samp. Date/Time/Temp Sampled by

09/19/17 09:17am NA C Customer

--SUBCONTRACTED RESULT REFERENCES--

See attached reports for the following Subcontract Laboratories:

Eurofins - Lancaster Laboratories, Environmental (ELLE)

BIOCHEMICAL OXYGEN DEMAND EPA METHOD 624 METHOD 1664,HEXANE EXTRACTABLES(O+G) TOTAL SUSPENDED SOLIDS

Sample ID

Sample Description

L6940195-2 BTR 001 COMP

Received Date/Time/Temp 09/19/17 04:30pm 3.3 C

Samp. Date/Time/Temp Sampled by

09/19/17 09:19am NA C Customer

Parameter Result **Qual Units** Method DF RL Test Date, Time, Analyst GENERAL CHEMISTRY Nitrate/nitrite, total as N 1.02 mg/l EPA 300.0 10 0.500 09/20/17 03:44AM SLD (Delaware) 0.200 09/29/17 02:13PM ALW Kjeldahl nitrogen, as N 0.763 EPA 351.2 1 mg/l (Delaware) Phosphorus total as P EPA 365.4 0.0500 09/22/17 01:09PM ALW ND mg/l 1 (Delaware) Ammonia, as N (Delaware) ND mg/l SM 4500NH3-G 0.200 09/21/17 11:24AM ALW

Iced (Y/N): Y

Sample Comments | Result Qualifiers:

L6940195-1:

PIN: 17237 Serial Number: 6379765

DELIMITEDING

Eurofins QC, Inc. (EQC)

The following terms or abbreviations are used in this report:

MPN	Most pro	obable number		
CFU	Colony	forming unit	DF	Dilution Factor (For Microbiology, DF = volume of sample tested)
POS	Positive	/ Present	QUAL	Qualifier (Q)
NEG	Negative	e / Absent	NTU	Nephelometric turbidity units
PRES	Presump	otive	RL	Laboratory reporting limit or Limit of Quantitation (LOQ)
MF	Membra	ne Filtration	MCL	EPA recommended "Maximum Contaminant Level"
TNTC	Too nun	nerous to count	MDL	Method Detection Limit
DRY	The resu	lt was reported on a dry weight basis.	ND	Analyte concentration not detected greater than the RL / MDL
TON	Thresho	ld Odor Number	ND	For the odor test: No Odor Observed
ppm (mg	g/l)	Parts per million: equivalent to 1 milligram per l samples.	kilogram (mg/Kg) for solids or one milligram per liter (mg/L) for aqueous
ppb (ug/	L)	Parts per billion: equivalent to 1 microgram per samples.	kilogram ((ug/Kg) for solids or one microgram per liter (ug/L) for aqueous
<		Less than: In conjunction with a numerical value	e, indicate	es a concentration less than RL / MDL.
>		Greater than: In conjunction with a numerical va	lue, indica	ates a concentration greater than RL / MDL.
D (0	1.0			

Data Qualifiers

J	Estimated value \geq MDL but \leq RL.
T	Temperature receipt exceedance, refer to Sample Comments/ Results Qualifiers section.
Е	Microbiology: estimated CFU count
Q	Qualifier: defined in Sample Comment section on report

Warranties, Terms, and Conditions

- Unless otherwise indicated in the Parameter Field, analyses for environmental microbiology, odor, and pharmaceutical microbiology are performed at the EQCI Horsham facility (702 Electronic Dr. Horsham, PA 19044).
- Analyses for Field Parameters is performed by EQC Field staff and when the chain of custody identifies the field staff with the code: "ERF", that field staff performs tests under State certification # NJ 02015
- The test results meet all TNI or other applicable regulatory agency requirements, including holding times and preservation, unless otherwise
 indicated.
- The report shall not be reproduced, except in full, without the written consent of the laboratory.
- All samples are collected as "grab" samples unless otherwise identified.
- The reported results relate only to the sample as tested. EQCI is not responsible for sample integrity unless sampling has been performed by a member of our staff.
- EQCI is not responsible for sampling and/or testing omissions. Note that regulatory authorities may assess substantial fines for testing omissions. Please track your sample collection schedules and results on a regular basis (e.g. weekly, monthly, or quarterly) to ensure compliance. EQCI's internet program "LIVE ACCESS" will provide you with real-time access to collection dates and testing results. Please contact Customer Service for further information.
- The following personnel or their deputies have approved the results of the tests performed by EQCI: Nicki Smith (Environmental Chemistry), Amanda Berd (Pharmaceutical), Sue Abbott (EQCI Delaware), and Bhavita Shah (EQCI Horsham, Microbiology).

EQC Accreditations

Horsham, PA NELAP IDs:

PA: 46-05499 NJ: PA093

New Castle, DE State IDs: DE 00011; MD 138 Wind Gap, PA State IDs: PA 48-01334; NJ PA001

East Rutherford, NJ State ID: NJ 02015 Vineland, NJ State ID: NJ 06005

4/2044

	CHAIN OF CUS	AIN O	CHAIN OF CUSTODY / SAMPLE INFORMATION FORM and Environmental Service • 529 Najoles Rd. • Millersville, MD 21108 • (410) 729-8200 • FAX (410) 729	AMPL Millersville	E INF	ORM 8 · (410)	ATIC 729-8200	TODY / SAMPLE INFORMATION FORM	
Len's Contraction		epooyuello.	900		Sampler	Bris	E CH	Brian Musselman	
Client Name/Phone/FAX Maryland Environmental Service	Maryland Envir	onmental	Service		Project Name	Name	STR WW	BTR WWTP (Monthly)	T
Clent Address				-	Project	Project Number 2559-2085-1700	2559-208	5-1700	-
Invoice Address					Sample	Sample Turnaround Time	nd Time		
Station No./ Sample:ID Station	Station Location	Grab or Composite	Container Description/ Preservation Status	Matrix	# of Containers	Date	Time	Analyses Required/Comments	
BTR 001		Monthly Grab	1 Liter Plastic Unpreserved	ww	1	9-19-17	2160	BOD, TSS	
BTR-2		Monthly 8 hr Comp	250 ml Plastic H2S04	MM	1	4.19.7) (અ	N+N, TKN, NH3, TP	<u>`````````````````````````````````````</u>
0TR-3		Monthly Grab	1 Liter Glass H2S04	MM	1	9-19:17	0911	Oll and Grease	
BTR-4	·	Monthly Grab	40ml.Glass VOA Vial, HCI	MM	3	4.19.17	OPIZ	1,1,1-Trichloroethane, Telrachloro-ethylene, Trichloroethene MDE Table I VOC's - EPA 624	
									- 1
-									
Transferred by: BM	The -	Received by:	The picture of the pi	Oate 9797	Time	Sufficient	Coole ce? (Yes	Cooler Receipt Information (LAB USE ONLY) Sufficient ice? {YesiNo If No, temp.= 3 2	
Transferred by:	A.	Received by:	1 m	C (%)	7.557 7.655	Sample co	ontainers p	Sample containers pres'd? -(Yes)No If No, explain Custody Seal present/intact? - Yes/No	:
Transferred by:	The State of the S	Received by	O. R. 00.	मिलि ।	Time (6.3 v Initials:	Initials:		Date:	
DO ROG	10 S	191	9h 91	(AB (ap 310	910				
	3	1							

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYSIS REPORT

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Eurofins QC Laboratories 702 Electronic Drive Horsham PA 19044

Report Date: September 27, 2017

Project: L6940195

Account #: 21318 Group Number: 1852132 PO Number: L6940195 State of Sample Origin: MD

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our current scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/. To request copies of prior scopes of accreditation, contact your project manager.

Electronic Copy To Eurofins QC Laboratories

Attn: Nicki Smith

Respectfully Submitted,

Wendy A. Kozma

Principal Specialist Group Leader

Wendy a. Kenn

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

SAMPLE INFORMATION

<u>Client Sample Description</u> L6940195-1 Grab Wastewater

Collection Information 09/19/2017 09:17

ELLE# 9216326

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Project Name: L6940195 LL Group #: 1852132

General Comments:

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below. Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are not included in this data set

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

For dual column analyses, the surrogate (for multi-surrogate tests, at least one surrogate) must be within the acceptance limits on at least one of the two columns.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

Analysis Specific Comments:

EPA 1664B, Wet Chemistry

Batch #: 17265807901A (Sample number(s): 9216326 UNSPK: P211223)

The recovery(ies) for the following analyte(s) in the MS were below the acceptance window: HEM (oil & grease)

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: L6940195-1 Grab Wastewater

BTR 001

ELLE Sample # WW 9216326 ELLE Group # 1852132 Account # 21318

Project Name: L6940195

Collected: 09/19/2017 09:17 by BM Eurofins OC Laboratories

702 Electronic Drive Horsham PA 19044

Submitted: 09/19/2017 18:45

Reported: 09/27/2017 15:50

28201

CAT No.	Analysis Name	CAS Number	Result	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles EPA 624		ug/l	ug/l	
10371	Tetrachloroethene	127-18-4	N.D.	1	1
10371	1,1,1-Trichloroethane	71-55-6	N.D.	1	1
10371	Trichloroethene	79-01-6	N.D.	1	1
Wet C	hemistry EPA 1664	lB	mg/1 N.D. O4	mg/l 5.0	1
06079	nem (OII & grease)	II.a.	N.D. Q4	5.0	1
	SM 2540	D-1997	mg/l	mg/l	
13858	Total Suspended Solids	n.a.	7.60	6.00	1
	SM 5210		mg/l	mg/l	
14108	Biochemical Oxygen Demand-BOD	n.a.	8.92	2.00	1

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	9	Analyst	Dilution Factor
10371	VOCs- 5ml Water by 624	EPA 624	1	U172651AA	09/22/2017 1	L4:54	Joshua S Hess	1
08079	HEM (oil & grease)	EPA 1664B	1	17265807901A	09/22/2017 1	L0:20	Yolunder Y Bunch	1
13858	Total Suspended Solids	SM 2540 D-1997	1	17265385801A	09/22/2017 0	7:30	Karen D Lausch	1
14108	Biochemical Oxygen Demand-BOD	SM 5210 B-2001	1	17263141083A	09/20/2017 2	20:38	Benjamin M Morrison	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Eurofins QC Laboratories Group Number: 1852132

Reported: 09/27/2017 15:50

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result ug/l	LOQ ug/l
Batch number: U172651AA Tetrachloroethene 1,1,1-Trichloroethane Trichloroethene	Sample numbe N.D. N.D. N.D.	er(s): 9216326 1 1 1
	mg/l	mg/l
Batch number: 17265385801A Total Suspended Solids	Sample numbe	er(s): 9216326 3.00
Batch number: 17265807901A HEM (oil & grease)	Sample numbe	er(s): 9216326 5.0

LCS/LCSD

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: U172651AA	Sample number	r(s): 92163	26						
Tetrachloroethene	20	20.62			103		77-122		
1,1,1-Trichloroethane	20	18.52			93		77-123		
Trichloroethene	20	18.88			94		80-120		
	mg/l	mg/l	mg/l	mg/l					
Batch number: 17263141083A	Sample number	r(s): 92163	26						
Biochemical Oxygen Demand-BOD	198	189.3			96		85-115		
Batch number: 17265385801A	Sample number	r(s): 92163	26						
Total Suspended Solids	150	143.7			96		89-105		
Batch number: 17265807901A	Sample number	r(s): 92163	26						
HEM (oil & grease)	40	32.1	40	34.9	80	87	78-114	8	13

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

P##### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Eurofins QC Laboratories Group Number: 1852132

Reported: 09/27/2017 15:50

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: U172651AA	Sample numb	er(s): 9216	326 UNSE	K: P218984						
Tetrachloroethene	N.D.	20	23.85	20	21.88	119	109	77-122	9	30
1,1,1-Trichloroethane	N.D.	20	21.6	20	19.4	108	97	77-123	11	30
Trichloroethene	N.D.	20	21.64	20	19.37	108	97	80-120	11	30
	mg/l	mg/l	mg/l	mg/l	mg/l					
Batch number: 17265807901A	Sample numb	er(s): 9216	326 UNSE	K: P211223						
HEM (oil & grease)	2.42	42.6	31.06			67*		78-114		

Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	BKG Conc	DUP Conc	DUP RPD	DUP RPD Max
	mg/l	mg/l		
Batch number: 17263141083A Biochemical Oxygen Demand-BOD	Sample number(s): 35.38	9216326 BKG: P218955 32.56	8	28
Batch number: 17265385801A Total Suspended Solids	Sample number(s): 235	9216326 BKG: P219023 227.5	3 (1)	5

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report. For dual column analyses, the surrogate (at least one surrogate for multi-surrogate tests) must be within the acceptance limits on at least one of the two columns.

Analysis Name: VOCs- 5ml Water by 624

Batch number: U172651AA

	1,2-Dichloroethane-d4	Fluorobenzene	4-Bromofluorobenzene
9216326	98	89	86
Blank	100	90	87
LCS	99	97	101
MS	98	98	104
MSD	97	98	103
Limits:	78-118	88-107	80-118

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

P##### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Eurofins QC Laboratories Group Number: 1852132

Reported: 09/27/2017 15:50

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

) Maryla	CHAIN C	CHAIN OF CUSTODY / SAMPLE INFORMATION FORM Maryland Environmental Service • 529 Najoles Rd. • Millersville, MD 21108 • (410) 729-8200 • FAX (410) 729-8340	SAMPI Millersville	E IN 9, MD 211	FORN 08 • (410)	1ATI(729-820	ON FORM 3 • FAX (410) 729-8340
Lab#	Client C	Client Gode		Sampler		an M	Brian Musselman
Client Name/Phone/FAX Maryland Environmental Service	Environmental	Service		Project	Project Name	BTR WV	BTR WWTP (Monthly)
Client Address				Project	Project Number	2559-2085-1700	55-1700
Invoice Address				Sample	Sample Turnaround Time	nd Time	
Station No./ Sample ID Station Location	Grab or Composite	Container Description/ Preservation Status	Matrix	# of Containers	Date	Time	Analyses Required/Comments
BTR-1 BTR 001	Monthly Grab	1 Liter	ww	-	9.19.17	6917	BOD, TSS
BTR-2	Monthly 8 hr Comp	250 ml Plastic H2S04	WW	-	6.19.17	5676	N+N, TKN, NH3, TP
BTR-3	Monthly Grab	1 Liter Glass H2S04	WW	1	9-19-17	0911	Oil and Grease
BTR-4	Monthly Grab	40ml Glass VOA Vial, HCI	ww	69	9.1917	CAR	1,1,1-Trichloroethane, Tetrachloro-ethylene, Trichloroethene MDE Table I VO C's - EPA 624
		WAS TO THE RESERVE OF THE PARTY					and the second s
Transferred by: B. M.	Received by:	d by: All	Date	Time	Sufficient	Coole	Cooler Receipt Information (LAB USE ONLY)
Transferred by:	Received by:	d by:	Date R (1)	Time		ontainers eal prese	Sample containers pres'd? - Yes/No If No, explain Custody Seal present/intact? - Yes/No
Transferred by:	Received by:	Oct. O. A. O. C.	Pate 10	Time (630	Initials:		Date;
Sha Radio	य/10/17) ah 91	Jan (De 310	910			

urofins

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

Doc Log ID:

Group Number(s):

1452132

Delivery and Receipt Information

Delivery Method:

Client: EQCL

EQCL Drop Off

Arrival Timestamp:

09/19/2017 18:45

Number of Packages:

1

Number of Projects:

17

Arrival Condition Summary

Shipping Container Sealed:

Yes

Sample IDs on COC match Containers:

Yes Yes

Custody Seal Present: Custody Seal Intact:

Yes Yes

Sample Date/Times match COC: VOA Vial Headspace ≥ 6mm:

N/A

Samples Chilled:

Yes

Total Trip Blank Qty:

0

Paperwork Enclosed:

Yes

Air Quality Samples Present:

No

Samples Intact:

Yes

Missing Samples:

No

Extra Samples:

No

Discrepancy in Container Qty on COC:

Yes

Unpacked by Cory Jeremiah (10469) at 19:27 on 09/19/2017

Samples Chilled Details

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Thermometer ID

Corrected Temp 4.7

Therm. Type

Ice Type Ice Present?

Ice Container

32170023

IR

Wet

Y

Bagged

Elevated Temp? N

Container Quantity Discrepancy Details

Sample ID on COC

Container Qty. Received

Container Qty. on COC

Comments

L6940195-1

The following defines common symbols and abbreviations used in reporting technical data:

BMQL Below Minimum Quantitation Level milligram(s) ma С degrees Celsius mL milliliter(s) cfu colony forming units MPN Most Probable Number **CP Units** cobalt-chloroplatinate units N.D. non-detect degrees Fahrenheit na nanogram(s) g gram(s) NTU nephelometric turbidity units IU International Units pg/L picogram/liter RL kq kilogram(s) Reporting Limit L liter(s) **TNTC** Too Numerous To Count lb. pound(s) microgram(s) ua m3 cubic meter(s) μL microliter(s) meg milliequivalents umhos/cm micromhos/cm < less than

greater than >

parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For ppm aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Dry weight Results printed under this heading have been adjusted for moisture content. This increases the analyte weight basis concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Environmental

Data Qualifiers

Qualifier	Definition
С	Result confirmed by reanalysis
D1	Indicates for dual column analyses that the result is reported from column 1
D2	Indicates for dual column analyses that the result is reported from column 2
E	Concentration exceeds the calibration range
J (or G, I, X)	Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
Р	Concentration difference between the primary and confirmation column >40%. The lower result is reported.
U	Analyte was not detected at the value indicated
V	Concentration difference between the primary and confirmation column >100%. The reporting limit is raised
	due to this disparity and evident interference.
W	The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.
Z	Laboratory Defined - see analysis report
В	Detection in the Blank
Q0	LCS/LCSD Low
Q1	LCS/LCSD High
Q4	MS/MSD Out of Range
Q7	LCS/LCSD RPD
Q8	DUP RPD
Q9	MS/MSD RPD

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical Report

Serialized: 10/25/2017 02:39pm DE36

Order Number: L6961109

Project Name: BTR HAMPSTEAD WWTP

Receive Date: 09-19-2017
Client Code: MES_A

Project Location: BTR HAMPSTEAD WWTP

CHERYL GRIFFIN MARYLAND ENVIRONMENTAL SERVICE B 259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

MILLERSVILLE,MD 21108

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6961109

Authorized by: Ronald T. Fazio, President

MII

Eurofins QC, Inc.

Analytical Report

Inv. No:

Samp. Date/Time/Temp Sampled by

09/19/17 09:15am NA C Customer

PWSID No:

MES_AL0341 PI

Order Number: L6961109

Project Name: BTR HAMPSTEAD WWTP

Receive Date: 09-19-2017
Client Code: MES_A

P.O. No:

Project Location: BTR HAMPSTEAD WWTP

CHERYL GRIFFIN MARYLAND ENVIRONMENTAL SERVICE B 259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

Account No:AL0341, MARYLAND ENVIRONMENTAL SERVICE A

MILLERSVILLE, MD 21108

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

-

Sample ID Sample Description L6961109-1 FINAL 001 - GRAB

Received Date/Time 09/19/17 12:40pm

--SUBCONTRACTED RESULT REFERENCES--

See attached reports for the following Subcontract Laboratories:

Chesapeake Environmental Lab, Inc. (CHESAPEAKE)

E. COLI-MPN (DELAWARE)

Sample Comments | Result Qualifiers:

L6961109-1:

E. coli was an analyzed by Chesapeake Environmental Lab, Inc in Stevensville, MD.

PIN: 17237 Serial Number: 6385695

DELIMITEDING

Eurofins QC, Inc. (EQC)

The following terms or abbreviations are used in this report:

MPN	Most pro	obable number		
CFU	Colony	forming unit	DF	Dilution Factor (For Microbiology, DF = volume of sample tested)
POS	Positive	/ Present	QUAL	Qualifier (Q)
NEG	Negative	e / Absent	NTU	Nephelometric turbidity units
PRES	Presump	otive	RL	Laboratory reporting limit or Limit of Quantitation (LOQ)
MF	Membra	ne Filtration	MCL	EPA recommended "Maximum Contaminant Level"
TNTC	Too nun	nerous to count	MDL	Method Detection Limit
DRY	The resu	ılt was reported on a dry weight basis.	ND	Analyte concentration not detected greater than the RL / MDL
TON	Thresho	ld Odor Number	ND	For the odor test: No Odor Observed
ppm (mg	g/l)	Parts per million: equivalent to 1 milligram per samples.	kilogram (mg/Kg) for solids or one milligram per liter (mg/L) for aqueous
ppb (ug/	L)	Parts per billion: equivalent to 1 microgram per samples.	kilogram ((ug/Kg) for solids or one microgram per liter (ug/L) for aqueous
<		Less than: In conjunction with a numerical value	e, indicate	es a concentration less than RL / MDL.
>		Greater than: In conjunction with a numerical va	alue, indica	ates a concentration greater than RL / MDL.
D (0	1.0			

Data Qualifiers

J	Estimated value \geq MDL but \leq RL.
T	Temperature receipt exceedance, refer to Sample Comments/ Results Qualifiers section.
Е	Microbiology: estimated CFU count
Q	Qualifier: defined in Sample Comment section on report

Warranties, Terms, and Conditions

- Unless otherwise indicated in the Parameter Field, analyses for environmental microbiology, odor, and pharmaceutical microbiology are performed at the EQCI Horsham facility (702 Electronic Dr. Horsham, PA 19044).
- Analyses for Field Parameters is performed by EQC Field staff and when the chain of custody identifies the field staff with the code: "ERF", that field staff performs tests under State certification # NJ 02015
- The test results meet all TNI or other applicable regulatory agency requirements, including holding times and preservation, unless otherwise
 indicated.
- The report shall not be reproduced, except in full, without the written consent of the laboratory.
- All samples are collected as "grab" samples unless otherwise identified.
- The reported results relate only to the sample as tested. EQCI is not responsible for sample integrity unless sampling has been performed by a member of our staff.
- EQCI is not responsible for sampling and/or testing omissions. Note that regulatory authorities may assess substantial fines for testing omissions. Please track your sample collection schedules and results on a regular basis (e.g. weekly, monthly, or quarterly) to ensure compliance. EQCI's internet program "LIVE ACCESS" will provide you with real-time access to collection dates and testing results. Please contact Customer Service for further information.
- The following personnel or their deputies have approved the results of the tests performed by EQCI: Nicki Smith (Environmental Chemistry), Amanda Berd (Pharmaceutical), Sue Abbott (EQCI Delaware), and Bhavita Shah (EQCI Horsham, Microbiology).

EQC Accreditations

Horsham, PA NELAP IDs:

PA: 46-05499 NJ: PA093

New Castle, DE State IDs: DE 00011; MD 138 Wind Gap, PA State IDs: PA 48-01334; NJ PA001

East Rutherford, NJ State ID: NJ 02015 Vineland, NJ State ID: NJ 06005

	<u></u>	· :	794611014		
lab: CEL	Maryland Water	Environme Quality Da	ental Service ta Sheet	Lab ID No. 10700	1,2
12/96				Project No. 2559	- <u>2085-176</u>
acility Name (Source):	Black (D)	coker (BTR	976261	Collectors ID #: 5	519
ample Location:	1	003 - 60ab	7 12-9-1	L	,
ottle Numbers:	Chem:	13,77	Bact: BIR-5	Total Bottles:	
omposite Sample Star	Date:		Time:	Name:	
omposite Sample End	Date:		Time:	Name:	
rab Sample	Date: 9.13.	17	Time: 0915	Name: Bo. //	(47 h h
ample Type:	Drinking Water:	Effluent: Fux,	Influent:	Other:	
ield Tests:	рн: 6.85	DO: mg/l	Chlorine Residual:	Free:	mg/l
Flow	mgd	Temp: 22.0 °C	Before DeCl2 (y/n)	Total:	mg/l
res. Analysis		Result Uni	ts Test Start D/T	Test End D/T	Tech
BOD5	SM5210B	mg	<u>/L</u>	<u> </u>	
TSS	SM2540D	mg	/L		╂
MLSS				-	1
Total Coliform	SM9223B/ 9221B				
Fecal Coliform 7 E. Coli	SM9221E SM9223B/)9221F	MPN/I			
		5.3 MPN/II	1112 00 by	e 9730-17 1335p	DD
		sure method util	lized is circled or wri	tten	
None iced None iced 2ml H2SO4/liter iced 5ml HNO3/liter iced Sterile w/thio Other	Comments:	- <u>/ / //</u>		e Environmental Lab, II (410) 643-0800 -800-300-TEST	na
lanalytical and sampling proce	dures are in accordance wi	th 40 CFR, Part 136 'Gu	idelines Establishing Test Pro	cedures for the Analysis of I	Pollutanta."
hain of Custody:	Relinguished by	:	Accepted by:		
Name:	Date:	Time:	Name:	Date:	Time:
1 3.1/1/2	9-19-17	11:07	Skyd-	9-19-17	11:07
$\frac{2}{3}$ $\int e^{x} dx$	9-19-17	12:40	Chare of	4-19-17	12 01
4	 	 		ļ	
5	 		 		 -
h l	1	1	4.	1	1

Analytical Report

Serialized: 10/25/2017 02:38pm DE36

Order Number: L6961107

Project Name: BTR HAMPSTEAD WWTP

Receive Date: 09-19-2017
Client Code: MES_A

Project Location: BTR HAMPSTEAD WWTP

CHERYL GRIFFIN MARYLAND ENVIRONMENTAL SERVICE B 259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

MILLERSVILLE,MD 21108

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6961107

Authorized by: Ronald T. Fazio, President

MII

Eurofins QC, Inc.

Analytical Report

Order Number: L6961107

Project Name: BTR HAMPSTEAD WWTP

Receive Date: 09-19-2017
Client Code: MES_A

Project Location: BTR HAMPSTEAD WWTP

CHERYL GRIFFIN MARYLAND ENVIRONMENTAL SERVICE B 259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

Account No:AL0341, MARYLAND ENVIRONMENTAL SERVICE A

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

P.O. No:

Inv. No: MES_AL0341 PI

PWSID No:

Sample ID Sample Description L6961107-1 FINAL 101 - GRAB

Received Date/Time 09/19/17 12:40pm

Samp. Date/Time/Temp Sampled by 09/19/17 09:10am NA C Customer

--SUBCONTRACTED RESULT REFERENCES--

See attached reports for the following Subcontract Laboratories:

Chesapeake Environmental Lab, Inc. (CHESAPEAKE)

E. COLI-MPN (DELAWARE)

Sample Comments | Result Qualifiers:

L6961107-1:

E. coli was an analyzed by Chesapeake Environmental Lab, Inc in Stevensville, MD.

PIN: 17237 Serial Number: 6385694

DELIMITEDING

Eurofins QC, Inc. (EQC)

The following terms or abbreviations are used in this report:

MPN	Most pro	obable number					
CFU	Colony	forming unit	DF	Dilution Factor (For Microbiology, DF = volume of sample tested)			
POS	Positive	/ Present	QUAL	Qualifier (Q)			
NEG	Negative	e / Absent	NTU	Nephelometric turbidity units			
PRES	Presump	otive	RL	Laboratory reporting limit or Limit of Quantitation (LOQ)			
MF	MF Membrane Filtration TNTC Too numerous to count		MCL	EPA recommended "Maximum Contaminant Level"			
TNTC	RY The result was reported on a dry weight basis.		MDL	Method Detection Limit			
DRY			ND	Analyte concentration not detected greater than the RL / MDL			
TON	1 , 5		ND	For the odor test: No Odor Observed			
ppm (mg	g/l)	Parts per million: equivalent to 1 milligram per samples.	kilogram (mg/Kg) for solids or one milligram per liter (mg/L) for aqueous			
ppb (ug/	L)	Parts per billion: equivalent to 1 microgram per samples.	kilogram ((ug/Kg) for solids or one microgram per liter (ug/L) for aqueous			
<		Less than: In conjunction with a numerical value	e, indicate	es a concentration less than RL / MDL.			
>		Greater than: In conjunction with a numerical va	alue, indica	ates a concentration greater than RL / MDL.			
D (0	1.0						

Data Qualifiers

J	Estimated value \geq MDL but \leq RL.
T	Temperature receipt exceedance, refer to Sample Comments/ Results Qualifiers section.
Е	Microbiology: estimated CFU count
Q	Qualifier: defined in Sample Comment section on report

Warranties, Terms, and Conditions

- Unless otherwise indicated in the Parameter Field, analyses for environmental microbiology, odor, and pharmaceutical microbiology are performed at the EQCI Horsham facility (702 Electronic Dr. Horsham, PA 19044).
- Analyses for Field Parameters is performed by EQC Field staff and when the chain of custody identifies the field staff with the code: "ERF", that field staff performs tests under State certification # NJ 02015
- The test results meet all TNI or other applicable regulatory agency requirements, including holding times and preservation, unless otherwise
 indicated.
- The report shall not be reproduced, except in full, without the written consent of the laboratory.
- All samples are collected as "grab" samples unless otherwise identified.
- The reported results relate only to the sample as tested. EQCI is not responsible for sample integrity unless sampling has been performed by a member of our staff.
- EQCI is not responsible for sampling and/or testing omissions. Note that regulatory authorities may assess substantial fines for testing omissions. Please track your sample collection schedules and results on a regular basis (e.g. weekly, monthly, or quarterly) to ensure compliance. EQCI's internet program "LIVE ACCESS" will provide you with real-time access to collection dates and testing results. Please contact Customer Service for further information.
- The following personnel or their deputies have approved the results of the tests performed by EQCI: Nicki Smith (Environmental Chemistry), Amanda Berd (Pharmaceutical), Sue Abbott (EQCI Delaware), and Bhavita Shah (EQCI Horsham, Microbiology).

EQC Accreditations

Horsham, PA NELAP IDs:

PA: 46-05499 NJ: PA093

New Castle, DE State IDs: DE 00011; MD 138 Wind Gap, PA State IDs: PA 48-01334; NJ PA001

East Rutherford, NJ State ID: NJ 02015 Vineland, NJ State ID: NJ 06005

_ e	CEL	Water Quality Data Sheet				Lab ID No. 10	Lab ID No. 107041		
Lab:	_01//_					Project No. 2559	-2065-1700		
3	ty Name (Source):	Block on	1 Decher	- (RT	R)WWTP	Collectors ID #:	2500GS		
***************************************	le Location:	Final	101 -				<u>. 00 + 05 </u>		
			101 -	(srak	DTI .	Total Bottles:	1		
	Numbers:	Chem:		_			<u>'</u>		
	osite Sample Star			_	Time:	Name:			
Comp	osite Sample End				Time:	Name:			
Grab	Sample	, , , ,			Time: 6910	Name: Garrett	Scheller		
Samp	le Туре:	Drinking Water:	Effluent:	Filmal 101	Influent:	Other:			
Field	Tests:	рН:	DO:	mg/l	Chlorine Residua	al: Free:	mg/l		
	Flow	v: mgd	Temp:	°C	Before DeCl2 ()/	n) Total: >5.0	mg/l		
Pres.	Analysis	Method*	Result	Unit	The state of the s	Worker to be a second of the last of the second of the	Tech		
	BOD5	SM5210B		mg/	ıl 💮				
	TSS	SM2540D		mg/	nL				
	MLSS_								
<u></u>	Total Coliform	SM9223B/ 9221B		<u> </u>					
	Fecal Coliform	SM9221E		MPN/10	-				
2	E. Coli	SM9223B)9221F	<1.0	MPN/10	0ml 9-19-1725	5p 9-20-11 1229	G DD		
	_ 	-			-				
		ļ		<u> </u>					
							_		
		<u></u>	e sure meth	od util	ized is circled or	written			
1. No 2. No 3. 2m 4. 5m 5. Ste	Preservatives: 1. None 2. None — iced (410) 643-0800 3. 2ml H2SO4/liter iced 4. 5ml HNO3/liter iced 5. Sterile w/thio 6. Other Chasapeake Environmental Lab, Inc. (410) 643-0800 1-800-300-TEST Reviewed Some A Management A Date (9-2)-7)								
All anal	ytical and sampling proce	dures are in accordance w	nh 40 CFR, Part	136 *Gui	delines Establishing Test	Procedures for the Analysis o	f Poliutants."		
Chair	of Custody;	Relinquished by	<u>r:</u>		Accepted by:				
<u> </u>	Name:	Date:	Time:		Name:	Date:	Time:		
1_1_	Darrett Sofulle	9-19-17	11:07		1 hrs	719-7	11:07		
2	J 5m/h	9-19-17	12:45		Ebida	9-1917	12:401		
3_		+							
4		 							

Analytical Report

Serialized: 10/20/2017 11:54am DE36

Order Number: L6961124

Project Name: BTR HAMPSTEAD WWTP

Receive Date: 09-26-2017 Client Code: MES_A

Project Location: BTR HAMPSTEAD WWTP

CHERYL GRIFFIN MARYLAND ENVIRONMENTAL SERVICE B 259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

PROJECT ID:

AL0341 BTR WWTP

LABORATORY REPORT NUMBER:

L6961124

Authorized by: Ronald T. Fazio, President

MII

Eurofins QC, Inc.

Analytical Report

Order Number: L6961124

Project Name: BTR HAMPSTEAD WWTP

Receive Date: 09-26-2017 Client Code: MES_A

Project Location: BTR HAMPSTEAD WWTP

CHERYL GRIFFIN MARYLAND ENVIRONMENTAL SERVICE B 259 NAJOLES ROAD RE: BTR HAMPSTEAD WWTP

Account No: AL0341, MARYLAND ENVIRONMENTAL SERVICE A

Project No: AL0341 BTR WWTP, BTR HAMPSTEAD WWTP

MILLERSVILLE, MD 21108

P.O. No: **PWSID No:** MES_AL0341 PI

Sample ID **Sample Description** L6961124-1 FINAL 101 - GRAB

Received Date/Time 09/26/17 09:11pm

Samp. Date/Time/Temp Sampled by 09/26/17 09:11am NA C Customer

Inv. No:

--SUBCONTRACTED RESULT REFERENCES--

See attached reports for the following Subcontract Laboratories:

Chesapeake Environmental Lab, Inc. (CHESAPEAKE)

E. COLI-MPN (DELAWARE)

Sample Comments | Result Qualifiers:

L6961124-1:

E. coli was an analyzed by Chesapeake Environmental Lab, Inc in Stevensville, MD.

PIN: 17237 Serial Number: 6384313

DELIMITEDING

Eurofins QC, Inc. (EQC)

The following terms or abbreviations are used in this report:

MPN	Most pro	obable number					
CFU	Colony	forming unit	DF	Dilution Factor (For Microbiology, DF = volume of sample tested)			
POS	Positive	/ Present	QUAL	Qualifier (Q)			
NEG	Negative	e / Absent	NTU	Nephelometric turbidity units			
PRES	Presump	otive	RL	Laboratory reporting limit or Limit of Quantitation (LOQ)			
MF	MF Membrane Filtration TNTC Too numerous to count		MCL	EPA recommended "Maximum Contaminant Level"			
TNTC	RY The result was reported on a dry weight basis.		MDL	Method Detection Limit			
DRY			ND	Analyte concentration not detected greater than the RL / MDL			
TON	1 , 5		ND	For the odor test: No Odor Observed			
ppm (mg	g/l)	Parts per million: equivalent to 1 milligram per samples.	kilogram (mg/Kg) for solids or one milligram per liter (mg/L) for aqueous			
ppb (ug/	L)	Parts per billion: equivalent to 1 microgram per samples.	kilogram ((ug/Kg) for solids or one microgram per liter (ug/L) for aqueous			
<		Less than: In conjunction with a numerical value	e, indicate	es a concentration less than RL / MDL.			
>		Greater than: In conjunction with a numerical va	alue, indica	ates a concentration greater than RL / MDL.			
D (0	1.0						

Data Qualifiers

J	Estimated value \geq MDL but \leq RL.
T	Temperature receipt exceedance, refer to Sample Comments/ Results Qualifiers section.
Е	Microbiology: estimated CFU count
Q	Qualifier: defined in Sample Comment section on report

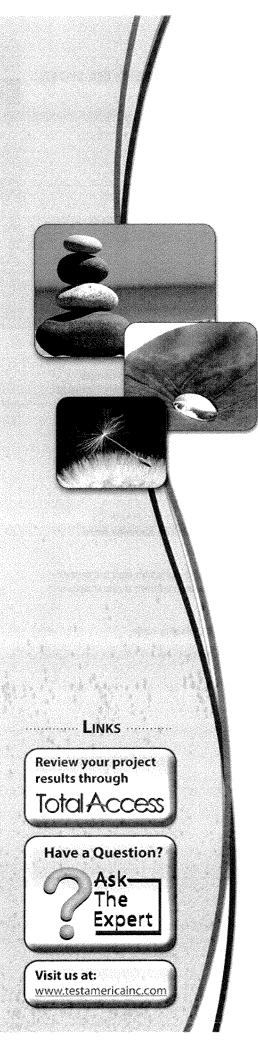
Warranties, Terms, and Conditions

- Unless otherwise indicated in the Parameter Field, analyses for environmental microbiology, odor, and pharmaceutical microbiology are performed at the EQCI Horsham facility (702 Electronic Dr. Horsham, PA 19044).
- Analyses for Field Parameters is performed by EQC Field staff and when the chain of custody identifies the field staff with the code: "ERF", that field staff performs tests under State certification # NJ 02015
- The test results meet all TNI or other applicable regulatory agency requirements, including holding times and preservation, unless otherwise
 indicated.
- The report shall not be reproduced, except in full, without the written consent of the laboratory.
- All samples are collected as "grab" samples unless otherwise identified.
- The reported results relate only to the sample as tested. EQCI is not responsible for sample integrity unless sampling has been performed by a member of our staff.
- EQCI is not responsible for sampling and/or testing omissions. Note that regulatory authorities may assess substantial fines for testing omissions. Please track your sample collection schedules and results on a regular basis (e.g. weekly, monthly, or quarterly) to ensure compliance. EQCI's internet program "LIVE ACCESS" will provide you with real-time access to collection dates and testing results. Please contact Customer Service for further information.
- The following personnel or their deputies have approved the results of the tests performed by EQCI: Nicki Smith (Environmental Chemistry), Amanda Berd (Pharmaceutical), Sue Abbott (EQCI Delaware), and Bhavita Shah (EQCI Horsham, Microbiology).

EQC Accreditations

Horsham, PA NELAP IDs:

PA: 46-05499 NJ: PA093


New Castle, DE State IDs: DE 00011; MD 138 Wind Gap, PA State IDs: PA 48-01334; NJ PA001

East Rutherford, NJ State ID: NJ 02015 Vineland, NJ State ID: NJ 06005

٠	Cle	Water	Quality	y Dat	a Sheet	Lab ID No. <u>/0</u> 7/	33
Lab:						Project No. 2559	
	ity Name (Source):	Black and	Decker	(BT	R) WWTP	Collectors ID #: 25	00 GS
Standard Control	ole Location:		01 - Gr				
7.7.2	e Numbers:	Chem:	<u>_</u>		Bact: BTR-1	Total Bottles:	
	posite Sample Start				Time:	Name:	
	posite Sample End			-	Time:	Name:	
C, 44	Sample	Date: 9-26	-17	 -	Time: 0911	Name: Garrett Sc	haller
रिपुर्ग र	ole Type:	Drinking	Effluent:	Elocal	Influent:	Other:	Weller
	Tests:	pH:	DO:	- !•	Chlorine Residua		mg/l
	Flow	 -	Temp:			n) Total: >5.0	mg/l
Pres.		Method*	Result	<u> </u>	22.1	/T Test End D/T	Tech
	BOD5	SM5210B		mg/			
	TSS	SM2540D	- <u>-</u>	mg/			
	MLSS		· · · · · · · · · · · · · · · · · · ·		_		-
	Total Coliform	SM9223B/ 9221B	_ 				
	Fecal Coliform	SM9221E	,	MPN/100	ml		
à	E. Coli	SM9223B) 9221F	Z1-0	MPN/100	m 9-261723	15a 9-27-17 11000	. 55
	 			 			1
				 			1
		* Please make	sure meth	od utili	zed is circled or v	written	
1. No 2. No 3. 2n	one - iced / 4/1/ al H2SO4/liter iced	Comments:			Che	esapeake Environmental L (410) 643-0800 1-800-300-TEST	ab, inç.
	nl HNO3/liter iced erile w/thio ther	Reviewed by	menu J	747	Date 9-28-1	7	
All and	slytical and sampling proce	dures are in accordance wi	th 40 CFR, Part	136 "Oni	iolines Establishing Test	Procedures for the Analysis of I	Pollutants.*
Chai	n of Custody:	Relinquished by			Accepted by:		
<u></u>	Name:	Date:	Time:		Name:	Date:	Time:
1	Daysot Schiller	9-26-17	11:40		Stanto	7 9-26-17	11:40
2	Thyp	9-26-1)	1:58	9	(Del	47617	1.52%
3	1	I	1			_ ∕I	

	CEL	Water Quality Data Sheet				Lab ID No. 107133		
Lab:		*				Project No. <u>2559</u> -	-2085-1700	
	ty Name (Source)	: Black and	Decker	IBT	R) WWTP	Collectors ID #: 25	00 65	
	le Location:	888	01 - Gr			Concettors ID #. 20	00 63	
	e Numbers:	Chem:	01		Bact: BTR-1	Total Bottles:		
	oosite Sample Star				Time:	Name:		
	posite Sample End				Time:	Name:		
	Sample	Date: 9-26	-17		Time: 0911	Name: Garett Sc	l llas	
	le Type:	Drinking Water:	Effluent:	Final	Influent:	Other:	WCITCI	
	Tests:	pH:	DO:	10.	Chlorine Residual:		mg/l	
	Flow	****	Temp:		Before DeCl2 (🕏/ n)			
Pres.	100000000000000000000000000000000000000	Method*	Result	Units	00048 PORCRESSOR POSTORO TOTO TOTO TOTO TOTO TOTO TOTO TOT	Test End D/T	mg/l Tech	
	BOD5	SM5210B	IVOJUIU	mg/l		2001 2310 2371	T CON	
	TSS	SM2540D		mg/l				
	MLSS			- 0				
	Total Coliform	SM9223B/ 9221B						
	Fecal Coliform	SM9221E		MPN/100	ml			
9	E. Coli	SM9223B/ 9221F	<1-0	MPN/100	mi 9-210-17 235	a 9-27-17 11000	55	
							ļ	
				L	<u> </u>			
Prese	rvatives:	* Please make	e sure metho	od utili:	zed is circled or wri			
1. No	ne i a l	Comments:			Chesa	peake Environmental La	ab, Ing.	
2. No	ne - iced / W					(410) 643-0800 1-800-300-TEST		
	l H2SO4/liter iced l HNO3/liter iced	k.	6	gl	-	* e00-000-1521		
	erile w/thio	Reviewed by	mercen 1	1.18h	Date 9-28-17			
			-1 40 GPP 7					
	of Custody:	Relinquished by				cedures for the Analysis of P	ollutants."	
Chan	Name:	Date:	Time:		Accepted by: Name:	Date:	Time:	
1	Dogot Schiller	9-26-17	11:40		IP An	9-26-17	11:40	
2	Randon	9-21-17	1.0		16 De la	8200	11508	
3	The state of the s	1500	1.20		4 17 7 6		1:160	
4								
100						 	+	

APPENDIX D GROUNDWATER ANALYTICAL DATA PACKAGE (AUGUST 2017)

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-141797-1 Client Project/Site: Black & Decker

For:

Weston Solutions, Inc. 1400 Weston Way PO BOX 2653 West Chester, Pennsylvania 19380

Attn: Greg Flasinski

Mh Co

Authorized for release by: 8/10/2017 11:49:15 AM

Keaton Conner, Project Manager I (813)885-7427

keaton.conner@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Case Narrative

TestAmerica Job ID: 680-141797-1

2

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Job ID: 680-141797-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: Weston Solutions, Inc.

Project: Black & Decker

Report Number: 680-141797-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 08/04/2017; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.8 C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples Trip Blank (680-141797-1), RFW-20 (680-141797-2), RFW-21 (680-141797-3), HAMP-22 (680-141797-4) and HAMP-23 (680-141797-5) were analyzed for Volatile organic Compounds (GC-MS) in accordance with EPA Method 524.2. The samples were analyzed on 08/08/2017 and 08/09/2017.

1,2,4-Trichlorobenzene was detected in method blank MB 680-490739/10 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Sample Summary

Client: Weston Solutions, Inc. Project/Site: Black & Decker

TestAmerica Job ID: 680-141797-1

	Transferrage

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-141797-1	Trip Blank	Water	08/02/17 06:00 08	3/04/17 09:10
680-141797-2	RFW-20	Water	08/02/17 09:00 08	8/04/17 09:10
680-141797-3	RFW-21	Water	08/02/17 08:15 08	8/04/17 09:10
680-141797-4	HAMP-22	Water	08/03/17 09:45 08	8/04/17 09:10
680-141797-5	HAMP-23	Water	08/03/17 09:50 08	8/04/17 09:10

Method Summary

Client: Weston Solutions, Inc. Project/Site: Black & Decker

TestAmerica Job ID: 680-141797-1

MethodMethod DescriptionProtocolLaboratory524.2Volatile Organic Compounds (GC/MS)EPA-DWTAL SAV

4

Protocol References:

EPA-DW = "Methods For The Determination Of Organic Compounds In Drinking Water", EPA/600/4-88/039, December 1988 And Its Supplements.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Definitions/Glossary

Client: Weston Solutions, Inc. Project/Site: Black & Decker

TestAmerica Job ID: 680-141797-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample Results

Client: Weston Solutions, Inc. Project/Site: Black & Decker

TestAmerica Job ID: 680-141797-1

Client Sample ID: Trip Blank

Date Collected: 08/02/17 06:00 Date Received: 08/04/17 09:10 Lab Sample ID: 680-141797-1

Matrix: Water

Method: 524.2 - Volatile Organic Compounds (GC/MS)

Method: 524.2 - Volatile Orga Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<10	10	5.0	ug/L			08/09/17 13:13	1
Benzene	<0.50	0.50	0.082	ug/L			08/09/17 13:13	1
Bromobenzene	<0.50	0.50	0.091	ug/L			08/09/17 13:13	1
Bromoform	<0.50	0.50	0.17	ug/L			08/09/17 13:13	1
Bromomethane	<1.0	1.0	0.20				08/09/17 13:13	1
Carbon tetrachloride	<0.50	0.50	0.11				08/09/17 13:13	1
Chlorobenzene	<0.50	0.50		ug/L			08/09/17 13:13	1
Chlorobromomethane	<0.50	0.50	0.30	ug/L			08/09/17 13:13	1
Chlorodibromomethane	<0.50	0.50	0.13				08/09/17 13:13	1
Chloroethane	<1.0	1.0	0.22	-			08/09/17 13:13	1
Chloroform	<0.50	0.50		ug/L			08/09/17 13:13	1
Chloromethane	<0.50	0.50	0.15	_			08/09/17 13:13	1
2-Chlorotoluene	<0.50	0.50	0.11	_			08/09/17 13:13	1
4-Chlorotoluene	<0.50	0.50	0.13				08/09/17 13:13	1
cis-1,2-Dichloroethene	<0.50	0.50	0.090				08/09/17 13:13	1
cis-1,3-Dichloropropene	<0.50	0.50	0.081				08/09/17 13:13	1
1,2-Dibromo-3-Chloropropane	<0.50	0.50	0.30	-			08/09/17 13:13	1
Dibromomethane	<0.50	0.50	0.16	•			08/09/17 13:13	1
1,2-Dichlorobenzene	<0.50	0.50		ug/L			08/09/17 13:13	1
1.3-Dichlorobenzene	<0.50	0.50	0.11	•			08/09/17 13:13	1
,	<0.50	0.50	0.13				08/09/17 13:13	1
1,4-Dichlorobenzene Dichlorobromomethane	<0.50	0.50	0.079				08/09/17 13:13	1
							08/09/17 13:13	1
Dichlorodifluoromethane	< 0.50	0.50		ug/L			08/09/17 13:13	1
1,1-Dichloroethane	<0.50	0.50	0.078					
1,2-Dichloroethane	<0.50	0.50	0.086				08/09/17 13:13	1
1,1-Dichloroethene	<0.50	0.50	0.15	_			08/09/17 13:13	1
1,2-Dichloropropane	<0.50	0.50	0.096	-			08/09/17 13:13	1
1,3-Dichloropropane	<0.50	0.50		ug/L			08/09/17 13:13	1
2,2-Dichloropropane	<0.50	0.50	0.20	-			08/09/17 13:13	1
1,1-Dichloropropene	<0.50	0.50	0.095				08/09/17 13:13	1
1,3-Dichloropropene, Total	<0.50	0.50	0.081				08/09/17 13:13	1
Diisopropyl ether	<0.50	0.50	0.28	-			08/09/17 13:13	1
Ethylbenzene	<0.50	0.50	0.099				08/09/17 13:13	1
Ethylene Dibromide	<0.50	0.50		ug/L			08/09/17 13:13	1
Freon 113	<0.50	0.50	0.15				08/09/17 13:13	1
Hexachlorobutadiene	<0.50	0.50		ug/L			08/09/17 13:13	1
2-Hexanone	<10	10		ug/L			08/09/17 13:13	1
Isopropylbenzene	<0.50	0.50	0.15	ug/L			08/09/17 13:13	1
4-Isopropyltoluene	<0.50	0.50		ug/L			08/09/17 13:13	1
Methylene Chloride	<0.50	0.50		ug/L			08/09/17 13:13	1
2-Butanone (MEK)	<10	10		ug/L			08/09/17 13:13	1
4-Methyl-2-pentanone (MIBK)	<10	10	5.0	ug/L			08/09/17 13:13	1
m-Xylene & p-Xylene	<0.50	0.50	0.15	ug/L			08/09/17 13:13	1
Naphthalene	<1.0	1.0	0.43	ug/L			08/09/17 13:13	1
n-Butylbenzene	<0.50	0.50	0.17	ug/L			08/09/17 13:13	1
N-Propylbenzene	<0.50	0.50	0.17	ug/L			08/09/17 13:13	1
o-Xylene	<0.50	0.50	0.086	ug/L			08/09/17 13:13	1
sec-Butylbenzene	< 0.50	0.50	0.14	ug/L			08/09/17 13:13	1
Styrene	<0.50	0.50	0.089	ug/L			08/09/17 13:13	1

TestAmerica Savannah

.

Client Sample Results

Client: Weston Solutions, Inc. Project/Site: Black & Decker

TestAmerica Job ID: 680-141797-1

Client Sample ID: Trip Blank

Lab Sample ID: 680-141797-1

Matrix: Water

Date Collected: 08/02/17 06:00 Date Received: 08/04/17 09:10

Method: 524.2 - Volat	ile Organic Compounds (GC	C/MS) (Continued)
Analyto	Result Auglifier	. 🖸 🗎

Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tert-amyl methyl ether	<0.50	0.50	0.20	ug/L			08/09/17 13:13	1
tert-Butyl alcohol	<10	10	1.6	ug/L			08/09/17 13:13	1
tert-Butylbenzene	<0.50	0.50	0.14	ug/L			08/09/17 13:13	1
Tert-butyl ethyl ether	<0.50	0.50	0.26	ug/L			08/09/17 13:13	1
1,1,1,2-Tetrachloroethane	<0.50	0.50	0.24	ug/L			08/09/17 13:13	1
1,1,2,2-Tetrachloroethane	<0.50	0.50	0.13	ug/L			08/09/17 13:13	1
Tetrachloroethene	<0.50	0.50	0.18	ug/L			08/09/17 13:13	1
Toluene	<0.50	0.50	0.086	ug/L			08/09/17 13:13	1
trans-1,2-Dichloroethene	<0.50	0.50	0.090	ug/L			08/09/17 13:13	1
trans-1,3-Dichloropropene	<0.50	0.50	0.11	ug/L			08/09/17 13:13	1
1,2,3-Trichlorobenzene	< 0.50	0.50	0.14	ug/L			08/09/17 13:13	1
1,2,4-Trichlorobenzene	< 0.50	0.50	0.12	ug/L			08/09/17 13:13	1
1,1,1-Trichloroethane	<0.50	0.50	0.15	ug/L			08/09/17 13:13	1
1,1,2-Trichloroethane	<0.50	0.50	0.16	ug/L			08/09/17 13:13	1
Trichloroethene	< 0.50	0.50	0.13	ug/L			08/09/17 13:13	1
Trichlorofluoromethane	< 0.50	0.50	0.23	ug/L			08/09/17 13:13	1
1,2,3-Trichloropropane	< 0.50	0.50	0.17	ug/L			08/09/17 13:13	1
Trihalomethanes, Total	< 0.50	0.50	0.079	ug/L			08/09/17 13:13	1
1,2,4-Trimethylbenzene	< 0.50	0.50	0.17	ug/L			08/09/17 13:13	1
1,3,5-Trimethylbenzene	<0.50	0.50	0.16	ug/L			08/09/17 13:13	1
Vinyl chloride	<0.50	0.50	0.16	ug/L			08/09/17 13:13	1
Xylenes, Total	<0.50	0.50	0.086	ug/L			08/09/17 13:13	1
Surrogate	%Recovery O	ualifior Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared A	nalyzed	Dil Fac
4-Bromofluorobenzene	90	70 - 130	08/0	9/17 13:13	1
1,2-Dichlorobenzene-d4	97	70 - 130	08/0	9/17 13:13	1

9)

Client Sample Results

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Client Sample ID: RFW-20

Date Collected: 08/02/17 09:00 Date Received: 08/04/17 09:10 Lab Sample ID: 680-141797-2

Matrix: Water

Method: 524.2 - Volatile Organic Compounds (C	GC/MS)
---	--------

Method: 524.2 - Volatile Org Analyte	Result Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	6.7 J	10	5.0	ug/L			08/08/17 16:24	1
Benzene	<0.50	0.50	0.082	ug/L			08/08/17 16:24	1
Bromobenzene	<0.50	0.50	0.091	ug/L			08/08/17 16:24	1
Bromoform	<0.50	0.50	0.17	ug/L			08/08/17 16:24	1
Bromomethane	<1.0	1.0	0.20	ug/L			08/08/17 16:24	1
Carbon tetrachloride	<0.50	0.50	0.11	ug/L			08/08/17 16:24	1
Chlorobenzene	<0.50	0.50	0.14	ug/L			08/08/17 16:24	1
Chlorobromomethane	<0.50	0.50	0.30	ug/L			08/08/17 16:24	1
Chlorodibromomethane	<0.50	0.50	0.13	ug/L			08/08/17 16:24	1
Chloroethane	<1.0	1.0	0.22	ug/L			08/08/17 16:24	1
Chloroform	<0.50	0.50	0.20	ug/L			08/08/17 16:24	1
Chloromethane	<0.50	0.50	0.15	ug/L			08/08/17 16:24	1
2-Chlorotoluene	<0.50	0.50	0.11	ug/L			08/08/17 16:24	1
4-Chlorotoluene	<0.50	0.50	0.13	ug/L			08/08/17 16:24	1
cis-1,2-Dichloroethene	<0.50	0.50	0.090	ug/L			08/08/17 16:24	1
cis-1,3-Dichloropropene	<0.50	0.50	0.081	ug/L			08/08/17 16:24	1
1,2-Dibromo-3-Chloropropane	<0.50	0.50	0.30	ug/L			08/08/17 16:24	1
Dibromomethane	<0.50	0.50	0.16	ug/L			08/08/17 16:24	1
1,2-Dichlorobenzene	<0.50	0.50	0.16	ug/L			08/08/17 16:24	1
1,3-Dichlorobenzene	<0.50	0.50	0.11	ug/L			08/08/17 16:24	1
1,4-Dichlorobenzene	<0.50	0.50	0.13	ug/L			08/08/17 16:24	1
Dichlorobromomethane	<0.50	0.50	0.079	ug/L			08/08/17 16:24	1
Dichlorodifluoromethane	<0.50	0.50	0.34	ug/L			08/08/17 16:24	1
1,1-Dichloroethane	<0.50	0.50	0.078	ug/L			08/08/17 16:24	1
1,2-Dichloroethane	<0.50	0.50	0.086	ug/L			08/08/17 16:24	1
1,1-Dichloroethene	<0.50	0.50	0.15	ug/L			08/08/17 16:24	1
1,2-Dichloropropane	<0.50	0.50	0.096	ug/L			08/08/17 16:24	1
1,3-Dichloropropane	<0.50	0.50	0.10	ug/L			08/08/17 16:24	1
2,2-Dichloropropane	<0.50	0.50	0.20	ug/L			08/08/17 16:24	1
1,1-Dichloropropene	<0.50	0.50	0.095	ug/L			08/08/17 16:24	1
1,3-Dichloropropene, Total	<0.50	0.50	0.081	ug/L			08/08/17 16:24	1
Diisopropyl ether	<0.50	0.50	0.28	ug/L			08/08/17 16:24	1
Ethylbenzene	<0.50	0.50	0.099	ug/L			08/08/17 16:24	1
Ethylene Dibromide	<0.50	0.50	0.20	ug/L			08/08/17 16:24	1
Freon 113	<0.50	0.50	0.15	ug/L			08/08/17 16:24	1
Hexachlorobutadiene	<0.50	0.50	0.26	ug/L			08/08/17 16:24	1
2-Hexanone	<10	10	5.0	ug/L			08/08/17 16:24	1
Isopropylbenzene	<0.50	0.50	0.15	ug/L			08/08/17 16:24	1
4-Isopropyltoluene	<0.50	0.50	0.21	ug/L			08/08/17 16:24	1
Methylene Chloride	<0.50	0.50	0.20	ug/L			08/08/17 16:24	1
2-Butanone (MEK)	<10	10	5.0	ug/L			08/08/17 16:24	1
4-Methyl-2-pentanone (MIBK)	<10	10		ug/L			08/08/17 16:24	1
m-Xylene & p-Xylene	<0.50	0.50	0.15	-			08/08/17 16:24	1
Naphthalene	<1.0	1.0	0.43				08/08/17 16:24	1
n-Butylbenzene	<0.50	0.50	0.17	-			08/08/17 16:24	1
N-Propylbenzene	<0.50	0.50	0.17				08/08/17 16:24	1
o-Xylene	<0.50	0.50	0.086	_			08/08/17 16:24	1
sec-Butylbenzene	<0.50	0.50	0.14	-				1
Sec-Dutylochizerie	~0.50	0.50	Ų. 14	ug/L			08/08/17 16:24	,

TestAmerica Savannah

Client Sample Results

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Surrogate

4-Bromofluorobenzene

1,2-Dichlorobenzene-d4

TestAmerica Job ID: 680-141797-1

Client Sample ID: RFW-20

Date Collected: 08/02/17 09:00 Date Received: 08/04/17 09:10

Lab Sample ID: 680-141797-2

Prepared

Analyzed

08/08/17 16:24

08/08/17 16:24

Dil Fac

Matrix: Water

Method: 524.2 - Volatile	Organic Compounds (G	€C/MS) (Continued)
Δnalvte	Result Qualific	er RL

%Recovery Qualifier

91

99

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tert-amyl methyl ether	<0.50		0.50	0.20	ug/L			08/08/17 16:24	1
tert-Butyl alcohol	<10		10	1.6	ug/L			08/08/17 16:24	1
tert-Butylbenzene	<0.50		0.50	0.14	ug/L			08/08/17 16:24	1
Tert-butyl ethyl ether	<0.50		0.50	0.26	ug/L			08/08/17 16:24	1
1,1,1,2-Tetrachloroethane	<0.50		0.50	0.24	ug/L			08/08/17 16:24	1
1,1,2,2-Tetrachloroethane	<0.50		0.50	0.13	ug/L			08/08/17 16:24	1
Tetrachloroethene	<0.50		0.50	0.18	ug/L			08/08/17 16:24	1
Toluene	<0.50		0.50	0.086	ug/L			08/08/17 16:24	1
trans-1,2-Dichloroethene	<0.50		0.50	0.090	ug/L			08/08/17 16:24	1
trans-1,3-Dichloropropene	<0.50		0.50	0.11	ug/L			08/08/17 16:24	1
1,2,3-Trichlorobenzene	<0.50		0.50	0.14	ug/L			08/08/17 16:24	1
1,2,4-Trichlorobenzene	<0.50		0.50	0.12	ug/L			08/08/17 16:24	1
1,1,1-Trichloroethane	<0.50		0.50	0.15	ug/L			08/08/17 16:24	1
1,1,2-Trichloroethane	<0.50		0.50	0.16	ug/L			08/08/17 16:24	1
Trichloroethene	0.25	J	0.50	0.13	ug/L			08/08/17 16:24	1
Trichlorofluoromethane	<0.50		0.50	0.23	ug/L			08/08/17 16:24	1
1,2,3-Trichloropropane	<0.50		0.50	0.17	ug/L			08/08/17 16:24	1
Trihalomethanes, Total	< 0.50		0.50	0.079	ug/L			08/08/17 16:24	1
1,2,4-Trimethylbenzene	< 0.50		0.50	0.17	ug/L			08/08/17 16:24	1
1,3,5-Trimethylbenzene	<0.50		0.50	0.16	ug/L			08/08/17 16:24	1
Vinyl chloride	<0.50		0.50	0.16	ug/L			08/08/17 16:24	1
Xylenes, Total	< 0.50		0.50	0.086	ug/L			08/08/17 16:24	1

Limits

70 - 130

70 - 130

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Client Sample ID: RFW-21

Date Collected: 08/02/17 08:15 Date Received: 08/04/17 09:10 Lab Sample ID: 680-141797-3

Matrix: Water

Method: 524.2 - Volatile Orga Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	6.3 J	10	5.0	ug/L			08/08/17 16:47	1
Benzene	<0.50	0.50	0.082	ug/L			08/08/17 16:47	1
Bromobenzene	<0.50	0.50	0.091	ug/L			08/08/17 16:47	1
Bromoform	<0.50	0.50	0.17	ug/L			08/08/17 16:47	1
Bromomethane	<1.0	1.0	0.20	ug/L			08/08/17 16:47	1
Carbon tetrachloride	<0.50	0.50	0.11	ug/L			08/08/17 16:47	1
Chlorobenzene	<0.50	0.50	0.14	ug/L			08/08/17 16:47	1
Chlorobromomethane	<0.50	0.50	0.30	ug/L			08/08/17 16:47	1
Chlorodibromomethane	<0.50	0.50	0.13	ug/L			08/08/17 16:47	1
Chloroethane	<1.0	1.0	0.22				08/08/17 16:47	1
Chloroform	<0.50	0.50		ug/L			08/08/17 16:47	1
Chloromethane	<0.50	0.50		ug/L			08/08/17 16:47	1
2-Chlorotoluene	<0.50	0.50	0.11	_			08/08/17 16:47	1
4-Chlorotoluene	<0.50	0.50		ug/L			08/08/17 16:47	1
cis-1,2-Dichloroethene	<0.50	0.50	0.090	_			08/08/17 16:47	1
cis-1,3-Dichloropropene	<0.50	0.50	0.081	_			08/08/17 16:47	1
1,2-Dibromo-3-Chloropropane	<0.50	0.50		ug/L			08/08/17 16:47	1
Dibromomethane	<0.50	0.50		ug/L			08/08/17 16:47	1
1,2-Dichlorobenzene	<0.50	0.50		ug/L			08/08/17 16:47	1
1,3-Dichlorobenzene	<0.50	0.50		ug/L			08/08/17 16:47	1
1,4-Dichlorobenzene	<0.50	0.50	0.13				08/08/17 16:47	1
Dichlorobromomethane	<0.50	0.50	0.079				08/08/17 16:47	1
Dichlorodifluoromethane	< 0.50	0.50		ug/L			08/08/17 16:47	. 1
1,1-Dichloroethane	< 0.50	0.50	0.078	_			08/08/17 16:47	1
1,2-Dichloroethane	<0.50	0.50	0.086	_			08/08/17 16:47	1
1,1-Dichloroethene	<0.50	0.50		ug/L			08/08/17 16:47	. 1
	<0.50	0.50	0.096				08/08/17 16:47	1
1.2-Dichloropropane	<0.50	0.50		ug/L ug/L			08/08/17 16:47	. 1
1,3-Dichloropropane	<0.50	0.50		ug/L ug/L			08/08/17 16:47	1
2,2-Dichloropropane	<0.50	0.50	0.20	_			08/08/17 16:47	1
1,1-Dichloropropene	<0.50	0.50	0.081	_			08/08/17 16:47	1
1,3-Dichloropropene, Total							08/08/17 16:47	1
Diisopropyl ether	<0.50 <0.50	0.50 0.50	0.20	ug/L			08/08/17 16:47	1
Ethylbenzene	<0.50	0.50		ug/L ug/L			08/08/17 16:47	1
Ethylene Dibromide Freon 113	<0.50	0.50		ug/L ug/L			08/08/17 16:47	1
							08/08/17 16:47	1
Hexachlorobutadiene	<0.50	0.50		ug/L			08/08/17 16:47	
2-Hexanone	<10	10		ug/L				1
Isopropylbenzene	<0.50	0.50		ug/L			08/08/17 16:47	١
4-Isopropyltoluene	<0.50	0.50		ug/L			08/08/17 16:47	1
Methylene Chloride	<0.50	0.50		ug/L			08/08/17 16:47	1
2-Butanone (MEK)	<10	10		ug/L			08/08/17 16:47	1
4-Methyl-2-pentanone (MIBK)	<10	10		ug/L			08/08/17 16:47	1
m-Xylene & p-Xylene	<0.50	0.50		ug/L			08/08/17 16:47	1
Naphthalene	<1.0	1.0		ug/L			08/08/17 16:47	1
n-Butylbenzene	<0.50	0.50		ug/L			08/08/17 16:47	1
N-Propylbenzene	<0.50	0.50		ug/L			08/08/17 16:47	1
o-Xylene	<0.50	0.50	0.086	=			08/08/17 16:47	1
sec-Butylbenzene	<0.50	0.50		ug/L			08/08/17 16:47	1
Styrene	< 0.50	0.50	0.089	ug/L			08/08/17 16:47	1

TestAmerica Savannah

Client Sample Results

Client: Weston Solutions, Inc. Project/Site: Black & Decker

1,2-Dichlorobenzene-d4

TestAmerica Job ID: 680-141797-1

Client Sample ID: RFW-21

Date Collected: 08/02/17 08:15 Date Received: 08/04/17 09:10 Lab Sample ID: 680-141797-3

Matrix: Water

Method: 524.2 - Volatile	Organic Compounds (GC/MS)	(Continued)
Analyto	Pocult Auglifion	DI

99

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tert-amyl methyl ether	<0.50		0.50	0.20	ug/L			08/08/17 16:47	1
tert-Butyl alcohol	<10		10	1.6	ug/L			08/08/17 16:47	1
tert-Butylbenzene	< 0.50		0.50	0.14	ug/L			08/08/17 16:47	1
Tert-butyl ethyl ether	<0.50		0.50	0.26	ug/L			08/08/17 16:47	1
1,1,1,2-Tetrachloroethane	<0.50		0.50	0.24	ug/L			08/08/17 16:47	1
1,1,2,2-Tetrachloroethane	<0.50		0.50	0.13	ug/L			08/08/17 16:47	1
Tetrachloroethene	<0.50		0.50	0.18	ug/L			08/08/17 16:47	1
Toluene	<0.50		0.50	0.086	ug/L			08/08/17 16:47	1
trans-1,2-Dichloroethene	<0.50		0.50	0.090	ug/L			08/08/17 16:47	1
trans-1,3-Dichloropropene	<0.50		0.50	0.11	ug/L			08/08/17 16:47	1
1,2,3-Trichlorobenzene	<0.50		0.50	0.14	ug/L			08/08/17 16:47	1
1,2,4-Trichlorobenzene	<0.50		0.50	0.12	ug/L			08/08/17 16:47	1
1,1,1-Trichloroethane	< 0.50		0.50	0.15	ug/L			08/08/17 16:47	1
1,1,2-Trichloroethane	<0.50		0.50	0.16	ug/L			08/08/17 16:47	1
Trichloroethene	<0.50		0.50	0.13	ug/L			08/08/17 16:47	1
Trichlorofluoromethane	<0.50		0.50	0.23	ug/L			08/08/17 16:47	1
1,2,3-Trichloropropane	<0.50		0.50	0.17	ug/L			08/08/17 16:47	1
Trihalomethanes, Total	<0.50		0.50	0.079	ug/L			08/08/17 16: 4 7	1
1,2,4-Trimethylbenzene	<0.50		0.50	0.17	ug/L			08/08/17 16:47	1
1,3,5-Trimethylbenzene	<0.50		0.50	0.16	ug/L			08/08/17 16:47	1
Vinyl chloride	<0.50		0.50	0.16	ug/L			08/08/17 16:47	1
Xylenes, Total	<0.50		0.50	0.086	ug/L			08/08/17 16:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	92		70 - 130					08/08/17 16:47	1

70 - 130

la)

08/08/17 16:47

Client Sample Results

Client: Weston Solutions, Inc. Project/Site: Black & Decker

TestAmerica Job ID: 680-141797-1

Client Sample ID: HAMP-22

Lab Sample ID: 680-141797-4 Date Collected: 08/03/17 09:45 Matrix: Water Date Received: 08/04/17 09:10

Method: 524.2 - Volatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<10	10	5.0	ug/L			08/08/17 17:10	1
Benzene	<0.50	0.50	0.082	ug/L			08/08/17 17:10	1
Bromobenzene	<0.50	0.50	0.091	ug/L			08/08/17 17:10	1
Bromoform	<0.50	0.50	0.17	ug/L			08/08/17 17:10	1
Bromomethane	<1.0	1.0	0.20	ug/L			08/08/17 17:10	1
Carbon tetrachloride	<0.50	0.50	0.11	ug/L			08/08/17 17:10	1
Chlorobenzene	<0.50	0.50	0.14	ug/L			08/08/17 17:10	1
Chlorobromomethane	<0.50	0.50	0.30	ug/L			08/08/17 17:10	1
Chlorodibromomethane	<0.50	0.50	0.13	ug/L			08/08/17 17:10	1
Chloroethane	<1.0	1.0	0.22	ug/L			08/08/17 17:10	1
Chloroform	0.25 J	0.50	0.20	ug/L			08/08/17 17:10	1
Chloromethane	<0.50	0.50	0.15	ug/L			08/08/17 17:10	1
2-Chlorotoluene	<0.50	0.50	0.11	ug/L			08/08/17 17:10	1
4-Chlorotoluene	<0.50	0.50	0.13	ug/L			08/08/17 17:10	1
cis-1,2-Dichloroethene	<0.50	0.50	0.090	ug/L			08/08/17 17:10	1
cis-1,3-Dichloropropene	<0.50	0.50	0.081	ug/L			08/08/17 17:10	1
1,2-Dibromo-3-Chloropropane	<0.50	0.50	0.30	ug/L			08/08/17 17:10	1
Dibromomethane	<0.50	0.50	0.16	ug/L			08/08/17 17:10	1
1,2-Dichlorobenzene	<0.50	0.50	0.16				08/08/17 17:10	1
1,3-Dichlorobenzene	<0.50	0.50	0.11	ug/L			08/08/17 17:10	1
1,4-Dichlorobenzene	<0.50	0.50	0.13				08/08/17 17:10	1
Dichlorobromomethane	<0.50	0.50	0.079				08/08/17 17:10	1
Dichlorodifluoromethane	<0.50	0.50	0.34	_			08/08/17 17:10	1
1,1-Dichloroethane	<0.50	0.50	0.078				08/08/17 17:10	1
1,2-Dichloroethane	<0.50	0.50	0.086	ug/L			08/08/17 17:10	1
1,1-Dichloroethene	<0.50	0.50	0.15				08/08/17 17:10	1
1,2-Dichloropropane	<0.50	0.50	0.096				08/08/17 17:10	1
1,3-Dichloropropane	<0.50	0.50	0.10				08/08/17 17:10	1
2,2-Dichloropropane	<0.50	0.50	0.20	ug/L			08/08/17 17:10	1
1,1-Dichloropropene	<0.50	0.50	0.095	_			08/08/17 17:10	1
1,3-Dichloropropene, Total	<0.50	0.50	0.081				08/08/17 17:10	1
Diisopropyl ether	<0.50	0.50	0.28				08/08/17 17:10	1
Ethylbenzene	<0.50	0.50	0.099				08/08/17 17:10	1
Ethylene Dibromide	<0.50	0.50	0.20				08/08/17 17:10	1
Freon 113	<0.50	0.50	0.15				08/08/17 17:10	1
Hexachlorobutadiene	<0.50	0.50	0.26				08/08/17 17:10	1
2-Hexanone	<10	10		ug/L			08/08/17 17:10	1
Isopropylbenzene	<0.50	0.50	0.15				08/08/17 17:10	1
4-Isopropyltoluene	<0.50	0.50	0.21	-			08/08/17 17:10	1
Methylene Chloride	<0.50	0.50	0.20				08/08/17 17:10	1
2-Butanone (MEK)	<10	10		ug/L			08/08/17 17:10	1
4-Methyl-2-pentanone (MIBK)	<10	10		ug/L			08/08/17 17:10	1
m-Xylene & p-Xylene	<0.50	0.50	0.15				08/08/17 17:10	1
Naphthalene	<1.0	1.0	0.43	_			08/08/17 17:10	1
n-Butylbenzene	<0.50	0.50	0.17				08/08/17 17:10	1
N-Propylbenzene	<0.50	0.50	0.17				08/08/17 17:10	1
o-Xylene	<0.50	0.50	0.086	=			08/08/17 17:10	1
sec-Butylbenzene	<0.50	0.50	0.14	-			08/08/17 17:10	1
Styrene	<0.50	0.50	0.089				08/08/17 17:10	1
Otyrene	\0.50	0.50	0.003	ug/L			00/00/17 17,10	1

Page 12 of 30

TestAmerica Savannah

6

Client Sample Results

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Client Sample ID: HAMP-22

Date Collected: 08/03/17 09:45 Date Received: 08/04/17 09:10 Lab Sample ID: 680-141797-4

Matrix: Water

Method: 524.2 - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tert-amyl methyl ether	<0.50		0.50	0.20	ug/L		···········	08/08/17 17:10	1
tert-Butyl alcohol	<10		10	1.6	ug/L			08/08/17 17:10	1
tert-Butylbenzene	<0.50		0.50	0.14	ug/L			08/08/17 17:10	1
Tert-butyl ethyl ether	<0.50		0.50	0.26	ug/L			08/08/17 17:10	1
1,1,1,2-Tetrachloroethane	<0.50		0.50	0.24	ug/L			08/08/17 17:10	1
1,1,2,2-Tetrachloroethane	<0.50		0.50	0.13	ug/L			08/08/17 17:10	1
Tetrachloroethene	0.41	J	0.50	0.18	ug/L			08/08/17 17:10	1
Toluene	<0.50		0.50	0.086	ug/L			08/08/17 17:10	1
trans-1,2-Dichloroethene	<0.50		0.50	0.090	ug/L			08/08/17 17:10	1
trans-1,3-Dichloropropene	<0.50		0.50	0.11	ug/L			08/08/17 17:10	1
1,2,3-Trichlorobenzene	<0.50		0.50	0.14	ug/L			08/08/17 17:10	1
1,2,4-Trichlorobenzene	<0.50		0.50	0.12	ug/L			08/08/17 17:10	1
1,1,1-Trichloroethane	<0.50		0.50	0.15	ug/L			08/08/17 17:10	1
1,1,2-Trichloroethane	<0.50		0.50	0.16	ug/L			08/08/17 17:10	1
Trichloroethene	<0.50		0.50	0.13	ug/L			08/08/17 17:10	1
Trichlorofluoromethane	<0.50		0.50	0.23	ug/L			08/08/17 17:10	1
1,2,3-Trichloropropane	<0.50		0.50	0.17	ug/L			08/08/17 17:10	1
Trihalomethanes, Total	0.25	J	0.50	0.079	ug/L			08/08/17 17:10	1
1,2,4-Trimethylbenzene	<0.50		0.50	0.17	ug/L			08/08/17 17:10	1
1,3,5-Trimethylbenzene	<0.50		0.50	0.16	ug/L			08/08/17 17:10	1
Vinyl chloride	<0.50		0.50	0.16	ug/L			08/08/17 17:10	1
Xylenes, Total	<0.50		0.50	0.086	ug/L			08/08/17 17:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		70 - 130					08/08/17 17:10	1
1,2-Dichlorobenzene-d4	95		70 - 130					08/08/17 17:10	1

Client: Weston Solutions, Inc. Project/Site: Black & Decker

TestAmerica Job ID: 680-141797-1

Client Sample ID: HAMP-23

Date Collected: 08/03/17 09:50 Date Received: 08/04/17 09:10 Lab Sample ID: 680-141797-5

Matrix: Water

Method: 524.2 - Volatile Organic Compounds (GC/MS)

Method: 524.2 - Volatile Orga Analyte	anic Compounds (GC/MS Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.9 J	10		ug/L			08/08/17 17:33	1
Benzene	<0.50	0.50	0.082	ug/L			08/08/17 17:33	1
Bromobenzene	<0.50	0.50	0.091	ug/L			08/08/17 17:33	1
Bromoform	<0.50	0.50	0.17	ug/L			08/08/17 17:33	1
Bromomethane	<1.0	1.0	0.20	ug/L			08/08/17 17:33	1
Carbon tetrachloride	<0.50	0.50	0.11	ug/L			08/08/17 17:33	1
Chlorobenzene	<0.50	0.50	0.14	ug/L			08/08/17 17:33	1
Chlorobromomethane	<0.50	0.50	0.30	ug/L			08/08/17 17:33	1
Chlorodibromomethane	<0.50	0.50	0.13	ug/L			08/08/17 17:33	1
Chloroethane	<1.0	1.0	0.22	ug/L			08/08/17 17:33	1
Chloroform	<0.50	0.50	0.20	ug/L			08/08/17 17:33	1
Chloromethane	<0.50	0.50	0.15	ug/L			08/08/17 17:33	1
2-Chlorotoluene	<0.50	0.50	0.11	ug/L			08/08/17 17:33	1
4-Chlorotoluene	<0.50	0.50	0.13	ug/L			08/08/17 17:33	1
cis-1,2-Dichloroethene	<0.50	0.50	0.090	ug/L			08/08/17 17:33	1
cis-1,3-Dichloropropene	<0.50	0.50	0.081	ug/L			08/08/17 17:33	1
1,2-Dibromo-3-Chloropropane	<0.50	0.50	0.30	_			08/08/17 17:33	1
Dibromomethane	<0.50	0.50	0.16	-			08/08/17 17:33	1
1,2-Dichlorobenzene	<0.50	0.50	0.16				08/08/17 17:33	1
1,3-Dichlorobenzene	<0.50	0.50	0.11				08/08/17 17:33	1
1,4-Dichlorobenzene	<0.50	0.50	0.13	-			08/08/17 17:33	1
Dichlorobromomethane	<0.50	0.50	0.079				08/08/17 17:33	1
Dichlorodifluoromethane	<0.50	0.50	0.34				08/08/17 17:33	1
1,1-Dichloroethane	<0.50	0.50	0.078	-			08/08/17 17:33	1
1,2-Dichloroethane	<0.50	0.50	0.086				08/08/17 17:33	1
1,1-Dichloroethene	<0.50	0.50	0.15	_			08/08/17 17:33	1
1,2-Dichloropropane	<0.50	0.50	0.096				08/08/17 17:33	1
1,3-Dichloropropane	<0.50	0.50	0.10				08/08/17 17:33	1
2,2-Dichloropropane	<0.50	0.50	0.20	ug/L			08/08/17 17:33	1
1,1-Dichloropropene	<0.50	0.50	0.095	ug/L			08/08/17 17:33	1
1,3-Dichloropropene, Total	<0.50	0.50	0.081	ug/L			08/08/17 17:33	1
Diisopropyl ether	<0.50	0.50	0.28	ug/L			08/08/17 17:33	1
Ethylbenzene	<0.50	0.50	0.099	ug/L			08/08/17 17:33	1
Ethylene Dibromide	<0.50	0.50	0.20	ug/L			08/08/17 17:33	1
Freon 113	<0.50	0.50	0.15	_			08/08/17 17:33	1
Hexachlorobutadiene	<0.50	0.50	0.15				08/08/17 17:33	1
2-Hexanone	<10	10		ug/L			08/08/17 17:33	1
	<0.50	0.50	0.15				08/08/17 17:33	1
Isopropylbenzene								1
4-Isopropyltoluene	<0.50	0.50	0.21				08/08/17 17:33	
Methylene Chloride	<0.50	0.50	0.20				08/08/17 17:33 08/08/17 17:33	1
2-Butanone (MEK)	<10	10		ug/L				1
4-Methyl-2-pentanone (MIBK)	<10	10		ug/L			08/08/17 17:33	1
m-Xylene & p-Xylene	<0.50	0.50	0.15				08/08/17 17:33	1
Naphthalene	<1.0	1.0	0.43				08/08/17 17:33	1
n-Butylbenzene	<0.50	0.50	0.17				08/08/17 17:33	1
N-Propylbenzene	<0.50	0.50	0.17				08/08/17 17:33	1
o-Xylene	<0.50	0.50	0.086				08/08/17 17:33	1
sec-Butylbenzene	<0.50	0.50	0.14				08/08/17 17:33	1
Styrene	<0.50	0.50	0.089	ug/L			08/08/17 17:33	1

TestAmerica Savannah

â

9

Client Sample Results

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Client Sample ID: HAMP-23

Date Collected: 08/03/17 09:50 Date Received: 08/04/17 09:10 Lab Sample ID: 680-141797-5

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tert-amyl methyl ether	<0.50	0.50	0.20	ug/L			08/08/17 17:33	1
tert-Butyl alcohol	<10	10	1.6	ug/L			08/08/17 17:33	1
tert-Butylbenzene	<0.50	0.50	0.14	ug/L			08/08/17 17:33	1
Tert-butyl ethyl ether	<0.50	0.50	0.26	ug/L			08/08/17 17:33	1
1,1,1,2-Tetrachioroethane	<0.50	0.50	0.24	ug/L			08/08/17 17:33	1
1,1,2,2-Tetrachloroethane	<0.50	0.50	0.13	ug/L			08/08/17 17:33	1
Tetrachloroethene	<0.50	0.50	0.18	ug/L			08/08/17 17:33	1
Toluene	<0.50	0.50	0.086	ug/L			08/08/17 17:33	1
trans-1,2-Dichloroethene	<0.50	0.50	0.090	ug/L			08/08/17 17:33	1
trans-1,3-Dichloropropene	<0.50	0.50	0.11	ug/L			08/08/17 17:33	1
1,2,3-Trichlorobenzene	<0.50	0.50	0.14	ug/L			08/08/17 17:33	1
1,2,4-Trichlorobenzene	<0.50	0.50	0.12	ug/L			08/08/17 17:33	1
1,1,1-Trichloroethane	<0.50	0.50	0.15	ug/L			08/08/17 17:33	1
1,1,2-Trichloroethane	<0.50	0.50	0.16	ug/L			08/08/17 17:33	1
Trichloroethene	<0.50	0.50	0.13	ug/L			08/08/17 17:33	1
Trichlorofluoromethane	<0.50	0.50	0.23	ug/L			08/08/17 17:33	1
1,2,3-Trichloropropane	<0.50	0.50	0.17	ug/L			08/08/17 17:33	1
Trihalomethanes, Total	<0.50	0.50	0.079	ug/L			08/08/17 17:33	1
1,2,4-Trimethylbenzene	<0.50	0.50	0.17	ug/L			08/08/17 17:33	1
1,3,5-Trimethylbenzene	<0.50	0.50	0.16	ug/L			08/08/17 17:33	1
Vinyl chloride	<0.50	0.50	0.16	ug/L			08/08/17 17:33	1
Xylenes, Total	<0.50	0.50	0.086	ug/L			08/08/17 17:33	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	91	70 - 130					08/08/17 17:33	1
1,2-Dichlorobenzene-d4	94	70 - 130					08/08/17 17:33	1

7

QC Sample Results

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Method: 524.2 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-490628/9

Matrix: Water

Analysis Batch: 490628

Client Sample ID: Method Blank

TestAmerica Job ID: 680-141797-1

Prep Type: Total/NA

	MB	MB						
Analyte		Qualifier RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<10	10		ug/L			08/08/17 13:54	1
Benzene	<0.50	0.50		_			08/08/17 13:54	1
Bromobenzene	<0.50	0.50		_			08/08/17 13:54	1
Bromoform	<0.50	0.50	0.17	ug/L			08/08/17 13:54	1
Bromomethane	<1.0	1.0		ug/L			08/08/17 13:54	1
Carbon tetrachloride	<0.50	0.50	0.11	ug/L			08/08/17 13:54	1
Chlorobenzene	<0.50	0.50	0.14	ug/L			08/08/17 13:54	1
Chlorobromomethane	<0.50	0.50	0.30	ug/L			08/08/17 13:54	1
Chlorodibromomethane	<0.50	0.50	0.13	ug/L			08/08/17 13:54	1
Chloroethane	<1.0	1.0	0.22	ug/L			08/08/17 13:54	1
Chloroform	<0.50	0.50	0.20	ug/L			08/08/17 13:54	1
Chloromethane	<0.50	0.50	0.15	ug/L			08/08/17 13:54	1
2-Chlorotoluene	<0.50	0.50	0.11	ug/L			08/08/17 13:54	1
4-Chlorotoluene	<0.50	0.50	0.13	ug/L			08/08/17 13:54	1
cis-1,2-Dichloroethene	<0.50	0.50	0.090	ug/L			08/08/17 13:54	1
cis-1,3-Dichloropropene	<0.50	0.50	0.081	ug/L			08/08/17 13:54	1
1,2-Dibromo-3-Chloropropane	< 0.50	0.50	0.30	ug/L			08/08/17 13:54	1
Dibromomethane	<0.50	0.50	0.16	ug/L			08/08/17 13:54	1
1,2-Dichlorobenzene	<0.50	0.50	0.16	ug/L			08/08/17 13:54	1
1,3-Dichlorobenzene	<0.50	0.50	0.11	ug/L			08/08/17 13:54	1
1,4-Dichlorobenzene	< 0.50	0.50	0.13	ug/L			08/08/17 13:54	1
Dichlorobromomethane	<0.50	0.50	0.079	ug/L			08/08/17 13:54	1
Dichlorodifluoromethane	<0.50	0.50	0.34	ug/L			08/08/17 13:54	1
1,1-Dichloroethane	<0.50	0.50	0.078	ug/L			08/08/17 13:54	1
1,2-Dichloroethane	<0.50	0.50	0.086	ug/L			08/08/17 13:54	1
1,1-Dichloroethene	<0.50	0.50	0.15	ug/L			08/08/17 13:54	1
1,2-Dichloropropane	<0.50	0.50	0.096	ug/L			08/08/17 13:54	1
1,3-Dichloropropane	<0.50	0.50	0.10	ug/L			08/08/17 13:54	1
2,2-Dichloropropane	<0.50	0.50	0.20	ug/L			08/08/17 13:54	1
1,1-Dichloropropene	<0.50	0.50	0.095	ug/L			08/08/17 13:54	1
1,3-Dichloropropene, Total	<0.50	0.50	0.081	ug/L			08/08/17 13:54	1
Diisopropyl ether	<0.50	0.50	0.28	ug/L			08/08/17 13:54	1
Ethylbenzene	<0.50	0.50	0.099	ug/L			08/08/17 13:54	1
Ethylene Dibromide	<0.50	0.50	0.20	ug/L			08/08/17 13:54	1
Freon 113	<0.50	0.50	0.15	ug/L			08/08/17 13:54	1
Hexachlorobutadiene	<0.50	0.50	0.26	ug/L			08/08/17 13:54	1
2-Hexanone	<10	10	5.0	ug/L			08/08/17 13:54	1
Isopropylbenzene	<0.50	0.50	0.15	ug/L			08/08/17 13:54	1
4-Isopropyltoluene	<0.50	0.50	0.21	ug/L			08/08/17 13:54	1
Methylene Chloride	<0.50	0.50	0.20	ug/L			08/08/17 13:54	1
2-Butanone (MEK)	<10	10	5.0	ug/L			08/08/17 13:54	1
4-Methyl-2-pentanone (MIBK)	<10	10	5.0	ug/L			08/08/17 13:54	1
m-Xylene & p-Xylene	<0.50	0.50	0.15	ug/L			08/08/17 13:54	1
Naphthalene	<1.0	1.0	0.43	ug/L			08/08/17 13:54	1
n-Butylbenzene	<0.50	0.50		ug/L			08/08/17 13:54	1
N-Propylbenzene	<0.50	0.50		ug/L			08/08/17 13:54	1
o-Xylene	<0.50	0.50		-			08/08/17 13:54	1
sec-Butylbenzene	<0.50	0.50		ug/L			08/08/17 13:54	1
•				-				

Client: Weston Solutions, Inc. Project/Site: Black & Decker

TestAmerica Job ID: 680-141797-1

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-490628/9

Matrix: Water

Analysis Batch: 490628

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Butch: 400020	мв	мв							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	<0.50		0.50	0.089	ug/L			08/08/17 13:54	1
Tert-amyl methyl ether	<0.50		0.50	0.20	ug/L			08/08/17 13:54	1
tert-Butyl alcohol	<10		10	1.6	ug/L			08/08/17 13:54	1
tert-Butylbenzene	<0.50		0.50	0.14	ug/L			08/08/17 13:54	1
Tert-butyl ethyl ether	<0.50		0.50	0.26	ug/L			08/08/17 13:54	1
1,1,1,2-Tetrachloroethane	<0.50		0.50	0.24	ug/L			08/08/17 13:54	1
1,1,2,2-Tetrachloroethane	<0.50		0.50	0.13	ug/L			08/08/17 13:54	1
Tetrachloroethene	<0.50		0.50	0.18	ug/L			08/08/17 13:54	1
Toluene	<0.50		0.50	0.086	ug/L			08/08/17 13:54	1
trans-1,2-Dichloroethene	<0.50		0.50	0.090	ug/L			08/08/17 13:54	1
trans-1,3-Dichloropropene	<0.50		0.50	0.11	ug/L			08/08/17 13:54	1
1,2,3-Trichlorobenzene	<0.50		0.50	0.14	ug/L			08/08/17 13:54	1
1,2,4-Trichlorobenzene	<0.50		0.50	0.12	ug/L			08/08/17 13:54	1
1,1,1-Trichloroethane	<0.50		0.50	0.15	ug/L			08/08/17 13:54	1
1,1,2-Trichloroethane	<0.50		0.50	0.16	ug/L			08/08/17 13:54	1
Trichloroethene	<0.50		0.50	0.13	ug/L			08/08/17 13:54	1
Trichlorofluoromethane	<0.50		0.50	0.23	ug/L			08/08/17 13:54	1
1,2,3-Trichloropropane	<0.50		0.50	0.17	ug/L			08/08/17 13:54	1
Trihalomethanes, Total	<0.50		0.50	0.079	ug/L			08/08/17 13:54	1
1,2,4-Trimethylbenzene	<0.50		0.50	0.17	ug/L			08/08/17 13:54	1
1,3,5-Trimethylbenzene	<0.50		0.50	0.16	ug/L			08/08/17 13:54	1
Vinyl chloride	< 0.50		0.50	0.16	ug/L			08/08/17 13:54	1
Xylenes, Total	<0.50		0.50	0.086	ug/L			08/08/17 13:54	1

	MB	MB		
Surrogate	%Recovery	Qualifier	Limits	

4-Bromofluorobenzene 93 70 - 130 70 - 130 1,2-Dichlorobenzene-d4 95

Client Sample ID: Lab Control Sample

Prepared

Prep Type: Total/NA

Dil Fac

Analyzed

08/08/17 13:54 08/08/17 13:54

Lab Sample ID: LCS 680-490628/3 Matrix: Water

Analysis Batch: 490628								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	100	103		ug/L		103	70 - 130	
Benzene	20.0	19.8		ug/L		99	70 - 130	
Bromobenzene	20.0	20.6		ug/L		103	70 - 130	
Bromoform	20.0	20.2		ug/L		101	70 - 130	
Bromomethane	20.0	17.7		ug/L		88	70 - 130	
Carbon tetrachloride	20.0	20.5		ug/L		102	70 - 130	
Chlorobenzene	20.0	20.2		ug/L		101	70 - 130	
Chlorobromomethane	20.0	20.5		ug/L		102	70 - 130	
Chlorodibromomethane	20.0	20.2		ug/L		101	70 - 130	
Chloroethane	20.0	23.6		ug/L		118	70 - 130	
Chloroform	20.0	20.2		ug/L		101	70 - 130	
Chloromethane	20.0	18.1		ug/L		90	70 - 130	
2-Chlorotoluene	20.0	20.3		ug/L		101	70 - 130	
4-Chlorotoluene	20.0	19.9		ug/L		100	70 - 130	
cis-1,2-Dichloroethene	20.0	21.1		ug/L		106	70 - 130	

Client: Weston Solutions, Inc.

Project/Site: Black & Decker

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-490628/3

Matrix: Water

Analysis Batch: 490628

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 490628						
	Spike		LCS	D 0/ D	%Rec.	
Analyte	Added 20.0		Qualifier Unit	D %Rec	Limits	_
cis-1,3-Dichloropropene		20.4	ug/L	102	70 - 130 70 - 130	
1,2-Dibromo-3-Chloropropane	20.0	21.3 20.0	ug/L	106 100	70 - 130 70 - 130	
Dibromomethane	20.0		ug/L			
1,2-Dichlorobenzene	20.0 20.0	20.2 19.2	ug/L	101 96	70 ₋ 130 70 ₋ 130	
1,3-Dichlorobenzene			ug/L	100	70 - 130 70 - 130	
1,4-Dichlorobenzene	20.0	20.0 20.3	ug/L	100	70 - 130 70 - 130	
Dichlorobromomethane	20.0		ug/L	102	70 - 130 70 - 130	
Dichlorodifluoromethane	20.0	20.9	ug/L		70 - 130 70 - 130	
1,1-Dichloroethane	20.0	20.3	ug/L	101 99		
1,2-Dichloroethane	20.0	19.9	ug/L		70 - 130	
1,1-Dichloroethene	20.0	20.3	ug/L	102	70 - 130	
1,2-Dichloropropane	20.0	20.1	ug/L	100	70 - 130	
1,3-Dichloropropane	20.0	20.2	ug/L	101	70 - 130	
2,2-Dichloropropane	20.0	21.2	ug/L	106	70 - 130	
1,1-Dichloropropene	20.0	20.8	ug/L "	104	70 - 130	
1,3-Dichloropropene, Total	40.0	40.2	ug/L	100	70 ₋ 130	
Diisopropyl ether	20.0	20.3	ug/L	102	70 - 130	
Ethylbenzene	20.0	20.5	ug/L	102	70 ₋ 130	
Ethylene Dibromide	20.0	20.4	ug/L	102	70 - 130	
Freon 113	20.0	22.3	ug/L	111	70 - 130	
Hexachlorobutadiene	20.0	21.4	ug/L	107	70 - 130	
2-Hexanone	100	103	ug/L	103	70 - 130	
Isopropylbenzene	20.0	20.2	ug/L	101	70 - 130	
4-Isopropyltoluene	20.0	20.7	ug/L	104	70 - 130	
Methylene Chloride	20.0	20.8	ug/L	104	70 - 130	
2-Butanone (MEK)	100	112	ug/L	112	70 - 130	
4-Methyl-2-pentanone (MIBK)	100	105	ug/L	105	70 - 130	
m-Xylene & p-Xylene	20.0	20.7	ug/L	103	70 - 130	
Naphthalene	20.0	21.4	ug/L	107	70 - 130	
n-Butylbenzene	20.0	21.4	ug/L	107	70 - 130	
N-Propylbenzene	20.0	20.6	ug/L	103	70 - 130	
o-Xylene	20.0	20.4	ug/L	102	70 - 130	
sec-Butylbenzene	20.0	20.4	ug/L	102	70 - 130	
Styrene	20.0	20.0	ug/L	100	70 - 130	
Tert-amyl methyl ether	20.0	20.1	ug/L	101	70 - 130	
tert-Butyl alcohol	200	206	ug/L	103	70 - 130	
tert-Butylbenzene	20.0	20.6	ug/L	103	70 - 130	
Tert-butyl ethyl ether	20.0	20.8	ug/L	104	70 - 130	
1,1,1,2-Tetrachloroethane	20.0	20.0	ug/L	100	70 - 130	
1,1,2,2-Tetrachloroethane	20.0	20.3	ug/L	102	70 - 130	
Tetrachloroethene	20.0	21.3	ug/L	106	70 - 130	
Toluene	20.0	20.4	ug/L	102	70 - 130	
trans-1,2-Dichloroethene	20.0	19.8	ug/L	99	70 - 130	
trans-1,3-Dichloropropene	20.0	19.8	ug/L	99	70 - 130	
1,2,3-Trichlorobenzene	20.0	20.7	ug/L	104	70 - 130	
1,2,4-Trichlorobenzene	20.0	21.1	ug/L	105	70 - 130	
1,1,1-Trichloroethane	20.0	19.4	ug/L	97	70 - 130	
1,1,2-Trichloroethane	20.0	20.1	ug/L	101	70 - 130	

TestAmerica Job ID: 680-141797-1

QC Sample Results

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-490628/3

Matrix: Water

Analysis Batch: 490628

Client Sample ID: Lab Control Sample	
Prep Type: Total/NA	

	Spike	LCS LCS			%Rec.	
Analyte	Added	Result Qualifie	r Unit	D %Rec	Limits	
Trichloroethene	20.0	21.1	ug/L	105	70 - 130	
Trichlorofluoromethane	20.0	22.9	ug/L	115	70 - 130	
1,2,3-Trichloropropane	20.0	20.5	ug/L	103	70 - 130	
Trihalomethanes, Total	80.0	80.9	ug/L	101	70 - 130	
1,2,4-Trimethylbenzene	20.0	19.8	ug/L	99	70 - 130	
1,3,5-Trimethylbenzene	20.0	20.3	ug/L	102	70 - 130	
Vinyl chloride	20.0	21.1	ug/L	106	70 - 130	
Xylenes, Total	40.0	41.0	ug/L	103	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	97	-,,	70 - 130
1.2-Dichlorobenzene-d4	101		70 - 130

Lab Sample ID: LCSD 680-490628/4

Matrix: Water

Analysis Batch: 490628

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	100	102		ug/L		102	70 - 130	0	30
Benzene	20.0	20.1		ug/L		101	70 - 130	1	30
Bromobenzene	20.0	20.3		ug/L		102	70 - 130	1	30
Bromoform	20.0	20.6		ug/L		103	70 - 130	2	30
Bromomethane	20.0	20.4		ug/L		102	70 - 130	14	30
Carbon tetrachloride	20.0	20.2		ug/L		101	70 - 130	1	30
Chlorobenzene	20.0	20.4		ug/L		102	70 - 130	1	30
Chlorobromomethane	20.0	20.8		ug/L		104	70 - 130	2	30
Chlorodibromomethane	20.0	20.4		ug/L		102	70 - 130	1	30
Chloroethane	20.0	22.6		ug/L		113	70 - 130	4	30
Chloroform	20.0	19.9		ug/L		100	70 - 130	1	30
Chloromethane	20.0	17.3		ug/L		87	70 - 130	4	30
2-Chlorotoluene	20.0	20.0		ug/L		100	70 - 130	1	30
4-Chlorotoluene	20.0	19.5		ug/L		98	70 - 130	2	30
cis-1,2-Dichloroethene	20.0	21.1		ug/L		105	70 - 130	0	30
cis-1,3-Dichloropropene	20.0	20.8		ug/L		104	70 - 130	2	30
1,2-Dibromo-3-Chloropropane	20.0	22.2		ug/L		111	70 - 130	4	30
Dibromomethane	20.0	20.3		ug/L		101	70 - 130	2	30
1,2-Dichlorobenzene	20.0	20.6		ug/L		103	70 - 130	2	30
1,3-Dichlorobenzene	20.0	19.3		ug/L		97	70 - 130	1	30
1,4-Dichlorobenzene	20.0	20.2		ug/L		101	70 - 130	1	30
Dichlorobromomethane	20.0	20.8		ug/L		104	70 - 130	2	30
Dichlorodifluoromethane	20.0	19.3		ug/L		96	70 - 130	8	30
1,1-Dichloroethane	20.0	20.0		ug/L		100	70 - 130	1	30
1,2-Dichloroethane	20.0	20.0		ug/L		100	70 - 130	1	30
1,1-Dichloroethene	20.0	20.3		ug/L		102	70 - 130	0	30
1,2-Dichloropropane	20.0	20.5		ug/L		103	70 - 130	2	30
1,3-Dichloropropane	20.0	20.7		ug/L		103	70 - 130	2	30
2,2-Dichloropropane	20.0	20.6		ug/L		103	70 - 130	3	30
1,1-Dichloropropene	20.0	20.4		ug/L		102	70 - 130	2	30

TestAmerica Savannah

8/10/2017

Client: Weston Solutions, Inc. Project/Site: Black & Decker

TestAmerica Job ID: 680-141797-1

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-490628/4

Matrix: Water

Analysis Batch: 490628

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analyse Added Result Qualifier Unit D Rep Limits RPD Limits 1.3-Dictiopropene, Total 400 41.3 ugl. 100 70.3 3 30 Eihylene Dibromide 200 202 ugl. 101 70.130 2 30 Froon 113 200 202.6 ugl. 107 70.130 2 30 Froon 113 200 21.5 ugl. 107 70.130 0 30 Froon 113 200 21.5 ugl. 107 70.130 0 30 Froon 113 200 20.0 21.5 ugl. 107 70.130 0 30 21-beranone 200 19.7 ugl. 10 70.130 0 30 18per yelberzere 200 20.9 19.7 ugl. 10 70.130 4 30 201 201 101 17.7 ugl. 10.10 70.130 <th>Analysis Batch: 490628</th> <th>Spike</th> <th>LCSD</th> <th>LCSD</th> <th></th> <th></th> <th></th> <th>%Rec.</th> <th></th> <th>RPD</th>	Analysis Batch: 490628	Spike	LCSD	LCSD				%Rec.		RPD
1.3-Dichloropropene, Total 40,0 41,3 ug/L 10,3 70,130 3 3.0 Dissopropyl ether 20,0 20,2 ug/L 101 70,130 1 30 20 Dissopropyl ether 20,0 20,2 ug/L 101 70,130 1 30 2 30 20 20 2 ug/L 101 70,130 5 30 Ethylbence 20,0 21,5 ug/L 107 70,130 5 30 Ethylbenc Dibromide 20,0 21,5 ug/L 107 70,130 5 30 Hexachlorobutadiene 20,0 21,5 ug/L 107 70,130 0 30 30 30 30 30 30 30 30 30 30 30 30	Analyte	•			Unit	D	%Rec		RPD	Limit
Disspropy either 200 202 Ug/L 101 70 - 130 1 30 2 2 10 10 70 - 130 1 30 2 2 2 2 2 2 2 2 2								70 - 130	3	30
Eltylbene Dibromide 200 20.2 uyl. 101 70.130 2 30 Eltylene Dibromide 200 21.5 uyl. 107 70.130 5 30 Hexachlorobuladiene 200 21.5 uyl. 107 70.130 0 30 Lebazanore 100 103 uyl. 102 70.130 0 30 Isopropylbenzene 200 204 uyl. 102 70.130 0 30 4-Isopropylbeluzene 200 204 uyl. 102 70.130 0 30 4-Isopropylbeluzene 200 20.9 uyl. 102 70.130 0 30 4-Isopropylbeluzene 200 20.9 uyl. 102 70.130 0 30 2-Butanone (MEK) 100 117 uyl. 102 70.130 0 30 4-Methyl-2-pertanone (MIBK) 100 109 uyl. 100 70.130 0 30 <tr< td=""><td>• •</td><td>20.0</td><td>20.2</td><td></td><td>•</td><td></td><td>101</td><td>70 - 130</td><td>1</td><td>30</td></tr<>	• •	20.0	20.2		•		101	70 - 130	1	30
Ethylene Obromide 200 21.5 ug/L 107 70.130 5 30.30 Freon 113 200 20.5 ug/L 103 70.130 0 30.30 2-Hexachlorobludidiene 200 21.5 ug/L 103 70.130 0 30.30 2-Hexanone 100 103 ug/L 103 70.130 0 30.30 4-Isopropylberzene 200 19.7 ug/L 104 70.130 0 30.30 4-Hestopropylberzene 200 20.9 ug/L 104 70.130 0 30.30 4-Methyl-2-pentanone (MIBK) 100 117 ug/L 109 70.130 4 30.30 4-Methyl-2-pentanone (MIBK) 100 119 ug/L 100 70.130 2 30.30 M-Propylbenzene 200 20.3 20.1 100 70.130 2 30.30 N-Propylbenzene 200 20.3 20.1 100 70.130 2 <t< td=""><td>' ',</td><td></td><td></td><td></td><td></td><td></td><td>101</td><td>70 ₋ 130</td><td>2</td><td>30</td></t<>	' ',						101	70 ₋ 130	2	30
Freen 113 20.0 20.6 ug/L 103 70.130 8 30 Hexachiorobutadiene 20.0 21.5 ug/L 107 70.130 0 30 Isopropybenzene 20.0 19.7 ug/L 199 70.130 2 30 4-Isopropyblenzene 20.0 20.9 ug/L 100 70.130 2 30 4-Isopropyblenzene 20.0 20.9 ug/L 104 70.130 2 30 2-Butanone (MEK) 100 1117 ug/L 110 70.130 4 30 2-Butanone (MEK) 100 109 ug/L 100 70.130 4 30 M-Methyl-2-peatnone (MIBK) 100 109 ug/L 100 70.130 2 30 M-Pyllenzene 20.0 20.5 ug/L 100 70.130 2 30 N-Propylbenzene 20.0 20.3 ug/L 100 70.130 2 30	•	20.0	21.5		-		107	70 - 130	5	30
2-Hexanone 100 103 ug/l. 103 70-130 0 30 sopropybenzene 1-sopropybenzene 200 197 ug/l. 198 70-130 2 30 despropybenzene 4-sopropyblouene 200 204 ug/l. 102 70-130 2 30 despropyblouene 4-sopropyblouene 200 209 ug/l. 104 70-130 0 30 despropyblouene 2-Butanone (MEK) 100 117 ug/l. 107 70-130 4 30 despropyblouene 4-Methyl-2-pentanone (MIBK) 100 119 ug/l. 100 70-130 4 30 despropyblouene 8-Daylybenzene 200 20.5 ug/l. 100 70-130 2 30 despropyblouene 9-Vylene 200 20.5 ug/l. 100 70-130 2 30 despropyblouene 9-Vylene 200 20.1 ug/l. 100 70-130 2 30 despropyblouene 9-Vylene 200 20.1 ug/	,	20.0	20.6		•		103	70 - 130	8	30
Sepropylbenzene	Hexachlorobutadiene	20.0	21.5		ug/L		107	70 - 130	0	30
4-isopropytoluene 20.0 20.4 ug/L 102 70-130 2 30 Methylene Chloride 20.0 20.9 ug/L 104 70-130 0 30 2-Butannoe (MEK) 100 117 ug/L 117 70-130 4 30 4-Methyl-2-pentanoe (MIBK) 100 1199 ug/L 109 70-130 4 30 m-Xylene & p-Xylene 200 21.8 ug/L 109 70-130 3 30 N-Propythenzene 200 21.8 ug/L 109 70-130 1 30 N-Propythenzene 200 20.5 ug/L 100 70-130 1 30 N-Propythenzene 200 20.3 ug/L 100 70-130 1 30 Styrene 200 20.1 ug/L 100 70-130 1 30 Styrene 20.0 20.1 ug/L 104 70-130 3 30 Styre	2-Hexanone	100	103		ug/L		103	70 - 130	0	30
Methylene Chloride 20.0 20.9 ug/L 104 70-130 4 30 2-Butanone (MEK) 100 117 ug/L 117 70-130 4 30 4-Methyl-2-pentanone (MIBK) 100 109 ug/L 100 70-130 4 30 Mayhthalene 20.0 20.0 ug/L 109 70-130 2 30 Naphthalene 20.0 21.8 ug/L 102 70-130 2 30 N-Proyblenzene 20.0 20.5 ug/L 102 70-130 1 30 N-Proyblenzene 20.0 20.3 ug/L 100 70-130 1 30 N-Proyblenzene 20.0 20.3 ug/L 100 70-130 2 30 Styrene 20.0 20.1 ug/L 100 70-130 0 30 Styrene 20.0 20.1 ug/L 104 70-130 0 30 Iter-Butyl benzene	Isopropylbenzene	20.0	19.7		ug/L		99	70 - 130	2	30
Methylene Chloride 20.0 20.9 ug/L 104 70 - 130 0 30 2-Butanone (MEK) 100 117 ug/L 117 70 - 130 4 30 M-Methyl-2-pentanone (MIBK) 100 109 ug/L 109 70 - 130 4 30 Naphthalene 200 20.0 ug/L 109 70 - 130 2 30 N-Propylbenzene 20.0 20.3 ug/L 102 70 - 130 2 30 N-Propylbenzene 20.0 20.3 ug/L 100 70 - 130 2 30 N-Propylbenzene 20.0 20.3 ug/L 100 70 - 130 2 30 o-Xylene 20.0 20.1 ug/L 100 70 - 130 2 30 Styrene 20.0 20.1 ug/L 100 70 - 130 0 30 Styrene 20.0 20.0 ug/L 104 70 - 130 0 30 <td< td=""><td>4-Isopropyltoluene</td><td>20.0</td><td>20.4</td><td></td><td>ug/L</td><td></td><td>102</td><td>70 - 130</td><td>2</td><td>30</td></td<>	4-Isopropyltoluene	20.0	20.4		ug/L		102	70 - 130	2	30
2-Butanone (MEK) 100 117 ug/L 117 70 -130 4 30 4 4-Methyl-2-pentanone (MIBK) 100 109 ug/L 109 70 -130 4 30 30 4 4-Methyl-2-pentanone (MIBK) 100 109 ug/L 100 70 -130 3 30 30 NaryHenke 200 200 ug/L 100 70 -130 3 30 30 Naphthalene 200 218 ug/L 100 70 -130 2 30 30 Naphthalene 200 218 ug/L 100 70 -130 2 30 30 30 Naphthalene 200 205 ug/L 100 70 -130 2 30 30 30 30 30 Naphthalene 200 205 ug/L 100 70 -130 2 30 30 30 30 30 30 30 30 30 30 30 30 30	Methylene Chloride	20.0	20.9		ug/L		104	70 - 130	0	30
m-Xylene & p-Xylene 20.0 20.0 ug/L 100 70-130 3 30 Naphthalene 20.0 21.8 ug/L 109 70-130 2 30 N-Brytylbenzene 20.0 20.5 ug/L 102 70-130 5 30 N-Propylbenzene 20.0 20.3 ug/L 100 70-130 2 30 Styrene 20.0 19.9 ug/L 100 70-130 2 30 Styrene 20.0 20.1 ug/L 100 70-130 2 30 Styrene 20.0 20.7 ug/L 104 70-130 2 30 Styrene 20.0 20.7 ug/L 104 70-130 2 30 Styrene 20.0 20.7 ug/L 104 70-130 0 30 tert-Butyl ether 20.0 20.7 ug/L 101 70-130 3 30 1,1,2-Tetrachloroethane 2	2-Butanone (MEK)	100	117				117	70 - 130	4	30
Naphthalene	4-Methyl-2-pentanone (MIBK)	100	109		ug/L		109	70 - 130	4	30
n-Butylbenzene 20.0 20.5 ug/L 102 70-130 5 30 N-Propylbenzene 20.0 20.3 ug/L 102 70-130 1 30 o-Xylene 20.0 19.9 ug/L 100 70-130 2 30 sec-Butylbenzene 20.0 20.1 ug/L 100 70-130 2 30 Styrene 20.0 20.0 ug/L 100 70-130 0 30 Tert-amyl methyl ether 20.0 20.7 ug/L 104 70-130 3 30 tert-Butyl alcohol 20.0 20.7 ug/L 104 70-130 3 30 tert-Butyl ethyl ether 20.0 20.1 ug/L 101 70-130 3 30 Tert-butyl ethyl ether 20.0 20.9 ug/L 101 70-130 0 30 Tert-butyl ethyl ether 20.0 20.9 ug/L 101 70-130 0 30 Tert-butyl ethyl ether 20.0 20.3 ug/L 102 70-130	m-Xylene & p-Xylene	20.0	20.0		ug/L		100	70 - 130	3	30
N-Propylbenzene 20.0 20.3 ug/L 102 70.130 1 30 o-Xylene 20.0 19.9 ug/L 100 70.130 2 30 sec-Bulylbenzene 20.0 20.1 ug/L 100 70.130 2 30 Sec-Bulylbenzene 20.0 20.1 ug/L 100 70.130 2 30 Styrene 20.0 20.1 ug/L 100 70.130 2 30 Styrene 20.0 20.7 ug/L 100 70.130 3 30 tert-amyl methyl ether 20.0 20.7 ug/L 104 70.130 3 30 tert-Bulyl alcohol 20.0 20.7 ug/L 104 70.130 3 30 tert-Bulyl benzene 20.0 20.1 ug/L 104 70.130 3 30 tert-Bulyl benzene 20.0 20.1 ug/L 104 70.130 3 30 tert-Bulyl benzene 20.0 20.1 ug/L 104 70.130 3 30 tert-Bulyl benzene 20.0 20.1 ug/L 104 70.130 3 30 50 Tert-bulyl ethyl ether 20.0 20.0 ug/L 104 70.130 3 30 50 Tert-bulyl ethyl ether 20.0 20.0 ug/L 100 70.130 3 30 50 Tert-bulyl ethyl ether 20.0 20.0 ug/L 100 70.130 3 30 50 50 50 50 50 50 50 50 50 50 50 50 50	Naphthalene	20.0	21.8		ug/L		109	70 - 130	2	30
o-Xylene 20.0 19.9 ug/L 10.0 70 - 130 2 30 sec-Bulylbenzene 20.0 20.1 ug/L 100 70 - 130 2 30 Styrene 20.0 20.1 ug/L 100 70 - 130 2 30 Tert-amyl methyl ether 20.0 20.7 ug/L 104 70 - 130 3 30 tert-Bulyl alcohol 200 20.7 ug/L 104 70 - 130 3 30 tert-Bulyl behre 20.0 20.1 ug/L 101 70 - 130 3 30 Tert-bulyl ethyl ether 20.0 20.9 ug/L 104 70 - 130 3 30 Tert-Bulyl ethyl ether 20.0 20.9 ug/L 104 70 - 130 3 30 Tert-Bulyl ethyl ether 20.0 20.9 ug/L 100 70 - 130 3 30 Tert-Bulyl ethyl ether 20.0 20.9 ug/L 100 70 - 130 3 <	n-Butylbenzene	20.0	20.5		ug/L		102	70 - 130	5	30
sec-Butylbenzene 20.0 20.1 ug/L 100 70 - 130 2 30 Styrene 20.0 20.0 ug/L 100 70 - 130 0 30 Tert-amyl methyl ether 20.0 20.7 ug/L 104 70 - 130 3 30 tert-Butyl alcohol 200 20.7 ug/L 104 70 - 130 3 30 tert-Butyl benzene 20.0 20.1 ug/L 101 70 - 130 1 30 tert-butyl ethyl ether 20.0 20.9 ug/L 104 70 - 130 0 30 1,1,2-Tetrachloroethane 20.0 20.9 ug/L 100 70 - 130 0 30 1,1,2-Tetrachloroethane 20.0 20.3 ug/L 102 70 - 130 0 30 1,1,2-Tetrachloroethane 20.0 20.3 ug/L 102 70 - 130 0 30 1,1,2-Tichloroethane 20.0 20.6 ug/L 102 70 - 130	N-Propylbenzene	20.0	20.3		ug/L		102	70 - 130	1	30
Styrene 20.0 20.0 ug/L 100 70-130 0 30 10 10 10 10 10	o-Xylene	20.0	19.9		ug/L		100	70 - 130	2	30
Tert-amyl methyl ether 20.0 20.7 ug/L 104 70 - 130 3 30 tert-Butyl alcohol 200 207 ug/L 104 70 - 130 1 30 tert-Butyl benzene 20.0 20.1 ug/L 101 70 - 130 3 30 1 tert-Butyl benzene 20.0 20.1 ug/L 101 70 - 130 3 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	sec-Butylbenzene	20.0	20.1		ug/L		100	70 - 130	2	30
tert-Butyl alcohol 200 207 ug/L 104 70 - 130 1 30 tert-Butyl benzene 20.0 20.1 ug/L 101 70 - 130 3 30 Tert-butyl ethyl ether 20.0 20.9 ug/L 104 70 - 130 0 30 1,1,2-Tetrachloroethane 20.0 20.0 ug/L 100 70 - 130 0 30 1,1,2-Tetrachloroethane 20.0 20.3 ug/L 102 70 - 130 0 30 Tetrachloroethane 20.0 20.6 ug/L 103 70 - 130 0 30 Toluene 20.0 20.3 ug/L 103 70 - 130 1 30 trans-1,2-Dichloroethane 20.0 20.3 ug/L 199 70 - 130 1 30 trans-1,2-Dichloropropene 20.0 20.5 ug/L 103 70 - 130 3 30 1,2,3-Trichloropropene 20.0 20.5 ug/L 103 70 - 130	Styrene	20.0	20.0		ug/L		100	70 - 130	0	30
tert-Butylbenzene 20.0 20.1 ug/L 101 70 - 130 3 30 Tert-butyl ethyl ether 20.0 20.9 ug/L 104 70 - 130 0 30 1,1,2-Tetrachloroethane 20.0 20.0 ug/L 100 70 - 130 0 30 1,1,2-Tetrachloroethane 20.0 20.3 ug/L 102 70 - 130 0 30 1,1,2-Tetrachloroethane 20.0 20.3 ug/L 102 70 - 130 0 30 Tetrachloroethene 20.0 20.6 ug/L 103 70 - 130 3 30 Toluene 20.0 20.3 ug/L 102 70 - 130 1 30 trans-1,2-Dichloroethene 20.0 19.8 ug/L 199 70 - 130 1 30 trans-1,2-Dichloroethene 20.0 20.5 ug/L 199 70 - 130 3 30 1,2,3-Trichlorobenzene 20.0 21.4 ug/L 107 70 - 130 3 30 1,2,4-Trichloroethane 20.0 19.6 ug/L </td <td>Tert-amyl methyl ether</td> <td>20.0</td> <td>20.7</td> <td></td> <td>ug/L</td> <td></td> <td>104</td> <td>70 - 130</td> <td>3</td> <td>30</td>	Tert-amyl methyl ether	20.0	20.7		ug/L		104	70 - 130	3	30
Tert-butyl ethyl ether 20.0 20.9 ug/L 104 70 - 130 0 30 1,1,1,2-Tetrachloroethane 20.0 20.0 ug/L 100 70 - 130 0 30 1,1,1,2-Tetrachloroethane 20.0 20.3 ug/L 102 70 - 130 0 30 Tetrachloroethane 20.0 20.3 ug/L 102 70 - 130 0 30 Tetrachloroethene 20.0 20.3 ug/L 102 70 - 130 1 30 Tetrachloroethene 20.0 20.3 ug/L 102 70 - 130 1 30 Trans-1,2-Dichloroethene 20.0 19.8 ug/L 102 70 - 130 1 30 Trans-1,3-Dichloropropene 20.0 20.5 ug/L 103 70 - 130 3 30 Trans-1,3-Dichloropropene 20.0 20.5 ug/L 103 70 - 130 3 30 Trans-1,3-Dichloroethene 20.0 21.4 ug/L 107 70 - 130 3 30 Trans-1,3-Dichloroethene 20.0 21.4 ug/L 107 70 - 130 3 30 Trans-1,3-Dichloroethane 20.0 21.6 ug/L 108 70 - 130 2 30 Trans-1,3-Dichloroethane 20.0 21.6 ug/L 108 70 - 130 2 30 Trans-1,3-Dichloroethane 20.0 21.6 ug/L 108 70 - 130 2 30 Trans-1,3-Dichloroethane 20.0 21.6 ug/L 108 70 - 130 2 30 Trans-1,3-Dichloroethane 20.0 21.0 ug/L 105 70 - 130 2 30 Trans-1,3-Dichloroethane 20.0 21.0 ug/L 105 70 - 130 2 30 Trans-1,3-Dichloroethane 20.0 21.0 ug/L 105 70 - 130 2 30 Trans-1,3-Dichloroethane 20.0 21.0 ug/L 105 70 - 130 3 30 Trans-1,3-Dichloroethane 20.0 21.0 ug/L 105 70 - 130 3 30 Trans-1,3-Dichloroethane 20.0 21.0 ug/L 105 70 - 130 3 30 Trans-1,3-Dichloroethane 20.0 21.0 ug/L 105 70 - 130 3 30 Trans-1,3-Dichloroethane 20.0 21.0 ug/L 105 70 - 130 3 30 Trans-1,3-Dichloroethane 20.0 21.0 ug/L 105 70 - 130 3 30 Trans-1,3-Dichloroethane 20.0 21.0 ug/L 105 70 - 130 3 30 Trans-1,3-Dichloroethane 20.0 20.0 ug/L 105 70 - 130 3 30 Trans-1,3-Dichloroethane 20.0 20.0 ug/L 105 70 - 130 3 30 Trans-1,3-Dichloroethane 20.0 20.0 ug/L 105 70 - 130 3 30 Trans-1,3-Dichloroethane 20.0 20.0 ug/L 105 70 - 130 3 30 Trans-1,3-Dichloroethane 20.0 20.0 ug/L 105 70 - 130 3 30 Trans-1,3-Dichloroethane 20.0 20.0 ug/L 105 70 - 130 3 30 Trans-1,3-Dichloroethane 20.0 20.0 ug/L 105 70 - 130 3 30 Trans-1,3-Dichloroethane 20.0 ug/L 105 70 - 130 3 30 Trans-1,3-Dichloroethane 20.0 ug/L 105 70 - 130 3 30 Trans-1,3-Dichloroethane 20.0 ug/L 105 70 - 130 3 30 Trans-1,3-Dichloroethane 20.0 ug/L 105 70 - 130 3	tert-Butyl alcohol	200	207		ug/L		104	70 - 130	1	30
1,1,1,2-Tetrachloroethane 20.0 20.0 ug/L 100 70 - 130 0 30 1,1,2-Tetrachloroethane 20.0 20.3 ug/L 102 70 - 130 0 30 Tetrachloroethene 20.0 20.6 ug/L 103 70 - 130 1 30 Toluene 20.0 20.3 ug/L 102 70 - 130 1 30 trans-1,2-Dichloroethene 20.0 19.8 ug/L 99 70 - 130 1 30 trans-1,3-Dichloropropene 20.0 20.5 ug/L 103 70 - 130 3 30 1,2,3-Trichlorobenzene 20.0 21.4 ug/L 107 70 - 130 3 30 1,2,4-Trichloroethane 20.0 21.6 ug/L 108 70 - 130 2 30 1,1,2-Trichloroethane 20.0 19.6 ug/L 98 70 - 130 2 30 1,1,2-Trichloroethane 20.0 21.8 ug/L 105 70 - 130 2 30 Trichlorofluoromethane 20.0 21.8 ug/	tert-Butylbenzene	20.0	20.1		ug/L		101	70 - 130	3	30
1,1,2,2-Tetrachloroethane 20.0 20.3 ug/L 102 70 - 130 0 30 Tetrachloroethene 20.0 20.6 ug/L 103 70 - 130 3 30 Toluene 20.0 20.3 ug/L 102 70 - 130 1 30 trans-1,2-Dichloroethene 20.0 19.8 ug/L 99 70 - 130 3 30 trans-1,3-Dichloropropene 20.0 20.5 ug/L 103 70 - 130 3 30 1,2,3-Trichlorobenzene 20.0 21.4 ug/L 107 70 - 130 3 30 1,2,4-Trichloroethane 20.0 21.6 ug/L 108 70 - 130 2 30 1,1,1-Trichloroethane 20.0 19.6 ug/L 98 70 - 130 1 30 1,1,2-Trichloroethane 20.0 19.6 ug/L 98 70 - 130 2 30 Trichloroethene 20.0 21.0 ug/L 105 70 - 130 3 30 1,2,3-Trichloropropane 20.0 21.8 ug/L	Tert-butyl ethyl ether	20.0	20.9		ug/L		104	70 - 130	0	30
Tetrachloroethene 20.0 20.6 ug/L 103 70 - 130 3 30 trans-1,2-Dichloroethene 20.0 19.8 ug/L 99 70 - 130 0 30 trans-1,3-Dichloropropene 20.0 20.5 ug/L 103 70 - 130 3 30 1,2,3-Trichloroethane 20.0 21.4 ug/L 107 70 - 130 3 30 1,2,4-Trichloroethane 20.0 21.6 ug/L 98 70 - 130 2 30 1,1,1-Trichloroethane 20.0 19.6 ug/L 98 70 - 130 1 30 1,1,2-Trichloroethane 20.0 19.6 ug/L 98 70 - 130 2 30 1,1,2-Trichloroethane 20.0 21.0 ug/L 98 70 - 130 2 30 1,1,2-Trichloroethane 20.0 21.8 ug/L 98 70 - 130 2 30 1,2,3-Trichloroethane 20.0 21.8 ug/L 105 70 - 130 3 30 1,2,3-Trichloropropane 20.0 21.8 ug/L 105 70 - 130 3 30 1,2,3-Trichloropropane 20.0 20.3 ug/L 101 70 - 130 1 30 1,2,3-Trichloropropane 20.0 20.3 ug/L 101 70 - 130 1 30 1,2,3-Trichloropropane 20.0 20.3 ug/L 101 70 - 130 1 30 1,2,3-Trichloropropane 20.0 20.3 ug/L 101 70 - 130 1 30 1,2,3-Trichloropropane 20.0 20.3 ug/L 100 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.0 ug/L 98 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.0 ug/L 100 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.0 ug/L 100 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.0 20.8 ug/L 104 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.0 20.8 ug/L 104 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.0 20.8 ug/L 104 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.0 20.8 ug/L 104 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.0 20.8 ug/L 104 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.0 20.8 ug/L 104 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.0 20.8 ug/L 104 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.0 20.8 ug/L 104 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.0 20.8 ug/L 104 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.0 20.8 ug/L 104 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.0 20.8 ug/L 104 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.0 20.8 ug/L 104 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.0 20.8 ug/L 104 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.0 20.0 ug/L 104 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.0 20.0 ug/L 104 70 - 130 2 30 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	1,1,1,2-Tetrachloroethane	20.0	20.0		ug/L		100	70 - 130	0	30
Toluene 20.0 20.3 ug/L 102 70 - 130 1 30 trans-1,2-Dichloroethene 20.0 19.8 ug/L 99 70 - 130 0 30 trans-1,3-Dichloropropene 20.0 20.5 ug/L 103 70 - 130 3 30 1,2,3-Trichlorobenzene 20.0 21.4 ug/L 107 70 - 130 3 30 1,2,4-Trichlorobenzene 20.0 21.6 ug/L 108 70 - 130 2 30 1,1,1-Trichloroethane 20.0 19.6 ug/L 98 70 - 130 1 30 1,1,2-Trichloroethane 20.0 19.6 ug/L 98 70 - 130 1 30 1,1,2-Trichloroethane 20.0 21.0 ug/L 98 70 - 130 2 30 1,1,2-Trichloroethane 20.0 21.8 ug/L 105 70 - 130 3 30 1,2,3-Trichloropropane 20.0 21.8 ug/L 105 70 - 130 5 30 1,2,3-Trichloropropane 20.0 20.3 ug/L 101 70 - 130 1 30 Trihalomethanes, Total 80.0 81.7 ug/L 102 70 - 130 1 30 1,2,4-Trimethylbenzene 20.0 20.0 ug/L 98 70 - 130 1 30 1,3,5-Trimethylbenzene 20.0 20.0 ug/L 100 70 - 130 2 30 1,3,5-Trimethylbenzene 20.0 20.8 ug/L 104 70 - 130 2 30 100 1,3,5-Trimethylbenzene 20.0 20.8 ug/L 104 70 - 130 2 30 100 100 100 100 100 100 100 100 100	1,1,2,2-Tetrachloroethane	20.0	20.3		ug/L		102	70 - 130	0	30
trans-1,2-Dichloroethene 20.0 19.8 ug/L 99 70 - 130 0 30 trans-1,3-Dichloropropene 20.0 20.5 ug/L 103 70 - 130 3 30 1,2,3-Trichlorobenzene 20.0 21.4 ug/L 107 70 - 130 3 30 1,2,4-Trichlorobenzene 20.0 21.6 ug/L 108 70 - 130 2 30 1,1,1-Trichloroethane 20.0 19.6 ug/L 98 70 - 130 1 30 1,1,2-Trichloroethane 20.0 19.6 ug/L 98 70 - 130 2 30 1,1,2-Trichloroethane 20.0 19.6 ug/L 98 70 - 130 2 30 Trichloroethane 20.0 21.0 ug/L 105 70 - 130 2 30 Trichloroethane 20.0 21.0 ug/L 105 70 - 130 5 30 1,2,3-Trichloropropane 20.0 21.8 ug/L 109 70 - 130 5 30 1,2,3-Trichloropropane 20.0 20.3 ug/L 101 70 - 130 1 30 Trihalomethanes, Total 80.0 81.7 ug/L 102 70 - 130 1 30 1,2,4-Trimethylbenzene 20.0 20.0 ug/L 98 70 - 130 1 30 1,3,5-Trimethylbenzene 20.0 20.0 ug/L 100 70 - 130 2 30 Vinyl chloride 20.0 20.8 ug/L 104 70 - 130 2 30 10 1,3,5-Trimethylbenzene 20.0 20.0 ug/L 100 70 - 130 2 30 10 1,3,5-Trimethylbenzene 20.0 20.0 ug/L 100 70 - 130 2 30 10 1,3,5-Trimethylbenzene 20.0 20.0 ug/L 100 70 - 130 2 30 2 30 20 20.0 ug/L 100 70 - 130 2 30 2 30 20 20.0 ug/L 100 70 - 130 2 30 2 30 20 20.0 ug/L 100 70 - 130 2 30 2 30 20 20.0 ug/L 100 70 - 130 2 30 2 30 20 20.0 ug/L 100 70 - 130 2 30 2 30 20 20.0 ug/L 100 70 - 130 2 30 2 30 20 20 20 20 20 20 20 20 20 20 20 20 20	Tetrachloroethene	20.0	20.6		ug/L		103	70 - 130	3	30
trans-1,3-Dichloropropene 20.0 20.5 ug/L 103 70 - 130 3 30 1,2,3-Trichlorobenzene 20.0 21.4 ug/L 107 70 - 130 3 30 1,2,4-Trichlorobenzene 20.0 21.6 ug/L 108 70 - 130 2 30 1,1,1-Trichloroethane 20.0 19.6 ug/L 98 70 - 130 1 30 1,1,2-Trichloroethane 20.0 19.6 ug/L 98 70 - 130 2 30 Trichloroethane 20.0 21.0 ug/L 105 70 - 130 0 30 Trichlorofluoromethane 20.0 21.8 ug/L 105 70 - 130 5 30 1,2,3-Trichloropropane 20.0 21.8 ug/L 109 70 - 130 5 30 1,2,3-Trichloropropane 20.0 20.3 ug/L 101 70 - 130 1 30 Trihalomethanes, Total 80.0 81.7 ug/L 102 70 - 130 1 30 1,2,4-Trimethylbenzene 20.0 20.0 19.5 ug/L 98 70 - 130 1 30 1,3,5-Trimethylbenzene 20.0 20.0 ug/L 100 70 - 130 2 30 Vinyl chloride 20.0 20.8 ug/L 104 70 - 130 2 30 Vinyl chloride	Toluene	20.0	20.3		ug/L		102	70 - 130	1	30
1,2,3-Trichlorobenzene 20.0 21.4 ug/L 107 70 - 130 3 30 1,2,4-Trichlorobenzene 20.0 21.6 ug/L 108 70 - 130 2 30 1,1,1-Trichloroethane 20.0 19.6 ug/L 98 70 - 130 1 30 1,1,2-Trichloroethane 20.0 19.6 ug/L 98 70 - 130 2 30 Trichloroethene 20.0 21.0 ug/L 105 70 - 130 0 30 Trichlorofluoromethane 20.0 21.8 ug/L 109 70 - 130 5 30 1,2,3-Trichloropropane 20.0 20.3 ug/L 101 70 - 130 5 30 1,2,4-Trimethylbenzenes, Total 80.0 81.7 ug/L 102 70 - 130 1 30 1,3,5-Trimethylbenzene 20.0 20.0 19.5 ug/L 100 70 - 130 2 30 Vinyl chloride 20.0 20.8 ug/L 104 70 - 130 2 30	trans-1,2-Dichloroethene	20.0	19.8		ug/L		99	70 - 130	0	30
1,2,4-Trichlorobenzene 20.0 21.6 ug/L 108 70 - 130 2 30 1,1,1-Trichloroethane 20.0 19.6 ug/L 98 70 - 130 1 30 1,1,2-Trichloroethane 20.0 19.6 ug/L 98 70 - 130 2 30 Trichloroethene 20.0 21.0 ug/L 105 70 - 130 0 30 Trichlorofluoromethane 20.0 21.8 ug/L 109 70 - 130 5 30 1,2,3-Trichloropropane 20.0 20.3 ug/L 101 70 - 130 1 30 Trihalomethanes, Total 80.0 81.7 ug/L 102 70 - 130 1 30 1,2,4-Trimethylbenzene 20.0 19.5 ug/L 98 70 - 130 1 30 1,3,5-Trimethylbenzene 20.0 20.0 ug/L 100 70 - 130 2 30 Vinyl chloride 20.0 20.8 ug/L 104 70 - 130 2 30	trans-1,3-Dichloropropene	20.0	20.5		ug/L		103	70 - 130	3	30
1,1,1-Trichloroethane 20.0 19.6 ug/L 98 70-130 1 30 1,1,2-Trichloroethane 20.0 19.6 ug/L 98 70-130 2 30 Trichloroethene 20.0 21.0 ug/L 105 70-130 0 30 Trichlorofluoromethane 20.0 21.8 ug/L 109 70-130 5 30 1,2,3-Trichloropropane 20.0 20.3 ug/L 101 70-130 1 30 Trihalomethanes, Total 80.0 81.7 ug/L 102 70-130 1 30 1,2,4-Trimethylbenzene 20.0 19.5 ug/L 98 70-130 1 30 1,3,5-Trimethylbenzene 20.0 20.0 ug/L 100 70-130 2 30 Vinyl chloride 20.0 20.8 ug/L 104 70-130 2 30	1,2,3-Trichlorobenzene	20.0	21.4		ug/L		107	70 - 130	3	30
1,1,2-Trichloroethane 20.0 19.6 ug/L 98 70 - 130 2 30 Trichloroethene 20.0 21.0 ug/L 105 70 - 130 0 30 Trichlorofluoromethane 20.0 21.8 ug/L 109 70 - 130 5 30 1,2,3-Trichloropropane 20.0 20.3 ug/L 101 70 - 130 1 30 Trihalomethanes, Total 80.0 81.7 ug/L 102 70 - 130 1 30 1,2,4-Trimethylbenzene 20.0 19.5 ug/L 98 70 - 130 1 30 1,3,5-Trimethylbenzene 20.0 20.0 ug/L 100 70 - 130 2 30 Vinyl chloride 20.0 20.8 ug/L 104 70 - 130 2 30	1,2,4-Trichlorobenzene	20.0	21.6		ug/L		108	70 - 130	2	30
Trichloroethene 20.0 21.0 ug/L 105 70 - 130 0 30 Trichlorofluoromethane 20.0 21.8 ug/L 109 70 - 130 5 30 1,2,3-Trichloropropane 20.0 20.3 ug/L 101 70 - 130 1 30 Trihalomethanes, Total 80.0 81.7 ug/L 102 70 - 130 1 30 1,2,4-Trimethylbenzene 20.0 19.5 ug/L 98 70 - 130 1 30 1,3,5-Trimethylbenzene 20.0 20.0 ug/L 100 70 - 130 2 30 Vinyl chloride 20.0 20.8 ug/L 104 70 - 130 2 30	1,1,1-Trichloroethane	20.0	19.6		ug/L		98	70 - 130	1	30
Trichlorofluoromethane 20.0 21.8 ug/L 109 70 - 130 5 30 1,2,3-Trichloropropane 20.0 20.3 ug/L 101 70 - 130 1 30 Trihalomethanes, Total 80.0 81.7 ug/L 102 70 - 130 1 30 1,2,4-Trimethylbenzene 20.0 19.5 ug/L 98 70 - 130 1 30 1,3,5-Trimethylbenzene 20.0 20.0 ug/L 100 70 - 130 2 30 Vinyl chloride 20.0 20.8 ug/L 104 70 - 130 2 30	1,1,2-Trichloroethane	20.0	19.6		ug/L		98	70 - 130	2	30
1,2,3-Trichloropropane 20.0 20.3 ug/L 101 70 - 130 1 30 Trihalomethanes, Total 80.0 81.7 ug/L 102 70 - 130 1 30 1,2,4-Trimethylbenzene 20.0 19.5 ug/L 98 70 - 130 1 30 1,3,5-Trimethylbenzene 20.0 20.0 ug/L 100 70 - 130 2 30 Vinyl chloride 20.0 20.8 ug/L 104 70 - 130 2 30	Trichloroethene	20.0	21.0		ug/L		105	70 - 130	0	30
Trihalomethanes, Total 80.0 81.7 ug/L 102 70 - 130 1 30 1,2,4-Trimethylbenzene 20.0 19.5 ug/L 98 70 - 130 1 30 1,3,5-Trimethylbenzene 20.0 20.0 ug/L 100 70 - 130 2 30 Vinyl chloride 20.0 20.8 ug/L 104 70 - 130 2 30	Trichlorofluoromethane	20.0	21.8		ug/L		109	70 - 130	5	30
1,2,4-Trimethylbenzene 20.0 19.5 ug/L 98 70 - 130 1 30 1,3,5-Trimethylbenzene 20.0 20.0 ug/L 100 70 - 130 2 30 Vinyl chloride 20.0 20.8 ug/L 104 70 - 130 2 30	1,2,3-Trichloropropane	20.0	20.3		ug/L		101	70 - 130	1	30
1,3,5-Trimethylbenzene 20.0 20.0 ug/L 100 70 - 130 2 30 Vinyl chloride 20.0 20.8 ug/L 104 70 - 130 2 30	Trihalomethanes, Total	80.0	81.7		ug/L		102	70 - 130	1	30
Vinyl chloride 20.0 20.8 ug/L 104 70 - 130 2 30	1,2,4-Trimethylbenzene	20.0	19.5		ug/L		98	70 - 130	1	30
• , • • • • • • • • • • • • • • • • • •	1,3,5-Trimethylbenzene	20.0	20.0		ug/L		100	70 - 130	2	30
Xylenes Total 40.0 39.9 ug/L 100 70 - 130 3 30	Vinyl chloride	20.0	20.8		ug/L		104	70 - 130	2	30
A Company of the Comp	Xylenes, Total	40.0	39.9		ug/L		100	70 - 130	3	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	103		70 - 130
1,2-Dichlorobenzene-d4	102		70 - 130

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water

Analysis Batch: 490739

Lab Sample ID: MB 680-490739/10

Client Sample ID: Method Blank

TestAmerica Job ID: 680-141797-1

Prep Type: Total/NA

Analyte Acetone Benzene		Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
						•	•	-
Benzene	<10	10	5.0	ug/L			08/09/17 12:04	1
Bonzono	<0.50	0.50					08/09/17 12:04	1
Bromobenzene	<0.50	0.50	0.091	ug/L			08/09/17 12:04	1
Bromoform	<0.50	0.50	0.17	ug/L			08/09/17 12:04	1
Bromomethane	<1.0	1.0	0.20	ug/L			08/09/17 12:04	1
Carbon tetrachloride	<0.50	0.50	0.11	ug/L			08/09/17 12:04	1
Chlorobenzene	<0.50	0.50	0.14	ug/L			08/09/17 12:04	1
Chlorobromomethane	<0.50	0.50	0.30	ug/L			08/09/17 12:04	1
Chlorodibromomethane	<0.50	0.50	0.13	ug/L			08/09/17 12:04	1
Chloroethane	<1.0	1.0	0.22	ug/L			08/09/17 12:04	1
Chloroform	<0.50	0.50	0.20	ug/L			08/09/17 12:04	1
Chloromethane	<0.50	0.50	0.15	ug/L			08/09/17 12:04	1
2-Chlorotoluene	<0.50	0.50	0.11	ug/L			08/09/17 12:04	1
4-Chlorotoluene	<0.50	0.50	0.13	ug/L			08/09/17 12:04	1
cis-1,2-Dichloroethene	<0.50	0.50	0.090	ug/L			08/09/17 12:04	1
cis-1,3-Dichloropropene	<0.50	0.50	0.081	ug/L			08/09/17 12:04	1
1,2-Dibromo-3-Chloropropane	<0.50	0.50	0.30	ug/L			08/09/17 12:04	1
Dibromomethane	<0.50	0.50	0.16	ug/L			08/09/17 12:04	1
1,2-Dichlorobenzene	<0.50	0.50	0.16	ug/L			08/09/17 12:04	1
1,3-Dichlorobenzene	<0.50	0.50	0.11	ug/L			08/09/17 12:04	1
1,4-Dichlorobenzene	<0.50	0.50	0.13	ug/L			08/09/17 12:04	1
Dichlorobromomethane	<0.50	0.50	0.079	ug/L			08/09/17 12:04	1
Dichlorodifluoromethane	<0.50	0.50	0.34	ug/L			08/09/17 12:04	1
1,1-Dichloroethane	<0.50	0.50	0.078	ug/L			08/09/17 12:04	1
1,2-Dichloroethane	<0.50	0.50	0.086	ug/L			08/09/17 12:04	1
1,1-Dichloroethene	<0.50	0.50	0.15	ug/L			08/09/17 12:04	1
1,2-Dichloropropane	<0.50	0.50	0.096	ug/L			08/09/17 12:04	1
1,3-Dichloropropane	<0.50	0.50	0.10	ug/L			08/09/17 12:04	1
2,2-Dichloropropane	<0.50	0.50	0.20	ug/L			08/09/17 12:04	1
1,1-Dichloropropene	<0.50	0.50	0.095	ug/L			08/09/17 12:04	1
1,3-Dichloropropene, Total	<0.50	0.50	0.081	ug/L			08/09/17 12:04	1
Diisopropyl ether	<0.50	0.50	0.28	ug/L			08/09/17 12:04	1
Ethylbenzene	<0.50	0.50	0.099	ug/L			08/09/17 12:04	1
Ethylene Dibromide	<0.50	0.50	0.20	ug/L			08/09/17 12:04	1
Freon 113	<0.50	0.50	0.15	ug/L			08/09/17 12:04	1
Hexachlorobutadiene	<0.50	0.50	0.26	ug/L			08/09/17 12:04	1
2-Hexanone	<10	10	5.0	ug/L			08/09/17 12:04	1
Isopropylbenzene	<0.50	0.50	0.15	ug/L			08/09/17 12:04	1
4-Isopropyltoluene	<0.50	0.50	0.21	ug/L			08/09/17 12:04	1
Methylene Chloride	< 0.50	0.50	0.20	ug/L			08/09/17 12:04	1
2-Butanone (MEK)	<10	10	5.0	ug/L			08/09/17 12:04	1
4-Methyl-2-pentanone (MIBK)	<10	10	5.0	ug/L			08/09/17 12:04	1
m-Xylene & p-Xylene	<0.50	0.50	0.15	ug/L			08/09/17 12:04	1
Naphthalene	<1.0	1.0	0.43	ug/L			08/09/17 12:04	1
n-Butylbenzene	<0.50	0.50	0.17	ug/L			08/09/17 12:04	1
N-Propylbenzene	<0.50	0.50		ug/L			08/09/17 12:04	1
o-Xylene	<0.50	0.50		_			08/09/17 12:04	1
sec-Butylbenzene	<0.50	0.50	0.14	ug/L			08/09/17 12:04	1

TestAmerica Savannah

ica Savaililaii

8/10/2017

Client: Weston Solutions, Inc. Project/Site: Black & Decker

TestAmerica Job ID: 680-141797-1

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 680-490739/10

Matrix: Water

Analysis Batch: 490739

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	<0.50		0.50	0.089	ug/L			08/09/17 12:04	1
Tert-amyl methyl ether	<0.50		0.50	0.20	ug/L			08/09/17 12:04	1
tert-Butyl alcohol	<10		10	1.6	ug/L			08/09/17 12:04	1
tert-Butylbenzene	<0.50		0.50	0.14	ug/L			08/09/17 12:04	1
Tert-butyl ethyl ether	<0.50		0.50	0.26	ug/L			08/09/17 12:04	1
1,1,1,2-Tetrachloroethane	<0.50		0.50	0.24	ug/L			08/09/17 12:04	1
1,1,2,2-Tetrachloroethane	<0.50		0.50	0.13	ug/L			08/09/17 12:04	1
Tetrachloroethene	<0.50		0.50	0.18	ug/L			08/09/17 12:04	1
Toluene	<0.50		0.50	0.086	ug/L			08/09/17 12:04	1
trans-1,2-Dichloroethene	<0.50		0.50	0.090	ug/L			08/09/17 12:04	1
trans-1,3-Dichloropropene	<0.50		0.50	0.11	ug/L			08/09/17 12:04	1
1,2,3-Trichlorobenzene	<0.50		0.50	0.14	ug/L			08/09/17 12:04	1
1,2,4-Trichlorobenzene	0.130	J	0.50	0.12	ug/L			08/09/17 12:04	1
1,1,1-Trichloroethane	<0.50		0.50	0.15	ug/L			08/09/17 12:04	1
1,1,2-Trichloroethane	<0.50		0.50	0.16	ug/L			08/09/17 12:04	1
Trichloroethene	<0.50		0.50	0.13	ug/L			08/09/17 12:04	1
Trichlorofluoromethane	<0.50		0.50	0.23	ug/L			08/09/17 12:04	1
1,2,3-Trichloropropane	< 0.50		0.50	0.17	ug/L			08/09/17 12:04	1
Trihalomethanes, Total	<0.50		0.50	0.079	ug/L			08/09/17 12:04	1
1,2,4-Trimethylbenzene	<0.50		0.50	0.17	ug/L			08/09/17 12:04	1
1,3,5-Trimethylbenzene	<0.50		0.50	0.16	ug/L			08/09/17 12:04	1
Vinyl chloride	<0.50		0.50	0.16	ug/L			08/09/17 12:04	1
Xylenes, Total	<0.50		0.50	0.086	ug/L			08/09/17 12:04	1

MB	MB

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene	90	70 - 130	08/09/17 12:04	1
1,2-Dichlorobenzene-d4	99	70 - 130	08/09/17 12:04	1

Lab Sample ID: LCS 680-490739/3

Matrix: Water

Analysis Batch: 490739

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	100	94.8		ug/L		95	70 - 130	
Benzene	20.0	20.9		ug/L		105	70 - 130	
Bromobenzene	20.0	21.4		ug/L		107	70 - 130	
Bromoform	20.0	20.8		ug/L		104	70 - 130	
Bromomethane	20.0	19.9		ug/L		99	70 - 130	
Carbon tetrachloride	20.0	21.8		ug/L		109	70 - 130	
Chlorobenzene	20.0	21.6		ug/L		108	70 - 130	
Chlorobromomethane	20.0	21.6		ug/L		108	70 - 130	
Chlorodibromomethane	20.0	21.1		ug/L		105	70 - 130	
Chloroethane	20.0	25.1		ug/L		125	70 - 130	
Chloroform	20.0	20.8		ug/L		104	70 - 130	
Chloromethane	20.0	18.5		ug/L		93	70 - 130	
2-Chlorotoluene	20.0	21.5		ug/L		108	70 - 130	
4-Chlorotoluene	20.0	21.0		ug/L		105	70 - 130	
cis-1,2-Dichloroethene	20.0	22.1		ug/L		110	70 - 130	

Client: Weston Solutions, Inc. Project/Site: Black & Decker

TestAmerica Job ID: 680-141797-1

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-490739/3

Matrix: Water

Analysis Batch: 490739

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 490739	.					~ 5
A of the	Spike		LCS	_	0/ D = =	%Rec.
Analyte	Added	22.3	Qualifier Unit	D	%Rec 111	70 - 130
cis-1,3-Dichloropropene	20.0		ug/L			
1,2-Dibromo-3-Chloropropane	20.0	20.7	ug/L		103 104	70 - 130
Dibromomethane	20.0	20.7	ug/L			70 - 130
1,2-Dichlorobenzene	20.0	21.6	ug/L		108	70 - 130
1,3-Dichlorobenzene	20.0	20.2	ug/L		101	70 - 130
1,4-Dichlorobenzene	20.0	21.3	ug/L "		106	70 - 130
Dichlorobromomethane	20.0	21.5	ug/L		107	70 - 130
Dichlorodifluoromethane	20.0	22.5	ug/L 		112	70 - 130
1,1-Dichloroethane	20.0	20.8	ug/L 		104	70 - 130
1,2-Dichloroethane	20.0	20.1	ug/L		101	70 - 130
1,1-Dichloroethene	20.0	22.0	ug/L		110	70 - 130
1,2-Dichloropropane	20.0	21.7	ug/L		108	70 - 130
1,3-Dichloropropane	20.0	20.7	ug/L		103	70 - 130
2,2-Dichloropropane	20.0	22.9	ug/L		115	70 - 130
1,1-Dichloropropene	20.0	22.5	ug/L		113	70 - 130
1,3-Dichloropropene, Total	40.0	43.5	ug/L		109	70 - 130
Diisopropyl ether	20.0	20.7	ug/L		104	70 - 130
Ethylbenzene	20.0	21.8	ug/L		109	70 - 130
Ethylene Dibromide	20.0	21.0	ug/L		105	70 - 130
Freon 113	20.0	23.3	ug/L		117	70 - 130
Hexachlorobutadiene	20.0	23.2	ug/L		116	70 - 130
2-Hexanone	100	99.7	ug/L		100	70 - 130
Isopropylbenzene	20.0	21.7	ug/L		108	70 - 130
4-Isopropyltoluene	20.0	22.4	ug/L		112	70 - 130
Methylene Chloride	20.0	21.0	ug/L		105	70 - 130
2-Butanone (MEK)	100	105	ug/L		105	70 - 130
4-Methyl-2-pentanone (MIBK)	100	104	ug/L		104	70 - 130
m-Xylene & p-Xylene	20.0	21.9	ug/L		109	70 - 130
Naphthalene	20.0	21.1	ug/L		106	70 - 130
n-Butylbenzene	20.0	23.5	ug/L		117	70 - 130
N-Propylbenzene	20.0	22.0	ug/L		110	70 - 130
o-Xylene	20.0	21.5	ug/L		107	70 - 130
sec-Butylbenzene	20.0	22.0	ug/L		110	70 - 130
Styrene	20.0	21.2	ug/L		106	70 - 130
Tert-amyl methyl ether	20.0	20.1	ug/L		100	70 - 130
tert-Butyl alcohol	200	183	ug/L		91	70 - 130
tert-Butylbenzene	20.0	22.0	ug/L		110	70 - 130
Tert-butyl ethyl ether	20.0	21.2	ug/L		106	70 - 130
1,1,1,2-Tetrachloroethane	20.0	20.9	ug/L		105	70 - 130
1,1,2,2-Tetrachloroethane	20.0	20.5	ug/L		102	70 - 130
Tetrachloroethene	20.0	22.5	ug/L		113	70 - 130
Toluene	20.0	21.4	ug/L		107	70 - 130
trans-1,2-Dichloroethene	20.0	21.4	ug/L		107	70 - 130
trans-1,3-Dichloropropene	20.0	21.4	ug/L		106	70 - 130
1,2,3-Trichlorobenzene	20.0	21.9	ug/L		110	70 - 130
1,2,4-Trichlorobenzene	20.0	22.5	ug/L		112	70 - 130
1,1,1-Trichloroethane	20.0	20.9	ug/L		104	70 - 130 70 - 130
		20.9			103	70 - 130
1,1,2-Trichloroethane	20.0	20.5	ug/L		103	10 ~ 130

7

QC Sample Results

Client: Weston Solutions, Inc. Project/Site: Black & Decker

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-490739/3

Matrix: Water

Analysis Batch: 490739

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Trichloroethene	20.0	22.3		ug/L		112	70 - 130	
Trichlorofluoromethane	20.0	24.3		ug/L		122	70 - 130	
1,2,3-Trichloropropane	20.0	20.5		ug/L		103	70 - 130	
Trihalomethanes, Total	80.0	84.2		ug/L		105	70 - 130	
1,2,4-Trimethylbenzene	20.0	21.3		ug/L		107	70 - 130	
1,3,5-Trimethylbenzene	20.0	21.7		ug/L		108	70 - 130	
Vinyl chloride	20.0	22.6		ug/L		113	70 - 130	
Xylenes, Total	40.0	43.3		ug/L		108	70 - 130	

LCS LCS

Surrogate	%Recovery	Limits
4-Bromofluorobenzene	99	 70 - 130
1,2-Dichlorobenzene-d4	100	70 - 130

Lab Sample ID: LCSD 680-490739/4

Matrix: Water

Analysis Batch: 490739

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier l	Unit	D	%Rec	Limits	RPD	Limit
Acetone	100	93.8	l	ug/L		94	70 - 130	1	30
Benzene	20.0	20.1	ι	ug/L		100	70 - 130	4	30
Bromobenzene	20.0	20.9	ι	ug/L		105	70 - 130	2	30
Bromoform	20.0	20.5	ι	ug/L		102	70 - 130	1	30
Bromomethane	20.0	19.3	ι	ug/L		96	70 - 130	3	30
Carbon tetrachloride	20.0	20.7	ι	ug/L		103	70 - 130	5	30
Chlorobenzene	20.0	20.5	ι	ug/L		102	70 - 130	5	30
Chlorobromomethane	20.0	21.2	ι	ug/L		106	70 - 130	2	30
Chlorodibromomethane	20.0	20.7	ι	ug/L		103	70 - 130	2	30
Chloroethane	20.0	24.3	l	ug/L		122	70 - 130	3	30
Chloroform	20.0	20.6	ι	ug/L		103	70 - 130	1	30
Chloromethane	20.0	17.9	ι	ug/L		90	70 - 130	3	30
2-Chlorotoluene	20.0	21.0		ug/L		105	70 - 130	3	30
4-Chlorotoluene	20.0	20.6	ι	ug/L		103	70 - 130	1	30
cis-1,2-Dichloroethene	20.0	21.8	ι	ug/L		109	70 - 130	1	30
cis-1,3-Dichloropropene	20.0	20.8	l	ug/L		104	70 - 130	7	30
1,2-Dibromo-3-Chloropropane	20.0	21.5	ι	ug/L		107	70 - 130	4	30
Dibromomethane	20.0	19.9	ι	ug/L		100	70 - 130	4	30
1,2-Dichlorobenzene	20.0	20.8	ι	ug/L		104	70 - 130	4	30
1,3-Dichlorobenzene	20.0	20.0	ι	ug/L		100	70 - 130	1	30
1,4-Dichlorobenzene	20.0	20.7	l	ug/L		104	70 - 130	3	30
Dichlorobromomethane	20.0	20.5	l	ug/L		103	70 - 130	4	30
Dichlorodifluoromethane	20.0	21.7	l	ug/L		109	70 - 130	3	30
1,1-Dichloroethane	20.0	21.1	ι	ug/L		105	70 - 130	1	30
1,2-Dichloroethane	20.0	19.7	l	ug/L		98	70 - 130	2	30
1,1-Dichloroethene	20.0	21.5	l	ug/L		107	70 - 130	2	30
1,2-Dichloropropane	20.0	20.4	l	ug/L		102	70 - 130	6	30
1,3-Dichloropropane	20.0	19.7	l	ug/L		99	70 - 130	5	30
2,2-Dichloropropane	20.0	22.0	l	ug/L		110	70 - 130	4	30
1,1-Dichloropropene	20.0	21.6	ı	ug/L		108	70 - 130	4	30

Client: Weston Solutions, Inc. Project/Site: Black & Decker

TestAmerica Job ID: 680-141797-1

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-490739/4

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 490739

	Spike	LCSD LCSD)		%Rec.		RPD
Analyte	Added F	Result Quali	fier Unit	D %Rec	Limits	RPD	Limit
1,3-Dichloropropene, Total	40.0	40.5	ug/L	101	70 - 130	7	30
Diisopropyl ether	20.0	20.6	ug/L	103	70 - 130	1	30
Ethylbenzene	20.0	21.4	ug/L	107	70 - 130	2	30
Ethylene Dibromide	20.0	19.9	ug/L	100	70 - 130	5	30
Freon 113	20.0	22.3	ug/L	111	70 - 130	5	30
Hexachlorobutadiene	20.0	22.5	ug/L	112	70 - 130	3	30
2-Hexanone	100	96.1	ug/L	96	70 - 130	4	30
Isopropylbenzene	20.0	21.1	ug/L	106	70 - 130	3	30
4-Isopropyltoluene	20.0	21.9	ug/L	109	70 - 130	2	30
Methylene Chloride	20.0	20.7	ug/L	104	70 - 130	1	30
2-Butanone (MEK)	100	103	ug/L	103	70 - 130	2	30
4-Methyl-2-pentanone (MIBK)	100	97.0	ug/L	97	70 ~ 130	7	30
m-Xylene & p-Xylene	20.0	21.2	ug/L	106	70 - 130	3	30
Naphthalene	20.0	20.5	ug/L	102	70 - 130	3	30
n-Butylbenzene	20.0	22.7	ug/L	114	70 - 130	3	30
N-Propylbenzene	20.0	21.4	ug/L	107	70 - 130	3	30
o-Xylene	20.0	20.9	ug/L	104	70 - 130	3	30
sec-Butylbenzene	20.0	21.4	ug/L	107	70 - 130	3	30
Styrene	20.0	20.6	ug/L	103	70 - 130	2	30
Tert-amyl methyl ether	20.0	19.9	ug/L	100	70 - 130	1	30
tert-Butyl alcohol	200	186	ug/L	93	70 - 130	2	30
tert-Butylbenzene	20.0	21.3	ug/L	106	70 - 130	3	30
Tert-butyl ethyl ether	20.0	20.8	ug/L	104	70 - 130	2	30
1,1,1,2-Tetrachioroethane	20.0	20.6	ug/L	103	70 - 130	1	30
1,1,2,2-Tetrachloroethane	20.0	20.1	ug/L	101	70 - 130	2	30
Tetrachloroethene	20.0	21.7	ug/L	109	70 - 130	4	30
Toluene	20.0	20.8	ug/L	104	70 - 130	3	30
trans-1,2-Dichloroethene	20.0	21.1	ug/L	106	70 - 130	1	30
trans-1,3-Dichloropropene	20.0	19.7	ug/L	99	70 - 130	7	30
1,2,3-Trichlorobenzene	20.0	21.3	ug/L	106	70 - 130	3	30
1,2,4-Trichlorobenzene	20.0	22.1	ug/L	110	70 - 130	2	30
1,1,1-Trichloroethane	20.0	19.9	ug/L	99	70 - 130	5	30
1,1,2-Trichloroethane	20.0	19.7	ug/L	99	70 - 130	4	30
Trichloroethene	20.0	21.7	ug/L	109	70 - 130	3	30
Trichlorofluoromethane	20.0	23.5	ug/L	118	70 - 130	3	30
1,2,3-Trichloropropane	20.0	19.8	ug/L	99	70 - 130	4	30
Trihalomethanes, Total	0.08	82.3	ug/L	103	70 - 130	2	30
1,2,4-Trimethylbenzene	20.0	20.6	ug/L	103	70 - 130	3	30
1,3,5-Trimethylbenzene	20.0	21.1	ug/L	106	70 - 130	2	30
Vinyl chloride	20.0	22.1	ug/L	111	70 - 130	2	30
Xylenes, Total	40.0	42.1	ug/L	105	70 - 130	3	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits		
4-Bromofluorobenzene	100		70 - 130		
1 2-Dichlorobenzene-d4	101		70 _~ 130		

QC Association Summary

Client: Weston Solutions, Inc. Project/Site: Black & Decker

TestAmerica Job ID: 680-141797-1

GC/MS VOA

Analysis Batch: 490628

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-141797-2	RFW-20	Total/NA	Water	524.2	
680-141797-3	RFW-21	Total/NA	Water	524.2	
680-141797-4	HAMP-22	Total/NA	Water	524.2	
680-141797-5	HAMP-23	Total/NA	Water	524.2	
MB 680-490628/9	Method Blank	Total/NA	Water	524.2	
LCS 680-490628/3	Lab Control Sample	Total/NA	Water	524.2	
LCSD 680-490628/4	Lab Control Sample Dup	Total/NA	Water	524.2	

Analysis Batch: 490739

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-141797-1	Trip Blank	Total/NA	Water	524.2	**************************************
MB 680-490739/10	Method Blank	Total/NA	Water	524.2	
LCS 680-490739/3	Lab Control Sample	Total/NA	Water	524.2	
LCSD 680-490739/4	Lab Control Sample Dup	Total/NA	Water	524.2	

Lab Chronicle

Client: Weston Solutions, Inc. Project/Site: Black & Decker

TestAmerica Job ID: 680-141797-1

Client Sample ID: Trip Blank

Date Collected: 08/02/17 06:00 Date Received: 08/04/17 09:10 Lab Sample ID: 680-141797-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	524.2		1	5 mL	5 mL	490739	08/09/17 13:13	DAS	TAL SAV
	Instrumen	t ID: CMSS								

Client Sample ID: RFW-20

Date Collected: 08/02/17 09:00 Date Received: 08/04/17 09:10 Lab Sample ID: 680-141797-2

Lab Sample ID: 680-141797-3

Lab Sample ID: 680-141797-4

Lab Sample ID: 680-141797-5

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Dil Initial Final Batch Prepared Batch Batch Prep Type Method Factor **Amount** Amount Number or Analyzed Analyst Lab Type Run 490628 08/08/17 16:24 DAS TAL SAV Total/NA 524.2 5 mL 5 mL Analysis Instrument ID: CMSS

Client Sample ID: RFW-21

Date Collected: 08/02/17 08:15

Date Received: 08/04/17 09:10

Dil Initial Final Batch Prepared Batch Batch Number Prep Type Туре Method Run Factor Amount **Amount** or Analyzed Analyst Lab 08/08/17 16:47 DAS 490628 TAL SAV Total/NA Analysis 524.2 5 mL 5 mL Instrument ID: CMSS

Client Sample ID: HAMP-22

Date Collected: 08/03/17 09:45

Date Received: 08/04/17 09:10

Dil Initial Final Batch Prepared Batch Batch Amount Number or Analyzed Analyst Prep Type Type Method Run Factor **Amount** Lab 490628 08/08/17 17:10 DAS TAL SAV Total/NA 524.2 5 mL 5 mL Analysis Instrument ID: CMSS

Client Sample ID: HAMP-23

Date Collected: 08/03/17 09:50

Date Received: 08/04/17 09:10

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Run Factor Amount Amount Number or Analyzed **Analyst** Lab Type 490628 08/08/17 17:33 DAS TAL SAV Total/NA Analysis 524.2 5 mL 5 mL Instrument ID: CMSS

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

C.

元言がいるに関する

Sinz Laboche Avenue

Savannah, 64 31404 Phone: 912, 354, 7858 Far:

Set Attanta

204464 Chain of Custody Record

のでする。

restAmerica Laboratories, inc.

TAL-8210 (0713) Sample Specific Notes Sample Disposal (A fee may be assossed if samples are retained longer than 1 month.) For Lab Use Only Walk-in Client at Sampling Job / SDG No Merm 10 No Date/Time ろくか、中土してやの ۸٩ س Choany Company 680-141797 Chain of Custody Site Contact: Cores Flowingher 0 Lab Contact: 6,462 Perform MS / MSD (Y / N) 2 8 3 1.1 1600 Dale/ 1896 Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Cistes for the sample in the Ń 1 is talliagon have so the dead Project Manager Keatha Connec Matrix Analysis Turnaround Time 3 CaGrabi Sample Type J Regulatory Program: Sample 5 ひとひ 5 2 17 0600 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other 900 356 LALENDAN DAYS Custody Seat No から -Sample TellFax 83 Comments Section if the lab is to dispose of the sample Special Instructions/QC Requirements & Comments Company Name (Structures Address 1410 Western (Dan Project Name Relack 1 Decker Sample Identification Client Contact Phone 610,721.0583 Possible Hazard Identification EC JHV HAVE 28 of 30 Tip Black 000 了 34% Non-Hazard REW ## () Sife

07.0

477E/8

をはる

Received in Lybridge

hate/Time

Date/Time

Login Sample Receipt Checklist

Client: Weston Solutions, Inc.

Job Number: 680-141797-1

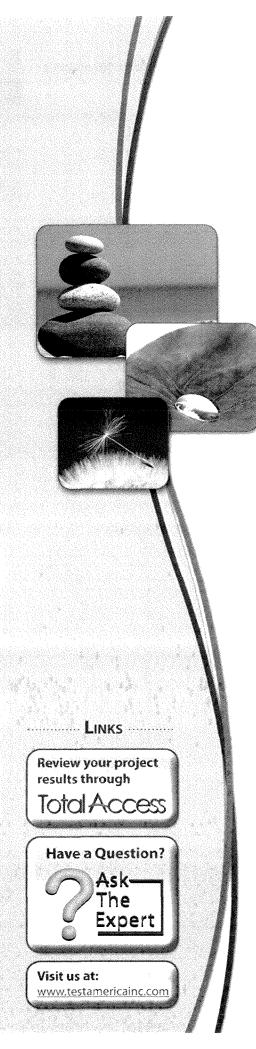
List Source: TestAmerica Savannah

Login Number: 141797

List Number: 1

Creator: Edwards, Jessica R

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	


Accreditation/Certification Summary

Client: Weston Solutions, Inc. Project/Site: Black & Decker

TestAmerica Job ID: 680-141797-1

Laboratory: TestAmerica Savannah
The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Maryland	State Program	3	250	12-31-17

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

TestAmerica Job ID: 500-132231-1 Client Project/Site: Black and Decker

For:

Weston Solutions, Inc. 1400 Weston Way PO BOX 2653 West Chester, Pennsylvania 19380

Attn: Greg Flasinski

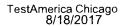
RILL KhyM

Authorized for release by: 8/18/2017 3:13:38 PM

Richard Wright, Senior Project Manager (708)534-5200

richard.wright@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.


This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	8
Sample Summary	9
Client Sample Results	10
Definitions	62
QC Association	63
Surrogate Summary	64
QC Sample Results	65
Chronicle	81
Certification Summary	86
Chain of Custody	87
Receipt Checklists	90

Case Narrative

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Job ID: 500-132231-1

Laboratory: TestAmerica Chicago

Narrative

Job Narrative 500-132231-1

Comments

No additional comments

Receip

The samples were received on 8/7/2017 10:25 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 13.8° C.

GC/MS VOA

Method(s) 8260B: The following analytes recovered outside control limits for the LCS associated with bromomethane, isopropylbenzene and bromobenzene. This is not indicative of a systematic control problem because these were random marginal exceedances. Qualified results have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

K

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-1A

Lab Sample ID: 500-132231-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Toluene	1.0		0.50	0.15	ug/L	1	mer	8260B	Total/NA

Client Sample ID: RFW-1B

Client Sample ID: RFW-2A

Lab Sample ID: 500-132231-2

Analyte	Result Q	ualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Toluene	0.99		0.50	0.15	ug/L	1	,000	8260B	Total/NA

Lab Sample ID: 500-132231-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	0.74		0.50	0.16	ug/L	1		8260B	Total/NA

Client Sample ID: RFW-2B Lab Sample ID: 500-132231-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	0.71		0.50	0.16	ug/L	1		8260B	Total/NA

Client Sample ID: RFW-3B Lab Sample ID: 500-132231-5

No Detections.

Client Sample ID: RFW-4A Lab Sample ID: 500-132231-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	1.1		1.0	0.41	ug/L	1	8260B	Total/NA
Chloroform	1.1	J	2.0	0.37	ug/L	1	8260B	Total/NA
Trichloroethene	31		0.50	0.16	ug/L	1	8260B	Total/NA
Tetrachloroethene	9.5		1.0	0.37	ua/L	1	8260B	Total/NA

Client Sample ID: RFW-4A DUP Lab Sample ID: 500-132231-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
cis-1,2-Dichloroethene	0.98	J	1.0	0.41	ug/L	1	-	8260B	Total/NA	
Chloroform	1.1	J	2.0	0.37	ug/L	1		8260B	Total/NA	
Trichloroethene	31		0.50	0.16	ug/L	1		8260B	Total/NA	
Tetrachloroethene	9.7		1.0	0.37	ug/L	1		8260B	Total/NA	

Client Sample ID: RFW-4B Lab Sample ID: 500-132231-8

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac (Method	Prep Type
cis-1,2-Dichloroethene	3.5	1.0	0.41 ug/L	1	8260B	Total/NA
Chloroform	1.7 J	2.0	0.37 ug/L	1	8260B	Total/NA
Trichloroethene	61	0.50	0.16 ug/L	1	8260B	Total/NA
Tetrachloroethene	78	1.0	0.37 ug/L	1	8260B	Total/NA

Client Sample ID: RFW-6 Lab Sample ID: 500-132231-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	1.1		0.50	0.16	ug/L	1	horsoni.	8260B	Total/NA
Tetrachloroethene	1.2		1.0	0.37	ug/L	1		8260B	Total/NA

Page 4 of 90

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-7 Lab Sample ID: 500-132231-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	1.2		0.50	0.16	ug/L	1		8260B	Total/NA

Client Sample ID: RFW-9 Lab Sample ID: 500-132231-11

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	0.66 J	1.0	0.39	ug/L	1		8260B	Total/NA
1,1-Dichloroethane	0.51 J	1.0	0.41	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene	16	1.0	0.41	ug/L	1		8260B	Total/NA
Trichloroethene	8.5	0.50	0.16	ug/L	1		8260B	Total/NA
Tetrachloroethene	5.0	1.0	0.37	ug/L	1		8260B	Total/NA

Client Sample ID: RFW-11B Lab Sample ID: 500-132231-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	2.7		0.50	0.16	ug/L	1		8260B	Total/NA

Client Sample ID: RFW-12B Lab Sample ID: 500-132231-13

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	2.2	1.0	0.41 ug/L	1	8260B	Total/NA
Trichloroethene	160	0.50	0.16 ug/L	1	8260B	Total/NA
Tetrachloroethene	14	1.0	0.37 ug/L	1	8260B	Total/NA

Client Sample ID: RFW-13 Lab Sample ID: 500-132231-14

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	1.3		1.0	0.41	ug/L	1		8260B	Total/NA
Trichloroethene	2.8		0.50	0.16	ug/L	1		8260B	Total/NA
Tetrachloroethene	16		1.0	0.37	ua/L	1		8260B	Total/NA

Client Sample ID: RFW-17 Lab Sample ID: 500-132231-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	0.41	J	1.0	0.37	ug/L	1		8260B	Total/NA

Client Sample ID: Trip Blank Lab Sample ID: 500-132231-16

No Detections.

Client Sample ID: EW-2 Lab Sample ID: 500-132231-17

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	3.2	1.0	0.41	ug/L	1	8260B	Total/NA
Trichloroethene	99	0.50	0.16	ug/L	1	8260B	Total/NA
Tetrachloroethene	53	1.0	0.37	ug/L	1	8260B	Total/NA

Client Sample ID: EW-3 Lab Sample ID: 500-132231-18

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	0.16	J	0.50	0.15	ug/L	1		8260B	Total/NA
Acetone	7.0		5.0	1.7	ug/L	1		8260B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Lab Sample ID: 500-132231-18

Lab Sample ID: 500-132231-19

Lab Sample ID: 500-132231-20

Lab Sample ID: 500-132231-21

Lab Sample ID: 500-132231-22

Lab Sample ID: 500-132231-23

Lab Sample ID: 500-132231-24

Lab Sample ID: 500-132231-25

Client Sample ID: EW-3 (Co	ntinued)
----------------------------	----------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	2.1		1.0	0.41	ug/L	1	handhan.	8260B	Total/NA
Trichloroethene	28		0.50	0.16	ug/L	1		8260B	Total/NA
Toluene	0.15	J	0.50	0.15	ug/L	1		8260B	Total/NA
Tetrachloroethene	1.3		1.0	0.37	ug/L	1		8260B	Total/NA

Client Sample ID: EW-4

Analyte	Result C	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	180	0.50	0.16	ug/L	1		8260B	Total/NA
Tetrachloroethene	4.0	1.0	0.37	ug/L	1		8260B	Total/NA

Client Sample ID: EW-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	81		0.50	0.16	ug/L	1		8260B	Total/NA
Tetrachloroethene	2.2		1.0	0.37	ug/L	1		8260B	Total/NA

Client Sample ID: EW-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	5.5		0.50	0.16	ug/L	1	-	8260B	Total/NA
Tetrachloroethene	8.6		1.0	0.37	ug/L	1		8260B	Total/NA

Client Sample ID: EW-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	5.2		5.0	1.7	ug/L	1		8260B	Total/NA
1,1-Dichloroethane	0.60	J	1.0	0.41	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene	7.1		1.0	0.41	ug/L	1		8260B	Total/NA
Trichloroethene	4.5		0.50	0.16	ug/L	1		8260B	Total/NA
Tetrachloroethene	11		1.0	0.37	ug/L	1		8260B	Total/NA

Client Sample ID: EW-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.91	J	1.0	0.41	ug/L	1	***	8260B	Total/NA
cis-1,2-Dichloroethene	34		1.0	0.41	ug/L	1		8260B	Total/NA
Trichloroethene	7.7		0.50	0.16	ug/L	1		8260B	Total/NA
Tetrachloroethene	66		1.0	0.37	ug/L	1		8260B	Total/NA

Client Sample ID: EW-9

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Trichloroethene	0.59	0.50	0.16 ug/L	1 8260B	Total/NA
Tetrachloroethene	70	1.0	0.37 ug/L	1 8260B	Total/NA

Client Sample ID: EW-9 DUP

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	5.8		5.0	1.7	ug/L	1		8260B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Chicago

8/18/2017

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-9 DUP (Continued)

Lab Sample ID: 500-132231-25

Analyte	Result	Qualifier	RL	MDL	Unit	Dil F	ac D	Method	Prep Type
Trichloroethene	0.70		0.50	0.16	ug/L		1	8260B	Total/NA
Tetrachloroethene	72		1.0	0.37	ug/L		1	8260B	Total/NA

Client Sample ID: EW-10 Lab Sample ID: 500-132231-26

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	1.8		1.0	0.37	ug/L	1		8260B	Total/NA

8/18/2017

Method Summary

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Method	Method Description	Protocol	Laboratory
8260B	VOC	SW846	TAL CHI

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

5

TestAmerica Job ID: 500-132231-1

Sample Summary

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Lab Sample ID Client Sample ID Matrix Collected Received 08/02/17 07:20 08/07/17 10:25 500-132231-1 RFW-1A Water 500-132231-2 RFW-1B Water 500-132231-3 RFW-2A Water 08/02/17 10:05 08/07/17 10:25 RFW-2B Water 08/02/17 10:50 08/07/17 10:25 500-132231-4 500-132231-5 RFW-3B Water 08/02/17 16:00 08/07/17 10:25 500-132231-6 RFW-4A Water Water RFW-4A DUP 500-132231-7 500-132231-8 RFW-4B Water 08/03/17 11:25 08/07/17 10:25 Water 08/02/17 12:40 08/07/17 10:25 500-132231-9 RFW-6 Water RFW-7 500-132231-10 500-132231-11 RFW-9 Water 08/02/17 08:10 08/07/17 10:25 500-132231-12 RFW-11B Water 08/03/17 09:20 08/07/17 10:25 500-132231-13 RFW-12B Water Water 500-132231-14 RFW-13 500-132231-15 RFW-17 Water 08/02/17 06:00 08/07/17 10:25 Trip Blank Water 500-132231-16 08/03/17 13:00 08/07/17 10:25 Water 500-132231-17 EW-2 08/03/17 09:30 08/07/17 10:25 500-132231-18 EW-3 Water Water 08/03/17 08:50 08/07/17 10:25 500-132231-19 EW-4 Water FW-5 500-132231-20 Water 08/02/17 16:25 08/07/17 10:25 500-132231-21 EW-6 EW-7 Water 500-132231-22 EW-8 Water 08/02/17 16:15 08/07/17 10:25 500-132231-23 Water 500-132231-24 EW-9 500-132231-25 EW-9 DUP Water Water 08/02/17 15:45 08/07/17 10:25 500-132231-26 EW-10

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-1A

Date Collected: 08/02/17 07:20 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-1

Matrix: Water

Method: 8260B - VOC Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Benzene	<0.50	0.50	0.15 ug/L		08/10/17 14:10	1
Dichlorodifluoromethane	<2.0	2.0	0.67 ug/L		08/10/17 14:10	1
Chloromethane	<1.0	1.0	0.32 ug/L		08/10/17 14:10	1
Vinyl chloride	<0.50	0.50	0.20 ug/L		08/10/17 14:10	1
Bromomethane	<2.0	2.0	0.80 ug/L		08/10/17 14:10	1
Chloroethane	<1.0	1.0	0.51 ug/L		08/10/17 14:10	1
Trichlorofluoromethane	<1.0	1.0	0.43 ug/L		08/10/17 14:10	1
1,1-Dichloroethene	<1.0	1.0	0.39 ug/L		08/10/17 14:10	1
Carbon disulfide	<2.0	2.0	0.45 ug/L		08/10/17 14:10	1
Acetone	<5.0	5.0	1.7 ug/L		08/10/17 14:10	1
Methylene Chloride	<5.0	5.0	1.6 ug/L		08/10/17 14:10	1
trans-1,2-Dichloroethene	<1.0	1.0	0.35 ug/L		08/10/17 14:10	1
	<1.0 <1.0	1.0	0.33 ug/L 0.41 ug/L		08/10/17 14:10	1
1,1-Dichloroethane	<1.0 <1.0	1.0	0.41 ug/L 0.44 ug/L		08/10/17 14:10	1
2,2-Dichloropropane	<1.0	1.0	0.44 ug/L 0.41 ug/L		08/10/17 14:10	1
cis-1,2-Dichloroethene		5.0			08/10/17 14:10	1
Methyl Ethyl Ketone	< 5.0		2.1 ug/L		08/10/17 14:10	1
Bromochloromethane	<1.0	1.0	0.43 ug/L		08/10/17 14:10	1
Chloroform	<2.0	2.0	0.37 ug/L			1
1,1,1-Trichloroethane	<1.0	1.0	0.38 ug/L		08/10/17 14:10	
1,1-Dichloropropene	<1.0	1.0	0.30 ug/L		08/10/17 14:10	1
Carbon tetrachloride	<1.0	1.0	0.38 ug/L		08/10/17 14:10	1
1,2-Dichloroethane	<1.0	1.0	0.39 ug/L		08/10/17 14:10	1
Trichloroethene	<0.50	0.50	0.16 ug/L		08/10/17 14:10	1
1,2-Dichloropropane	<1.0	1.0	0.43 ug/L		08/10/17 14:10	1
Dibromomethane	<1.0	1.0	0.27 ug/L		08/10/17 14:10	1
Bromodichloromethane	<1.0	1.0	0.37 ug/L		08/10/17 14:10	1
cis-1,3-Dichloropropene	<1.0	1.0	0.42 ug/L		08/10/17 14:10	1
methyl isobutyl ketone	< 5.0	5.0	2.2 ug/L		08/10/17 14:10	1
Toluene	1.0	0.50	0.15 ug/L		08/10/17 14:10	1
trans-1,3-Dichloropropene	<1.0	1.0	0.36 ug/L		08/10/17 14:10	1
1,1,2-Trichloroethane	<1.0	1.0	0.35 ug/L		08/10/17 14:10	1
Tetrachloroethene	<1.0	1.0	0.37 ug/L		08/10/17 14:10	1
1,3-Dichloropropane	<1.0	1.0	0.36 ug/L		08/10/17 14:10	1
2-Hexanone	<5.0	5.0	1.6 ug/L		08/10/17 14:10	1
Dibromochloromethane	<1.0	1.0	0.49 ug/L		08/10/17 14:10	1
1,2-Dibromoethane	<1.0	1.0	0.39 ug/L		08/10/17 14:10	1
Chlorobenzene	<1.0	1.0	0.39 ug/L		08/10/17 14:10	1
1,1,1,2-Tetrachloroethane	<1.0	1.0	0. 4 6 ug/L		08/10/17 14:10	1
Ethylbenzene	<0.50	0.50	0.18 ug/L		08/10/17 14:10	1
m&p-Xylene	<1.0	1.0	0.18 ug/L		08/10/17 14:10	1
o-Xylene	<0.50	0.50	0.22 ug/L		08/10/17 14:10	1
Styrene	<1.0	1.0	0.39 ug/L		08/10/17 14:10	1
Bromoform	<1.0	1.0	0.48 ug/L		08/10/17 14:10	1
lsopropylbenzene	<1.0	1.0	0.39 ug/L		08/10/17 14:10	1
Bromobenzene	<1.0	1.0	0.36 ug/L		08/10/17 14:10	1
1,1,2,2-Tetrachloroethane	<1.0	1.0	0. 4 0 ug/L		08/10/17 14:10	1
1,2,3-Trichloropropane	<1.0	1.0	0.41 ug/L		08/10/17 14:10	1
N-Propylbenzene	<1.0	1.0	0. 41 ug/L		08/10/17 14:10	1
2-Chlorotoluene	<1.0	1.0	0.31 ug/L		08/10/17 14:10	1

TestAmerica Chicago

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-1A

Date Collected: 08/02/17 07:20
Date Received: 08/07/17 10:25

Lab Sample ID: 500-132231-1

Matrix: Water

Method: 8260B - VOC (Contin	ued) Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			08/10/17 14:10	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			08/10/17 14:10	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			08/10/17 14:10	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			08/10/17 14:10	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			08/10/17 14:10	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			08/10/17 14:10	1
p-lsopropyltoluene	<1.0	1.0	0.36	ug/L			08/10/17 14:10	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			08/10/17 14:10	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			08/10/17 14:10	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			08/10/17 14:10	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			08/10/17 14:10	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			08/10/17 14:10	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			08/10/17 14:10	1
Naphthalene	<1.0	1.0	0.34	ug/L			08/10/17 14:10	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			08/10/17 14:10	1

Surrogate	%Recovery Qualifier	Limits	Prepared A	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	75 - 126	08/	10/17 14:10	1
Toluene-d8 (Surr)	95	75 - 120	08/	10/17 14:10	1
4-Bromofluorobenzene (Surr)	93	72 - 124	08/	10/17 14:10	1
Dibromofluoromethane	97	75 - 120	08/	10/17 14:10	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-1B

Date Collected: 08/02/17 07:25 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-2

Matrix: Water

Analyte Benzene Dichlorodifluoromethane	Result Qua			*************	 Prepared	-	
		0.50	0.15	ug/L		08/10/17 14:38	1
	<2.0	2.0	0.67	ug/L		08/10/17 14:38	1
Chloromethane	<1.0	1.0	0.32	ug/L		08/10/17 14:38	1
Vinyl chloride	< 0.50	0.50	0.20	ug/L		08/10/17 14:38	1
3romomethane	<2.0	2.0	0.80	ug/L		08/10/17 14:38	1
Chloroethane	<1.0	1.0	0.51	ug/L		08/10/17 14:38	1
Trichlorofluoromethane	<1.0	1.0	0.43	ug/L		08/10/17 14:38	1
1,1-Dichloroethene	<1.0	1.0	0.39	ug/L		08/10/17 14:38	1
Carbon disulfide	<2.0	2.0		ug/L		08/10/17 14:38	1
Acetone	<5.0	5.0	1.7	ug/L		08/10/17 14:38	1
Methylene Chloride	<5.0	5.0	1.6	ug/L		08/10/17 14:38	1
rans-1,2-Dichloroethene	<1.0	1.0	0.35	ug/L		08/10/17 14:38	1
1,1-Dichloroethane	<1.0	1.0	0.41	ug/L		08/10/17 14:38	1
2,2-Dichloropropane	<1.0	1.0		ug/L		08/10/17 14:38	1
cis-1,2-Dichloroethene	<1.0	1.0	0.41	-		08/10/17 14:38	1
Methyl Ethyl Ketone	<5.0	5.0	2.1	ug/L		08/10/17 14:38	1
Bromochloromethane	<1.0	1.0	0.43	-		08/10/17 14:38	1
Chloroform	<2.0	2.0	0.37			08/10/17 14:38	1
1,1,1-Trichloroethane	<1.0	1.0		ug/L		08/10/17 14:38	1
1,1-Dichloropropene	<1.0	1.0	0.30			08/10/17 14:38	1
Carbon tetrachloride	<1.0	1.0		ug/L		08/10/17 14:38	1
1,2-Dichloroethane	<1.0	1.0		ug/L		08/10/17 14:38	1
Trichloroethene	< 0.50	0.50		ug/L		08/10/17 14:38	1
1,2-Dichloropropane	<1.0	1.0		ug/L		08/10/17 14:38	1
Dibromomethane	<1.0	1.0	0.27	_		08/10/17 14:38	1
Bromodichloromethane	<1.0	1.0	0.37			08/10/17 14:38	1
cis-1,3-Dichloropropene	<1.0	1.0		ug/L		08/10/17 14:38	1
methyl isobutyl ketone	<5.0	5.0		ug/L		08/10/17 14:38	1
Toluene	0.99	0.50		ug/L		08/10/17 14:38	1
trans-1,3-Dichloropropene	<1.0	1.0	0.36	•		08/10/17 14:38	1
1,1,2-Trichloroethane	<1.0	1.0		ug/L		08/10/17 14:38	1
Tetrachloroethene	<1.0	1.0		ug/L		08/10/17 14:38	1
1,3-Dichloropropane	<1.0	1.0	0.36	-		08/10/17 14:38	1
2-Hexanone	<5.0	5.0		ug/L		08/10/17 14:38	1
Dibromochloromethane	<1.0	1.0		ug/L		08/10/17 14:38	1
1,2-Dibromoethane	<1.0	1.0	0.39	-		08/10/17 14:38	1
Chlorobenzene	<1.0	1.0	0.39			08/10/17 14:38	1
1,1,1,2-Tetrachloroethane	<1.0	1.0		ug/L		08/10/17 14:38	1
Ethylbenzene	<0.50	0.50		ug/L		08/10/17 14:38	1
m&p-Xylene	<1.0	1.0		ug/L		08/10/17 14:38	1
o-Xylene	< 0.50	0.50		ug/L		08/10/17 14:38	1
Styrene	<1.0	1.0		ug/L		08/10/17 14:38	1
Bromoform	<1.0	1.0		ug/L		08/10/17 14:38	1
isopropylbenzene	<1.0	1.0		ug/L		08/10/17 14:38	1
	<1.0	1.0		ug/L ug/L		08/10/17 14:38	1
Bromobenzene	<1.0	1.0		ug/L ug/L		08/10/17 14:38	1
1,1,2,2-Tetrachloroethane		1.0		ug/L ug/L		08/10/17 14:38	1
1,2,3-Trichloropropane	<1.0	1.0		ug/L ug/L		08/10/17 14:38	1
N-Propylbenzene 2-Chlorotoluene	<1.0 <1.0	1.0		ug/L ug/L		08/10/17 14:38	1

TestAmerica Chicago

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-1B

Lab Sample ID: 500-132231-2

Date Collected: 08/02/17 07:25 Date Received: 08/07/17 10:25 Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			08/10/17 14:38	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			08/10/17 14:38	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			08/10/17 14:38	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			08/10/17 14:38	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			08/10/17 14:38	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			08/10/17 14:38	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			08/10/17 14:38	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			08/10/17 14:38	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			08/10/17 14:38	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			08/10/17 14:38	1
1,2-Dibromo-3-Chloropropane	< 5.0	5.0	2.0	ug/L			08/10/17 14:38	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			08/10/17 14:38	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			08/10/17 14:38	1
Naphthalene	<1.0	1.0	0.34	ug/L			08/10/17 14:38	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			08/10/17 14:38	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		75 - 126	08/10/17 14:38	1
Toluene-d8 (Surr)	96		75 - 120	08/10/17 14:38	1
4-Bromofluorobenzene (Surr)	93		72 - 124	08/10/17 14:38	1
Dibromofluoromethane	96		75 ₋ 120	08/10/17 14:38	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-2A

Date Collected: 08/02/17 10:05 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-3

Matrix: Water

Method: 8260B - VOC Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50	0.15	ug/L			08/10/17 15:05	1
Dichlorodifluoromethane	<2.0		2.0	0.67	ug/L			08/10/17 15:05	1
Chloromethane	<1.0		1.0	0.32	ug/L			08/10/17 15:05	1
Vinyl chloride	<0.50		0.50	0.20	ug/L			08/10/17 15:05	1
Bromomethane	<2.0		2.0	0.80	ug/L			08/10/17 15:05	1
Chloroethane	<1.0		1.0	0.51	ug/L			08/10/17 15:05	1
Trichlorofluoromethane	<1.0		1.0	0.43	ug/L			08/10/17 15:05	1
1,1-Dichloroethene	<1.0		1.0	0.39	ug/L			08/10/17 15:05	1
Carbon disulfide	<2.0		2.0		ug/L			08/10/17 15:05	1
Acetone	<5.0		5.0	1.7	ug/L			08/10/17 15:05	1
Methylene Chloride	<5.0		5.0	1.6	ug/L			08/10/17 15:05	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			08/10/17 15:05	1
1,1-Dichloroethane	<1.0		1.0	0.41	-			08/10/17 15:05	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			08/10/17 15:05	1
cis-1,2-Dichloroethene	<1.0		1.0	0.41	-			08/10/17 15:05	1
Methyl Ethyl Ketone	< 5.0		5.0	2.1	ug/L			08/10/17 15:05	1
Bromochloromethane	<1.0		1.0		ug/L			08/10/17 15:05	1
Chloroform	<2.0		2.0		ug/L			08/10/17 15:05	1
1,1,1-Trichloroethane	<1.0		1.0		ug/L			08/10/17 15:05	1
1,1-Dichloropropene	<1.0		1.0	0.30	•			08/10/17 15:05	1
Carbon tetrachloride	<1.0		1.0		ug/L			08/10/17 15:05	1
1.2-Dichloroethane	<1.0		1.0		ug/L			08/10/17 15:05	1
Trichloroethene	0.74		0.50		ug/L			08/10/17 15:05	1
1,2-Dichloropropane	<1.0		1.0		ug/L			08/10/17 15:05	1
Dibromomethane	<1.0		1.0		ug/L			08/10/17 15:05	1
Bromodichloromethane	<1.0		1.0		ug/L			08/10/17 15:05	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			08/10/17 15:05	1
methyl isobutyl ketone	<5.0		5.0		ug/L			08/10/17 15:05	1
Toluene	<0.50		0.50		ug/L			08/10/17 15:05	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			08/10/17 15:05	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			08/10/17 15:05	1
Tetrachloroethene	<1.0		1.0		ug/L			08/10/17 15:05	1
1,3-Dichloropropane	<1.0		1.0		ug/L			08/10/17 15:05	1
2-Hexanone	<5.0		5.0		ug/L			08/10/17 15:05	1
Dibromochloromethane	<1.0		1.0		ug/L			08/10/17 15:05	1
1.2-Dibromoethane	<1.0		1.0		ug/L			08/10/17 15:05	1
Chlorobenzene	<1.0		1.0		ug/L			08/10/17 15:05	1
1,1,1,2-Tetrachloroethane	<1.0		1.0		ug/L			08/10/17 15:05	1
Ethylbenzene	<0.50		0.50		ug/L			08/10/17 15:05	1
m&p-Xylene	<1.0		1.0		ug/L			08/10/17 15:05	1
o-Xylene	<0.50		0.50		ug/L			08/10/17 15:05	1
Styrene	<1.0		1.0		ug/L			08/10/17 15:05	1
Bromoform	<1.0		1.0		ug/L			08/10/17 15:05	1
Isopropylbenzene	<1.0		1.0		ug/L			08/10/17 15:05	1
Bromobenzene	<1.0		1.0		ug/L			08/10/17 15:05	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			08/10/17 15:05	1
1,2,3-Trichloropropane	<1.0		1.0		ug/L			08/10/17 15:05	1
N-Propylbenzene	<1.0		1.0		ug/L			08/10/17 15:05	1
I I I I I I I I I I I I I I I I I I I	0,17		1.0	U.71	~g, ~			5	•

TestAmerica Chicago

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-2A

Date Collected: 08/02/17 10:05 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-3

Matrix: Water

Method: 8260B - VOC (Continued)	
Analyte	

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25 ug/L			08/10/17 15:05	1
4-Chlorotoluene	<1.0	1.0	0.35 ug/L			08/10/17 15:05	1
tert-Butylbenzene	<1.0	1.0	0.40 ug/L			08/10/17 15:05	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36 ug/L			08/10/17 15:05	1
sec-Butylbenzene	<1.0	1.0	0.40 ug/L			08/10/17 15:05	1
1,3-Dichlorobenzene	<1.0	1.0	0.40 ug/L			08/10/17 15:05	1
p-Isopropyltoluene	<1.0	1.0	0.36 ug/L			08/10/17 15:05	1
1,4-Dichlorobenzene	<1.0	1.0	0.36 ug/L			08/10/17 15:05	1
n-Butylbenzene	<1.0	1.0	0.39 ug/L			08/10/17 15:05	1
1,2-Dichlorobenzene	<1.0	1.0	0.33 ug/L			08/10/17 15:05	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0 ug/L			08/10/17 15:05	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34 ug/L			08/10/17 15:05	1
Hexachlorobutadiene	<1.0	1.0	0.45 ug/L			08/10/17 15:05	1
Naphthalene	<1.0	1.0	0.34 ug/L			08/10/17 15:05	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46 ug/L			08/10/17 15:05	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	75 - 126	08/10/17 15:0)5 1
Toluene-d8 (Surr)	95	75 - 120	08/10/17 15:0)5 1
4-Bromofluorobenzene (Surr)	95	72 - 124	08/10/17 15:0)5 1
Dibromofluoromethane	96	75 - 120	08/10/17 15:0)5 1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-2B

Date Collected: 08/02/17 10:50 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-4

Matrix: Water

Method: 8260B - VOC Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50	~~~~	0.50	0.15	ug/L			08/10/17 15:33	1
Dichlorodifluoromethane	<2.0		2.0	0.67	ug/L			08/10/17 15:33	1
Chloromethane	<1.0		1.0	0.32	ug/L			08/10/17 15:33	1
Vinyl chloride	<0.50		0.50	0.20	ug/L			08/10/17 15:33	1
Bromomethane	<2.0		2.0	0.80	ug/L			08/10/17 15:33	1
Chloroethane	<1.0		1.0	0.51	ug/L			08/10/17 15:33	1
Trichlorofluoromethane	<1.0		1.0	0.43	ug/L			08/10/17 15:33	1
1,1-Dichloroethene	<1.0		1.0	0.39	ug/L			08/10/17 15:33	1
Carbon disulfide	<2.0		2.0		ug/L			08/10/17 15:33	1
Acetone	<5.0		5.0		ug/L			08/10/17 15:33	1
Methylene Chloride	<5.0		5.0	1.6	ug/L			08/10/17 15:33	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			08/10/17 15:33	1
1,1-Dichloroethane	<1.0		1.0		ug/L			08/10/17 15:33	1
2,2-Dichloropropane	<1.0		1.0		ug/L			08/10/17 15:33	1
cis-1,2-Dichloroethene	<1.0		1.0		ug/L			08/10/17 15:33	1
Methyl Ethyl Ketone	<5.0		5.0		ug/L			08/10/17 15:33	1
Bromochloromethane	<1.0		1.0		ug/L			08/10/17 15:33	1
Chloroform	<2.0		2.0		ug/L			08/10/17 15:33	1
1,1,1-Trichloroethane	<1.0		1.0		ug/L			08/10/17 15:33	1
1,1-Dichloropropene	<1.0		1.0		ug/L			08/10/17 15:33	1
Carbon tetrachloride	<1.0		1.0		ug/L			08/10/17 15:33	1
1,2-Dichloroethane	<1.0		1.0		ug/L			08/10/17 15:33	1
Trichloroethene	0.71		0.50		ug/L			08/10/17 15:33	1
1,2-Dichloropropane	<1.0		1.0		ug/L			08/10/17 15:33	1
Dibromomethane	<1.0		1.0		ug/L			08/10/17 15:33	1
Bromodichloromethane	<1.0		1.0		ug/L			08/10/17 15:33	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			08/10/17 15:33	1
methyl isobutyl ketone	<5.0		5.0		ug/L			08/10/17 15:33	1
Toluene	<0.50		0.50		ug/L			08/10/17 15:33	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			08/10/17 15:33	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			08/10/17 15:33	1
Tetrachloroethene	<1.0		1.0		ug/L			08/10/17 15:33	1
1,3-Dichloropropane	<1.0		1.0		ug/L			08/10/17 15:33	1
2-Hexanone	<5.0		5.0		ug/L			08/10/17 15:33	1
Dibromochloromethane	<1.0		1.0		ug/L			08/10/17 15:33	1
1,2-Dibromoethane	<1.0		1.0		ug/L			08/10/17 15:33	1
Chlorobenzene	<1.0		1.0		ug/L			08/10/17 15:33	1
1,1,1,2-Tetrachloroethane	<1.0		1.0		ug/L ug/L			08/10/17 15:33	1
	<0.50		0.50		ug/L ug/L			08/10/17 15:33	1
Ethylbenzene	<1.0		1.0					08/10/17 15:33	1
m&p-Xylene	<0.50		0.50		ug/L ug/L			08/10/17 15:33	1
o-Xylene Styrone	<0.50 <1.0		1.0		ug/L ug/L			08/10/17 15:33	1
Styrene Bromoform	<1.0 <1.0		1.0		ug/L ug/L			08/10/17 15:33	1
	<1.0 <1.0		1.0		ug/L ug/L			08/10/17 15:33	1
Isopropylbenzene	<1.0		1.0		ug/L ug/L			08/10/17 15:33	1
Bromobenzene									1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			08/10/17 15:33	
1,2,3-Trichloropropane	<1.0		1.0		ug/L			08/10/17 15:33	1
N-Propylbenzene	<1.0		1.0		ug/L			08/10/17 15:33	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			08/10/17 15:33	

TestAmerica Chicago

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-2B

Lab Sample ID: 500-132231-4

Date Collected: 08/02/17 10:50 Date Received: 08/07/17 10:25 Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L		~	08/10/17 15:33	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			08/10/17 15:33	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			08/10/17 15:33	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			08/10/17 15:33	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			08/10/17 15:33	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			08/10/17 15:33	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			08/10/17 15:33	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			08/10/17 15:33	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			08/10/17 15:33	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			08/10/17 15:33	1
1,2-Dibromo-3-Chloropropane	< 5.0	5.0	2.0	ug/L			08/10/17 15:33	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			08/10/17 15:33	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			08/10/17 15:33	1
Naphthalene	<1.0	1.0	0.34	ug/L			08/10/17 15:33	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			08/10/17 15:33	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	75 - 126	08/10/17 15:33	1
Toluene-d8 (Surr)	97	75 - 120	08/10/17 15:33	1
4-Bromofluorobenzene (Surr)	91	72 - 124	08/10/17 15:33	1
Dibromofluoromethane	97	75 ₋ 120	08/10/17 15:33	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-3B

Date Collected: 08/02/17 16:00 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-5

Matrix: Water

Method: 8260B - VOC Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50	0.50	0.15	ug/L			08/10/17 16:01	1
Dichlorodifluoromethane	<2.0	2.0	0.67	_			08/10/17 16:01	1
Chloromethane	<1.0	1.0	0.32	-			08/10/17 16:01	1
Vinyl chloride	<0.50	0.50	0.20				08/10/17 16:01	1
Bromomethane	<2.0	2.0	0.80				08/10/17 16:01	1
Chloroethane	<1.0	1.0	0.51	_			08/10/17 16:01	1
Trichlorofluoromethane	<1.0	1.0	0.43	_			08/10/17 16:01	1
1,1-Dichloroethene	<1.0	1.0	0.39	-			08/10/17 16:01	1
Carbon disulfide	<2.0	2.0	0.45	-			08/10/17 16:01	1
Acetone	<5.0	5.0		ug/L			08/10/17 16:01	1
Methylene Chloride	<5.0	5.0	1.6	ug/L			08/10/17 16:01	1
trans-1,2-Dichloroethene	<1.0	1.0		ug/L			08/10/17 16:01	1
1,1-Dichloroethane	<1.0	1.0	0.41				08/10/17 16:01	1
2,2-Dichloropropane	<1.0	1.0	0.44	ug/L			08/10/17 16:01	1
cis-1,2-Dichloroethene	<1.0	1.0		ug/L			08/10/17 16:01	1
Methyl Ethyl Ketone	<5.0	5.0	2.1	•			08/10/17 16:01	1
Bromochloromethane	<1.0	1.0	0.43	ug/L			08/10/17 16:01	1
Chloroform	<2.0	2.0		ug/L			08/10/17 16:01	1
1,1,1-Trichloroethane	<1.0	1.0		ug/L			08/10/17 16:01	1
1,1-Dichloropropene	<1.0	1.0	0.30	-			08/10/17 16:01	1
Carbon tetrachloride	<1.0	1.0		ug/L			08/10/17 16:01	1
1,2-Dichloroethane	<1.0	1.0		ug/L			08/10/17 16:01	1
Trichloroethene	<0.50	0.50		ug/L			08/10/17 16:01	1
1,2-Dichloropropane	<1.0	1.0		ug/L			08/10/17 16:01	1
Dibromomethane	<1.0	1.0		ug/L			08/10/17 16:01	1
Bromodichloromethane	<1.0	1.0		ug/L			08/10/17 16:01	1
cis-1,3-Dichloropropene	<1.0	1.0		ug/L			08/10/17 16:01	1
methyl isobutyl ketone	<5.0	5.0		ug/L			08/10/17 16:01	1
Toluene	<0.50	0.50		ug/L			08/10/17 16:01	1
trans-1,3-Dichloropropene	<1.0	1.0		ug/L			08/10/17 16:01	1
1,1,2-Trichloroethane	<1.0	1.0		ug/L			08/10/17 16:01	1
Tetrachloroethene	<1.0	1.0		ug/L			08/10/17 16:01	1
1,3-Dichloropropane	<1.0	1.0		ug/L			08/10/17 16:01	1
2-Hexanone	<5.0	5.0		ug/L			08/10/17 16:01	1
Dibromochloromethane	<1.0	1.0		ug/L			08/10/17 16:01	1
1,2-Dibromoethane	<1.0	1.0	0.39	ug/L			08/10/17 16:01	1
Chlorobenzene	<1.0	1.0	0.39	ug/L			08/10/17 16:01	1
1,1,2-Tetrachloroethane	<1.0	1.0		ug/L			08/10/17 16:01	1
Ethylbenzene	<0.50	0.50		ug/L			08/10/17 16:01	1
m&p-Xylene	<1.0	1.0		ug/L			08/10/17 16:01	1
o-Xylene	<0.50	0.50		ug/L			08/10/17 16:01	1
Styrene	<1.0	1.0		ug/L			08/10/17 16:01	1
Bromoform	<1.0	1.0		ug/L			08/10/17 16:01	1
Isopropylbenzene	<1.0	1.0		ug/L			08/10/17 16:01	1
Bromobenzene	<1.0	1.0		ug/L			08/10/17 16:01	1
1,1,2,2-Tetrachloroethane	<1.0	1.0		ug/L			08/10/17 16:01	1
1,2,3-Trichloropropane	<1.0	1.0		ug/L			08/10/17 16:01	1
N-Propylbenzene	<1.0	1.0		ug/L			08/10/17 16:01	1
2-Chlorotoluene	<1.0	1.0		ug/L			08/10/17 16:01	1

TestAmerica Chicago

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-3B

Date Collected: 08/02/17 16:00 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-5

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25 ug/L		08/10/17 16:01	1
4-Chlorotoluene	<1.0	1.0	0.35 ug/L		08/10/17 16:01	1
tert-Butylbenzene	<1.0	1.0	0.40 ug/L		08/10/17 16:01	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36 ug/L		08/10/17 16:01	1
sec-Butylbenzene	<1.0	1.0	0.40 ug/L		08/10/17 16:01	1
1,3-Dichlorobenzene	<1.0	1.0	0.40 ug/L		08/10/17 16:01	1
p-Isopropyltoluene	<1.0	1.0	0.36 ug/L		08/10/17 16:01	1
1,4-Dichlorobenzene	<1.0	1.0	0.36 ug/L		08/10/17 16:01	1
n-Butylbenzene	<1.0	1.0	0.39 ug/L		08/10/17 16:01	1
1,2-Dichlorobenzene	<1.0	1.0	0.33 ug/L		08/10/17 16:01	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0 ug/L		08/10/17 16:01	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34 ug/L		08/10/17 16:01	1
Hexachlorobutadiene	<1.0	1.0	0.45 ug/L		08/10/17 16:01	1
Naphthalene	<1.0	1.0	0.34 ug/L		08/10/17 16:01	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46 ug/L		08/10/17 16:01	1

Surrogate	%Recovery	Qualifier Li	mits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	78	5 - 126		08/10/17 16:01	1
Toluene-d8 (Surr)	96	75	5 - 120		08/10/17 16:01	1
4-Bromofluorobenzene (Surr)	94	72	? - 124		08/10/17 16:01	1
Dibromofluoromethane	96	75	5 - 120		08/10/17 16:01	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-4A

Date Collected: 08/03/17 10:40 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-6

Matrix: Water

Method:	8260B	- VOC
---------	-------	-------

Method: 8260B - VOC						_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50	0.15				08/10/17 16:28	1
Dichlorodifluoromethane	<2.0		2.0		ug/L			08/10/17 16:28	1
Chloromethane	<1.0		1.0		ug/L			08/10/17 16:28	1
Vinyl chloride	<0.50		0.50		ug/L			08/10/17 16:28	1
Bromomethane	<2.0		2.0		ug/L			08/10/17 16:28	1
Chloroethane	<1.0		1.0		ug/L			08/10/17 16:28	1
Trichlorofluoromethane	<1.0		1.0		ug/L			08/10/17 16:28	1
1,1-Dichloroethene	<1.0		1.0	0.39	ug/L			08/10/17 16:28	1
Carbon disulfide	<2.0		2.0	0.45	ug/L			08/10/17 16:28	1
Acetone	< 5.0		5.0	1.7	ug/L			08/10/17 16:28	1
Methylene Chloride	<5.0		5.0	1.6	ug/L			08/10/17 16:28	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			08/10/17 16:28	1
1,1-Dichloroethane	<1.0		1.0	0.41	ug/L			08/10/17 16:28	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			08/10/17 16:28	1
cis-1,2-Dichloroethene	1.1		1.0	0.41	ug/L			08/10/17 16:28	1
Methyl Ethyl Ketone	< 5.0		5.0	2.1	ug/L			08/10/17 16:28	1
Bromochloromethane	<1.0		1.0	0.43	ug/L			08/10/17 16:28	1
Chloroform	1,1	J	2.0	0.37	ug/L			08/10/17 16:28	1
1,1,1-Trichloroethane	<1.0		1.0		ug/L			08/10/17 16:28	1
1,1-Dichloropropene	<1.0		1.0	0.30	ug/L			08/10/17 16:28	1
Carbon tetrachloride	<1.0		1.0		ug/L			08/10/17 16:28	1
1,2-Dichloroethane	<1.0		1.0		ug/L			08/10/17 16:28	1
Trichloroethene	31		0.50		ug/L			08/10/17 16:28	1
1,2-Dichloropropane	<1.0		1.0		ug/L			08/10/17 16:28	1
Dibromomethane	<1.0		1.0		ug/L			08/10/17 16:28	1
Bromodichloromethane	<1.0		1.0		ug/L			08/10/17 16:28	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			08/10/17 16:28	1
methyl isobutyl ketone	<5.0		5.0		ug/L			08/10/17 16:28	1
Toluene	<0.50		0.50		ug/L			08/10/17 16:28	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			08/10/17 16:28	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			08/10/17 16:28	1
Tetrachloroethene	9.5		1.0		ug/L			08/10/17 16:28	1
1,3-Dichloropropane	<1.0		1.0		ug/L			08/10/17 16:28	1
2-Hexanone	<5.0		5.0		ug/L			08/10/17 16:28	1
Dibromochloromethane	<1.0		1.0		ug/L			08/10/17 16:28	1
1,2-Dibromoethane	<1.0		1.0		ug/L			08/10/17 16:28	1
Chlorobenzene	<1.0 <1.0		1.0		ug/L			08/10/17 16:28	1
	<1.0		1.0		ug/L			08/10/17 16:28	1
1,1,1,2-Tetrachloroethane	<0.50		0.50		ug/L			08/10/17 16:28	1
Ethylbenzene	<0.50 <1.0				ug/L ug/L			08/10/17 16:28	1
m&p-Xylene			1.0					08/10/17 16:28	1
o-Xylene	< 0.50		0.50		ug/L				1
Styrene	<1.0		1.0		ug/L			08/10/17 16:28	
Bromoform	<1.0		1.0		ug/L			08/10/17 16:28	1
Isopropylbenzene	<1.0		1.0		ug/L			08/10/17 16:28	1
Bromobenzene	<1.0		1.0		ug/L			08/10/17 16:28	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			08/10/17 16:28	1
1,2,3-Trichloropropane	<1.0		1.0		ug/L			08/10/17 16:28	1
N-Propylbenzene	<1.0		1.0		ug/L			08/10/17 16:28	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			08/10/17 16:28	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-4A

Date Collected: 08/03/17 10:40 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-6

Matrix: Water

Wichiod, OLOOD 100 (Continuou)	Method:	8260B -	VOC	(Continued)
--------------------------------	---------	---------	-----	-------------

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25 ug/L		08/10/17 16:28	1
4-Chlorotoluene	<1.0	1.0	0.35 ug/L		08/10/17 16:28	1
tert-Butylbenzene	<1.0	1.0	0. 4 0 ug/L		08/10/17 16:28	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36 ug/L		08/10/17 16:28	1
sec-Butylbenzene	<1.0	1.0	0.40 ug/L		08/10/17 16:28	1
1,3-Dichlorobenzene	<1.0	1.0	0.40 ug/L		08/10/17 16:28	1
p-Isopropyltoluene	<1.0	1.0	0.36 ug/L		08/10/17 16:28	1
1,4-Dichlorobenzene	<1.0	1.0	0.36 ug/L		08/10/17 16:28	1
n-Butylbenzene	<1.0	1.0	0.39 ug/L		08/10/17 16:28	1
1,2-Dichlorobenzene	<1.0	1.0	0.33 ug/L		08/10/17 16:28	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0 ug/L		08/10/17 16:28	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34 ug/L		08/10/17 16:28	1
Hexachlorobutadiene	<1.0	1.0	0.45 ug/L		08/10/17 16:28	1
Naphthalene	<1.0	1.0	0.34 ug/L		08/10/17 16:28	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46 ug/L		08/10/17 16:28	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	75 - 126	·	08/10/17 16:28	1
Toluene-d8 (Surr)	94	75 ₋ 120		08/10/17 16:28	1
4-Bromofluorobenzene (Surr)	93	72 - 124		08/10/17 16:28	1
Dibromofluoromethane	99	75 - 120		08/10/17 16:28	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-4A DUP

Date Collected: 08/03/17 10:40 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-7

Matrix: Water

Meth	od:	8260B	- VOC
MICHI	uu.	02000	- 400

Method: 8260B - VOC	Posuit	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Benzene	<0.50	Quanner	0.50	0.15			- Tepareu	08/10/17 16:56	1
Dichlorodifluoromethane	<2.0		2.0	0.67				08/10/17 16:56	1
Chloromethane	<1.0		1.0	0.32	_			08/10/17 16:56	1
Vinyl chloride	<0.50		0.50	0.20	_			08/10/17 16:56	1
Bromomethane	<2.0		2.0	0.80	_			08/10/17 16:56	1
Chloroethane	<1.0		1.0	0.51				08/10/17 16:56	1
Trichlorofluoromethane	<1.0		1.0	0.43				08/10/17 16:56	1
1,1-Dichloroethene	<1.0		1.0	0.39	_			08/10/17 16:56	1
Carbon disulfide	<2.0		2.0	0.45	-			08/10/17 16:56	1
Acetone	<5.0		5.0		ug/L			08/10/17 16:56	1
Methylene Chloride	<5.0		5.0		ug/L			08/10/17 16:56	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35				08/10/17 16:56	1
1,1-Dichloroethane	<1.0		1.0	0.41	_			08/10/17 16:56	1
2,2-Dichloropropane	<1.0		1.0	0.44				08/10/17 16:56	1
• •	0.98	1	1.0	0.44	-			08/10/17 16:56	1
cis-1,2-Dichloroethene Methyl Ethyl Ketone	v.9a <5.0	J	5.0		ug/L			08/10/17 16:56	1
	<1.0		1.0	0.43	-			08/10/17 16:56	1
Bromochloromethane			2.0	0.43	_			08/10/17 16:56	1
Chloroform	1.1 <1.0	J	1.0	0.37				08/10/17 16:56	1
1,1,1-Trichloroethane	<1.0		1.0	0.30				08/10/17 16:56	1
1,1-Dichloropropene	<1.0		1.0	0.38	-			08/10/17 16:56	1
Carbon tetrachloride	<1.0		1.0	0.39	_			08/10/17 16:56	1
1,2-Dichloroethane			0.50	0.39				08/10/17 16:56	1
Trichloroethene	31 <1.0		1.0					08/10/17 16:56	1
1,2-Dichloropropane			1.0	0.43	-			08/10/17 16:56	1
Dibromomethane Promodiable remathane	<1.0		1.0	0.27	-			08/10/17 16:56	1
Bromodichloromethane	<1.0			0.37	-			08/10/17 16:56	1
cis-1,3-Dichloropropene	<1.0 <5.0		1.0 5.0	0.42	ug/L ug/L			08/10/17 16:56	1
methyl isobutyl ketone			0.50		_			08/10/17 16:56	1
Toluene	<0.50		1.0	0.15	_			08/10/17 16:56	1
trans-1,3-Dichloropropene	<1.0			0.36	_				
1,1,2-Trichloroethane	<1.0		1.0	0.35	-			08/10/17 16:56	1
Tetrachloroethene	9.7		1.0	0.37				08/10/17 16:56	1
1,3-Dichloropropane	<1.0		1.0	0.36				08/10/17 16:56	1
2-Hexanone	<5.0		5.0		ug/L			08/10/17 16:56	1
Dibromochloromethane	<1.0		1.0	0.49				08/10/17 16:56	1
1,2-Dibromoethane	<1.0		1.0	0.39	-			08/10/17 16:56	1
Chlorobenzene	<1.0		1.0	0.39	_			08/10/17 16:56	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46				08/10/17 16:56	1
Ethylbenzene	<0.50		0.50		ug/L			08/10/17 16:56	1
m&p-Xylene	<1.0		1.0		ug/L			08/10/17 16:56	1
o-Xylene	<0.50		0.50		ug/L			08/10/17 16:56	1
Styrene	<1.0		1.0	0.39	_			08/10/17 16:56	1
Bromoform	<1.0		1.0		ug/L			08/10/17 16:56	1
Isopropylbenzene	<1.0		1.0		ug/L			08/10/17 16:56	1
Bromobenzene	<1.0		1.0		ug/L			08/10/17 16:56	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			08/10/17 16:56	1
1,2,3-Trichloropropane	<1.0		1.0		ug/L			08/10/17 16:56	1
N-Propylbenzene	<1.0		1.0		ug/L			08/10/17 16:56	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			08/10/17 16:56	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-4A DUP

Date Collected: 08/03/17 10:40 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-7

Matrix: Water

Method: 8260B - VOC (Continued)

Analyte	Result Qualifier	RL	MDL Ur	nit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25 ug	g/L			08/10/17 16:56	1
4-Chlorotoluene	<1.0	1.0	0.35 ug	g/L			08/10/17 16:56	1
tert-Butylbenzene	<1.0	1.0	0.40 ug	g/L			08/10/17 16:56	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36 ug	g/L			08/10/17 16:56	1
sec-Butylbenzene	<1.0	1.0	0. 4 0 ug	g/L			08/10/17 16:56	1
1,3-Dichlorobenzene	<1.0	1.0	0.40 ug	g/L			08/10/17 16:56	1
p-Isopropyltoluene	<1.0	1.0	0.36 ug	g/L			08/10/17 16:56	1
1,4-Dichlorobenzene	<1.0	1.0	0.36 ug	g/L			08/10/17 16:56	1
n-Butylbenzene	<1.0	1.0	0.39 ug	g/L			08/10/17 16:56	1
1,2-Dichlorobenzene	<1.0	1.0	0.33 ug	g/L			08/10/17 16:56	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0 ug	g/L			08/10/17 16:56	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34 ug	g/L			08/10/17 16:56	1
Hexachlorobutadiene	<1.0	1.0	0. 4 5 ug	g/L			08/10/17 16:56	1
Naphthalene	<1.0	1.0	0.34 ug	g/L			08/10/17 16:56	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46 ug	g/L			08/10/17 16:56	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyze	ed Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		75 - 126	08/10/17 1	6:56 1
Toluene-d8 (Surr)	94		75 ₋ 120	08/10/17 1	6:56 1
4-Bromofluorobenzene (Surr)	93		72 - 124	08/10/17 1	6:56 1
Dibromofluoromethane	99		75 ₋ 120	08/10/17 1	6:56 1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-4B

Date Collected: 08/03/17 11:25 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-8

Matrix: Water

Method:	8260B	- VOC
---------	-------	-------

Method: 8260B - VOC	Dooule	Ovelitien	D.	MADI	Limit	D	Drongrad	Anghrad	Dil Fac
Analyte		Qualifier	RL	MDL			Prepared	Analyzed 08/10/17 17:23	1
Benzene	<0.50		0.50		ug/L				
Dichlorodifluoromethane	<2.0		2.0		ug/L			08/10/17 17:23	1 1
Chloromethane	<1.0		1.0		ug/L			08/10/17 17:23	
Vinyl chloride	<0.50		0.50	0.20	-			08/10/17 17:23	1 1
Bromomethane	<2.0		2.0	0.80	_			08/10/17 17:23	
Chloroethane	<1.0		1.0		ug/L			08/10/17 17:23	1
Trichlorofluoromethane	<1.0		1.0		ug/L			08/10/17 17:23	1
1,1-Dichloroethene	<1.0		1.0	0.39	-			08/10/17 17:23	1
Carbon disulfide	<2.0		2.0	0.45	_			08/10/17 17:23	1
Acetone	<5.0		5.0		ug/L			08/10/17 17:23	1
Methylene Chloride	<5.0		5.0		ug/L			08/10/17 17:23	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			08/10/17 17:23	1
1,1-Dichloroethane	<1.0		1.0		ug/L			08/10/17 17:23	1
2,2-Dichloropropane	<1.0		1.0		ug/L			08/10/17 17:23	1
cis-1,2-Dichloroethene	3.5		1.0		ug/L			08/10/17 17:23	1
Methyl Ethyl Ketone	<5.0		5.0		ug/L			08/10/17 17:23	1
Bromochloromethane	<1.0		1.0	0.43	_			08/10/17 17:23	1
Chloroform	1.7	J	2.0	0.37	-			08/10/17 17:23	1
1,1,1-Trichloroethane	<1.0		1.0	0.38				08/10/17 17:23	1
1,1-Dichloropropene	<1.0		1.0	0.30				08/10/17 17:23	1
Carbon tetrachloride	<1.0		1.0	0.38	ug/L			08/10/17 17:23	1
1,2-Dichloroethane	<1.0		1.0	0.39	ug/L			08/10/17 17:23	1
Trichloroethene	61		0.50	0.16	ug/L			08/10/17 17:23	1
1,2-Dichloropropane	<1.0		1.0	0.43	ug/L			08/10/17 17:23	1
Dibromomethane	<1.0		1.0	0.27	ug/L			08/10/17 17:23	1
Bromodichloromethane	<1.0		1.0	0.37	ug/L			08/10/17 17:23	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42	ug/L			08/10/17 17:23	1
methyl isobutyl ketone	< 5.0		5.0	2.2	ug/L			08/10/17 17:23	1
Toluene	<0.50		0.50	0.15	ug/L			08/10/17 17:23	1
trans-1,3-Dichloropropene	<1.0		1.0	0.36	ug/L			08/10/17 17:23	1
1,1,2-Trichloroethane	<1.0		1.0	0.35	ug/L			08/10/17 17:23	1
Tetrachloroethene	78		1.0	0.37	ug/L			08/10/17 17:23	1
1,3-Dichloropropane	<1.0		1.0	0.36	ug/L			08/10/17 17:23	1
2-Hexanone	<5.0		5.0	1.6	ug/L			08/10/17 17:23	1
Dibromochloromethane	<1.0		1.0	0.49	ug/L			08/10/17 17:23	1
1,2-Dibromoethane	<1.0		1.0	0.39	ug/L			08/10/17 17:23	1
Chlorobenzene	<1.0		1.0	0.39	ug/L			08/10/17 17:23	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46	ug/L			08/10/17 17:23	1
Ethylbenzene	<0.50		0.50	0.18	ug/L			08/10/17 17:23	1
m&p-Xylene	<1.0		1.0	0.18	ug/L			08/10/17 17:23	1
o-Xylene	<0.50		0.50	0.22	ug/L			08/10/17 17:23	1
Styrene	<1.0		1.0	0.39	ug/L			08/10/17 17:23	1
Bromoform	<1.0		1.0	0.48	ug/L			08/10/1 7 17:23	1
Isopropylbenzene	<1.0		1.0	0.39	ug/L			08/10/17 17:23	1
Bromobenzene	<1.0		1.0		ug/L			08/10/17 17:23	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			08/10/17 17:23	1
1,2,3-Trichloropropane	<1.0		1.0		ug/L			08/10/17 17:23	1
N-Propylbenzene	<1.0		1.0		ug/L			08/10/17 17:23	1
2-Chlorotoluene	<1.0		1.0		ug/L			08/10/17 17:23	1
					-				

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-4B

Lab Sample ID: 500-132231-8

Date Collected: 08/03/17 11:25 Date Received: 08/07/17 10:25 Matrix: Water

Method: 8260B - VOC (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			08/10/17 17:23	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			08/10/17 17:23	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			08/10/17 17:23	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			08/10/17 17:23	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			08/10/17 17:23	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			08/10/17 17:23	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			08/10/17 17:23	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			08/10/17 17:23	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			08/10/17 17:23	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			08/10/17 17:23	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			08/10/17 17:23	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			08/10/17 17:23	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			08/10/17 17:23	1
Naphthalene	<1.0	1.0	0.34	ug/L			08/10/17 17:23	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			08/10/17 17:23	1

Surrogate	%Recovery Qua	lifier Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	75 - 126	08/10/17 17:23	1
Toluene-d8 (Surr)	94	75 ₋ 120	08/10/17 17:23	1
4-Bromofluorobenzene (Surr)	93	72 - 124	08/10/17 17:23	1
Dibromofluoromethane	100	75 120	08/10/17 17:23	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-6

Date Collected: 08/02/17 12:40 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-9

Matrix: Water

Method:	8260B	- VOC
---------	-------	-------

Method: 8260B - VOC	Result Qualifier	RL	MDL U	Init D	Prepared	Analyzod	Dil Fac
Analyte Benzene	<0.50	0.50	0.15 ug		riepaieu	Analyzed 08/10/17 17:51	1
Dichlorodifluoromethane	<2.0	2.0	0.67 uç	_		08/10/17 17:51	1
Chloromethane	<1.0	1.0	0.32 ug			08/10/17 17:51	1
Vinyl chloride	<0.50	0.50	0.20 uş	_		08/10/17 17:51	1
Bromomethane	<2.0	2.0	0.80 uş			08/10/17 17:51	1
Chloroethane	<1.0	1.0	0.50 uş	_		08/10/17 17:51	1
Trichlorofluoromethane	<1.0	1.0	0.43 uç	=		08/10/17 17:51	1
1,1-Dichloroethene	<1.0	1.0	0.49 uç			08/10/17 17:51	1
Carbon disulfide	<2.0	2.0	0.45 uç			08/10/17 17:51	1
Acetone	<5.0	5.0	1.7 uç	_		08/10/17 17:51	1
Methylene Chloride	<5.0	5.0	1.6 uç	=		08/10/17 17:51	1
trans-1,2-Dichloroethene	<1.0	1.0	0.35 ug	_		08/10/17 17:51	1
1.1-Dichloroethane	<1.0	1.0	0.41 uş	_		08/10/17 17:51	1
2,2-Dichloropropane	<1.0	1.0	0.44 uş	-		08/10/17 17:51	1
cis-1,2-Dichloroethene	<1.0	1.0	0.41 uş	_		08/10/17 17:51	1
Methyl Ethyl Ketone	<5.0	5.0	2.1 ug			08/10/17 17:51	1
Bromochloromethane	<1.0	1.0	0.43 uç	•		08/10/17 17:51	1
Chloroform	<2.0	2.0	0.37 uç	_		08/10/17 17:51	1
1,1,1-Trichloroethane	<1.0	1.0	0.38 ug			08/10/17 17:51	1
1,1-Dichloropropene	<1.0	1.0	0.30 ug			08/10/17 17:51	1
Carbon tetrachloride	<1.0	1.0	0.38 ug	_		08/10/17 17:51	1
1,2-Dichloroethane	<1.0	1.0	0.39 ug	-		08/10/17 17:51	1
Trichloroethene	1.1	0.50	0.35 uş	-		08/10/17 17:51	1
1,2-Dichloropropane	<1.0	1.0	0.43 ug			08/10/17 17:51	1
Dibromomethane	<1.0	1.0	0.40 ug			08/10/17 17:51	1
Bromodichloromethane	<1.0	1.0	0.37 ug			08/10/17 17:51	1
cis-1,3-Dichloropropene	<1.0	1.0	0.42 ug			08/10/17 17:51	1
methyl isobutyl ketone	<5.0	5.0	2.2 ug			08/10/17 17:51	1
Toluene	<0.50	0.50	0.15 ug	_		08/10/17 17:51	1
trans-1,3-Dichloropropene	<1.0	1.0	0.36 ug	-		08/10/17 17:51	1
1,1,2-Trichloroethane	<1.0	1.0	0.35 ug	-		08/10/17 17:51	1
Tetrachloroethene	1.2	1.0	0.37 ug			08/10/17 17:51	1
1,3-Dichloropropane	<1.0	1.0	0.36 ug			08/10/17 17:51	1
2-Hexanone	<5.0	5.0	1.6 ug			08/10/17 17:51	1
Dibromochloromethane	<1.0	1.0	0.49 ug			08/10/17 17:51	1
1,2-Dibromoethane	<1.0	1.0	0.39 ug			08/10/17 17:51	1
Chlorobenzene	<1.0	1.0	0.39 ug			08/10/17 17:51	1
1.1.1.2-Tetrachloroethane	<1.0	1.0	0.46 ug	_		08/10/17 17:51	1
Ethylbenzene	<0.50	0.50	0.18 ug	•		08/10/17 17:51	1
m&p-Xylene	<1.0	1.0	0.18 ug	_		08/10/17 17:51	1
o-Xylene	<0.50	0.50	0.22 ug			08/10/17 17:51	1
Styrene	<1.0	1.0	0.39 ug			08/10/17 17:51	1
Bromoform	<1.0	1.0	0.48 ug	-		08/10/17 17:51	1
Isopropylbenzene	<1.0	1.0	0.39 ug			08/10/17 17:51	1
Bromobenzene	<1.0	1.0	0.36 ug			08/10/17 17:51	1
1,1,2,2-Tetrachloroethane	<1.0	1.0	0.40 ug			08/10/17 17:51	1
1,2,3-Trichloropropane	<1.0	1.0	0.41 ug			08/10/17 17:51	1
N-Propylbenzene	<1.0	1.0	0.41 ug			08/10/17 17:51	1
2-Chlorotoluene	<1.0	1.0	0.31 ug			08/10/17 17:51	1
2 30/00/00/00/00	- 7.0	1.0	5.51 uç	. -		30,10,11 11.01	•

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-6

Date Collected: 08/02/17 12:40 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-9

Matrix: Water

Analyte	Result Qualifier	RL	MDL U	nit	D Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25 ug	g/L		08/10/17 17:51	1
4-Chlorotoluene	<1.0	1.0	0.35 ug	g/L		08/10/17 17:51	1
tert-Butylbenzene	<1.0	1.0	0. 4 0 ug	g/L		08/10/17 17:51	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36 ug	g/L		08/10/17 17:51	1
sec-Butylbenzene	<1.0	1.0	0.40 ug	g/L		08/10/17 17:51	1
1,3-Dichlorobenzene	<1.0	1.0	0.40 ug	g/L		08/10/17 17:51	1
p-isopropyltoluene	<1.0	1.0	0.36 ug	g/L		08/10/17 17:51	1
1,4-Dichlorobenzene	<1.0	1.0	0.36 ug	g/L		08/10/17 17:51	1
n-Butylbenzene	<1.0	1.0	0.39 ug	g/L		08/10/17 17:51	1
1,2-Dichlorobenzene	<1.0	1.0	0.33 ug	g/L		08/10/17 17:51	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0 ug	g/L		08/10/17 17:51	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34 ug	g/L		08/10/17 17:51	1
Hexachlorobutadiene	<1.0	1.0	0.45 ug	g/L		08/10/17 17:51	1
Naphthalene	<1.0	1.0	0.34 ug	g/L		08/10/17 17:51	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46 ug	g/L		08/10/17 17:51	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	75 - 126		08/10/17 17:51	1
Toluene-d8 (Surr)	94	75 _~ 120		08/10/17 17:51	1
4-Bromofluorobenzene (Surr)	93	72 - 124		08/10/17 17:51	1
Dibromofluoromethane	98	75 - 120		08/10/17 17:51	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-7

Date Collected: 08/02/17 11:40 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-10

Matrix: Water

Method:	8260R	- VOC
INICELIOU.	02000	- 400

Method: 8260B - VOC					_			
Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50	0.50		ug/L			08/10/17 18:19	1
Dichlorodifluoromethane	<2.0	2.0		ug/L 			08/10/17 18:19	1
Chloromethane	<1.0	1.0	0.32				08/10/17 18:19	1
Vinyl chloride	<0.50	0.50	0.20	•			08/10/17 18:19	1
Bromomethane	<2.0	2.0	0.80				08/10/17 18:19	1
Chloroethane	<1.0	1.0	0.51				08/10/17 18:19	1
Trichlorofluoromethane	<1.0	1.0	0.43				08/10/17 18:19	1
1,1-Dichloroethene	<1.0	1.0	0.39	ug/L			08/10/17 18:19	1
Carbon disulfide	<2.0	2.0	0.45	ug/L			08/10/17 18:19	1
Acetone	<5.0	5.0		ug/L			08/10/17 18:19	1
Methylene Chloride	<5.0	5.0	1.6	ug/L			08/10/17 18:19	1
trans-1,2-Dichloroethene	<1.0	1.0	0.35	ug/L			08/10/17 18:19	1
1,1-Dichloroethane	<1.0	1.0	0.41	ug/L			08/10/17 18:19	1
2,2-Dichloropropane	<1.0	1.0	0.44	ug/L			08/10/17 18:19	1
cis-1,2-Dichloroethene	<1.0	1.0	0.41	ug/L			08/10/17 18:19	1
Methyl Ethyl Ketone	<5.0	5.0	2.1	ug/L			08/10/17 18:19	1
Bromochloromethane	<1.0	1.0	0.43	ug/L			08/10/17 18:19	1
Chloroform	<2.0	2.0	0.37	ug/L			08/10/17 18:19	1
1,1,1-Trichloroethane	<1.0	1.0	0.38	ug/L			08/10/17 18:19	1
1,1-Dichloropropene	<1.0	1.0	0.30	ug/L			08/10/17 18:19	1
Carbon tetrachloride	<1.0	1.0	0.38	ug/L			08/10/17 18:19	1
1,2-Dichloroethane	<1.0	1.0	0.39	ug/L			08/10/17 18:19	1
Trichloroethene	1.2	0.50	0.16	ug/L			08/10/17 18:19	1
1,2-Dichloropropane	<1.0	1.0	0.43				08/10/17 18:19	1
Dibromomethane	<1.0	1.0	0.27				08/10/17 18:19	1
Bromodichloromethane	<1.0	1.0		ug/L			08/10/17 18:19	1
cis-1,3-Dichloropropene	<1.0	1.0	0.42	ug/L			08/10/17 18:19	1
methyl isobutyl ketone	<5.0	5.0		ug/L			08/10/17 18:19	1
Toluene	<0.50	0.50		ug/L			08/10/17 18:19	1
trans-1,3-Dichloropropene	<1.0	1.0		ug/L			08/10/17 18:19	1
1,1,2-Trichloroethane	<1.0	1.0	0.35				08/10/17 18:19	1
Tetrachloroethene	<1.0	1.0		ug/L			08/10/17 18:19	1
1,3-Dichloropropane	<1.0	1.0	0.36	-			08/10/17 18:19	1
2-Hexanone	<5.0	5.0		ug/L			08/10/17 18:19	1
Dibromochloromethane	<1.0	1.0	0.49				08/10/17 18:19	1
1,2-Dibromoethane	<1.0	1.0	0.39	-			08/10/17 18:19	1
Chlorobenzene	<1.0	1.0	0.39				08/10/17 18:19	1
1.1.1.2-Tetrachloroethane	<1.0	1.0		ug/L			08/10/17 18:19	1
Ethylbenzene	<0.50	0.50		ug/L			08/10/17 18:19	1
m&p-Xylene	<1.0	1.0		ug/L			08/10/17 18:19	1
o-Xylene	<0.50	0.50		ug/L			08/10/17 18:19	1
Styrene	<1.0	1.0		ug/L ug/L			08/10/17 18:19	1
Bromoform	<1.0	1.0		ug/L ug/L			08/10/17 18:19	1
	<1.0	1.0		ug/L ug/L			08/10/17 18:19	1
Isopropylbenzene	<1.0	1.0		ug/L ug/L			08/10/17 18:19	1
Bromobenzene				•				1
1,1,2,2-Tetrachloroethane	<1.0	1.0		ug/L			08/10/17 18:19	
1,2,3-Trichloropropane	<1.0	1.0		ug/L			08/10/17 18:19	1
N-Propylbenzene	<1.0	1.0		ug/L			08/10/17 18:19	1
2-Chlorotoluene	<1.0	1.0	0.31	ug/L			08/10/17 18:19	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-7

Date Collected: 08/02/17 11:40 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-10

Matrix: Water

Method: 8260B - VOC (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			08/10/17 18:19	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			08/10/17 18:19	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			08/10/17 18:19	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			08/10/17 18:19	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			08/10/17 18:19	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			08/10/17 18:19	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			08/10/17 18:19	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			08/10/17 18:19	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			08/10/17 18:19	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			08/10/17 18:19	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			08/10/17 18:19	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			08/10/17 18:19	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			08/10/17 18:19	1
Naphthalene	<1.0	1.0	0.34	ug/L			08/10/17 18:19	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			08/10/17 18:19	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	75 - 126	08/10/17 18:19	1
Toluene-d8 (Surr)	96	75 - 120	08/10/17 18:19	1
4-Bromofluorobenzene (Surr)	94	72 - 124	08/10/17 18:19	1
Dibromofluoromethane	98	75 - 120	08/10/17 18:19	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-9

Date Collected: 08/02/17 08:10 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-11

Matrix: Water

Method:	8260B	VOC
weinoa.	OZDUD -	· vuc

Method: 8260B - VOC									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50	0.15				08/10/17 18:46	1
Dichlorodifluoromethane	<2.0		2.0	0.67	-			08/10/17 18:46	1
Chloromethane	<1.0		1.0	0.32				08/10/17 18:46	1
Vinyl chloride	<0.50		0.50	0.20				08/10/17 18: 4 6	1
Bromomethane	<2.0		2.0	0.80	ug/L			08/10/17 18:46	1
Chloroethane	<1.0		1.0	0.51	ug/L			08/10/17 18:46	1
Trichlorofluoromethane	<1.0		1.0	0.43	ug/L			08/10/17 18:46	1
1,1-Dichloroethene	0.66	J	1.0	0.39	ug/L			08/10/17 18:46	1
Carbon disulfide	<2.0		2.0	0.45	ug/L			08/10/17 18:46	1
Acetone	<5.0		5.0	1.7	ug/L			08/10/17 18: 4 6	1
Methylene Chloride	<5.0		5.0	1.6	ug/L			08/10/17 18: 4 6	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			08/10/17 18:46	1
1,1-Dichloroethane	0.51	J	1.0	0.41	ug/L			08/10/17 18:46	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			08/10/17 18:46	1
cis-1,2-Dichloroethene	16		1.0	0.41	ug/L			08/10/17 18:46	1
Methyl Ethyl Ketone	<5.0		5.0	2.1	ug/L			08/10/17 18:46	1
Bromochloromethane	<1.0		1.0	0.43	ug/L			08/10/17 18:46	1
Chloroform	<2.0		2.0	0.37	ug/L			08/10/17 18:46	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	ug/L			08/10/17 18:46	1
1,1-Dichloropropene	<1.0		1.0	0.30	-			08/10/17 18:46	1
Carbon tetrachloride	<1.0		1.0	0.38	_			08/10/17 18:46	1
1,2-Dichloroethane	<1.0		1.0	0.39	-			08/10/17 18:46	1
Trichloroethene	8.5		0.50	0.16	-			08/10/17 18:46	1
1,2-Dichloropropane	<1.0		1.0	0.43				08/10/17 18:46	1
Dibromomethane	<1.0		1.0	0.27	•			08/10/17 18:46	1
Bromodichloromethane	<1.0		1.0	0.37	-			08/10/17 18:46	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42	-			08/10/17 18:46	1
methyl isobutyl ketone	<5.0		5.0		ug/L			08/10/17 18:46	1
Toluene	<0.50		0.50	0.15				08/10/17 18:46	1
trans-1,3-Dichloropropene	<1.0		1.0	0.36	-			08/10/17 18:46	1
1,1,2-Trichloroethane	<1.0		1.0	0.35				08/10/17 18:46	1
Tetrachloroethene	5.0		1.0		ug/L			08/10/17 18:46	1
1,3-Dichloropropane	<1.0		1.0	0.36	-			08/10/17 18:46	1
2-Hexanone	<5.0		5.0		ug/L			08/10/17 18:46	1
Dibromochloromethane	<1.0		1.0		ug/L			08/10/17 18:46	1
1,2-Dibromoethane	<1.0		1.0		ug/L			08/10/17 18:46	1
Chlorobenzene	<1.0		1.0		ug/L			08/10/17 18:46	1
1.1.1.2-Tetrachloroethane	<1.0		1.0		ug/L ug/L			08/10/17 18:46	1
	<0.50		0.50		ug/L ug/L			08/10/17 18:46	1
Ethylbenzene m&p-Xylene	<1.0		1.0		ug/L ug/L			08/10/17 18:46	1
-					•			08/10/17 18:46	1
o-Xylene	<0.50		0.50		ug/L				
Styrene	<1.0		1.0		ug/L			08/10/17 18:46	1
Bromoform	<1.0		1.0		ug/L			08/10/17 18:46	1
Isopropylbenzene	<1.0		1.0		ug/L			08/10/17 18:46	1
Bromobenzene	<1.0		1.0		ug/L			08/10/17 18:46	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			08/10/17 18:46	1
1,2,3-Trichloropropane	<1.0		1.0		ug/L			08/10/17 18:46	1
N-Propylbenzene	<1.0		1.0		ug/L 			08/10/17 18:46	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			08/10/17 18:46	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-9

Lab Sample ID: 500-132231-11

Date Collected: 08/02/17 08:10 Date Received: 08/07/17 10:25 Matrix: Water

Method: 8260B - VOC (Continued)	Method:	8260B	- VOC	(Continued)	i
---------------------------------	---------	-------	-------	-------------	---

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			08/10/17 18:46	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			08/10/17 18:46	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			08/10/17 18:46	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			08/10/17 18:46	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			08/10/17 18:46	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			08/10/17 18:46	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			08/10/17 18:46	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			08/10/17 18:46	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			08/10/17 18:46	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			08/10/17 18:46	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			08/10/17 18:46	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			08/10/17 18:46	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			08/10/17 18:46	1
Naphthalene	<1.0	1.0	0.34	ug/L			08/10/17 18:46	1
1.2.3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			08/10/17 18:46	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	75 - 126	08/10/17 18:46	1
Toluene-d8 (Surr)	94	75 ₋ 120	08/10/17 18:46	1
4-Bromofluorobenzene (Surr)	93	72 - 124	08/10/17 18:46	1
Dibromofluoromethane	98	75 ₋ 120	08/10/17 18:46	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-11B

Date Collected: 08/03/17 09:20 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-12

Matrix: Water

Method:	9260B	VOC
iviernoa:	02000	- VUC

Method: 8260B - VOC	D4	Overlikier Di	MO	11-:4		D	4	D21 5
Analyte	<0.50	Qualifier RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzene		0.50		ug/L			08/10/17 19:13	1
Dichlorodifluoromethane	<2.0	2.0		ug/L			08/10/17 19:13	1
Chloromethane	<1.0	1.0		ug/L			08/10/17 19:13	1
Vinyl chloride	<0.50	0.50		ug/L			08/10/17 19:13	1
Bromomethane	<2.0	2.0		ug/L			08/10/17 19:13	1
Chloroethane	<1.0	1.0		ug/L			08/10/17 19:13	1
Trichlorofluoromethane	<1.0	1.0		ug/L			08/10/17 19:13	1
1,1-Dichloroethene	<1.0	1.0		ug/L			08/10/17 19:13	1
Carbon disulfide	<2.0	2.0		ug/L			08/10/17 19:13	1
Acetone	< 5.0	5.0		ug/L			08/10/17 19:13	1
Methylene Chloride	<5.0	5.0		ug/L			08/10/17 19:13	1
trans-1,2-Dichloroethene	<1.0	1.0		ug/L			08/10/17 19:13	1
1,1-Dichloroethane	<1.0	1.0	0.41	ug/L			08/10/17 19:13	1
2,2-Dichloropropane	<1.0	1.0	0.44	ug/L			08/10/17 19:13	1
cis-1,2-Dichloroethene	<1.0	1.0		ug/L			08/10/17 19:13	1
Methyl Ethyl Ketone	<5.0	5.0		ug/L			08/10/17 19:13	1
Bromochloromethane	<1.0	1.0	0.43	ug/L			08/10/17 19:13	1
Chloroform	<2.0	2.0	0.37	ug/L			08/10/17 19:13	1
1,1,1-Trichloroethane	<1.0	1.0	0.38	ug/L			08/10/17 19:13	1
1,1-Dichloropropene	<1.0	1.0	0.30	ug/L			08/10/17 19:13	1
Carbon tetrachloride	<1.0	1.0	0.38	ug/L			08/10/17 19:13	1
1,2-Dichloroethane	<1.0	1.0	0.39	ug/L			08/10/17 19:13	1
Trichloroethene	2.7	0.50	0.16	ug/L			08/10/17 19:13	1
1,2-Dichloropropane	<1.0	1.0	0.43	ug/L			08/10/17 19:13	1
Dibromomethane	<1.0	1.0	0.27	ug/L			08/10/17 19:13	1
Bromodichloromethane	<1.0	1.0	0.37	ug/L			08/10/17 19:13	1
cis-1,3-Dichloropropene	<1.0	1.0	0.42	ug/L			08/10/17 19:13	1
methyl isobutyl ketone	<5.0	5.0	2.2	ug/L			08/10/17 19:13	1
Toluene	<0.50	0.50	0.15	ug/L			08/10/17 19:13	1
trans-1,3-Dichloropropene	<1.0	1.0	0.36	ug/L			08/10/17 19:13	1
1,1,2-Trichloroethane	<1.0	1.0	0.35	ug/L			08/10/17 19:13	1
Tetrachloroethene	<1.0	1.0	0.37	ug/L			08/10/17 19:13	1
1,3-Dichloropropane	<1.0	1.0	0.36	ug/L			08/10/17 19:13	1
2-Hexanone	< 5.0	5.0	1.6	ug/L			08/10/17 19:13	1
Dibromochloromethane	<1.0	1.0	0.49	ug/L			08/10/17 19:13	1
1,2-Dibromoethane	<1.0	1.0		ug/L			08/10/17 19:13	1
Chlorobenzene	<1.0	1.0	0.39	ug/L			08/10/17 19:13	1
1,1,1,2-Tetrachloroethane	<1.0	1.0	0.46	ug/L			08/10/17 19:13	1
Ethylbenzene	<0.50	0.50	0.18	ug/L			08/10/17 19:13	1
m&p-Xylene	<1.0	1.0		ug/L			08/10/17 19:13	1
o-Xylene	< 0.50	0.50		ug/L			08/10/17 19:13	1
Styrene	<1.0	1.0		ug/L			08/10/17 19:13	1
Bromoform	<1.0	1.0		ug/L			08/10/17 19:13	1
Isopropylbenzene	<1.0	1.0		ug/L			08/10/17 19:13	1
Bromobenzene	<1.0	1.0		ug/L			08/10/17 19:13	1
1,1,2,2-Tetrachloroethane	<1.0	1.0		ug/L			08/10/17 19:13	1
1,2,3-Trichloropropane	<1.0	1.0		ug/L			08/10/17 19:13	1
N-Propylbenzene	<1.0	1.0		ug/L			08/10/17 19:13	1
2-Chlorotoluene	<1.0	1.0		ug/L			08/10/17 19:13	1
E SINDIOLOGIC	~1.0	1.0	ا د.ن	ug/L			30/10/11 13.13	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-11B

Date Collected: 08/03/17 09:20 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-12

Matrix: Water

Method: 8260B - VOC (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			08/10/17 19:13	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			08/10/17 19:13	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			08/10/17 19:13	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			08/10/17 19:13	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			08/10/17 19:13	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			08/10/17 19:13	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			08/10/17 19:13	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			08/10/17 19:13	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			08/10/17 19:13	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			08/10/17 19:13	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			08/10/17 19:13	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			08/10/17 19:13	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			08/10/17 19:13	1
Naphthalene	<1.0	1.0	0.34	ug/L			08/10/17 19:13	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			08/10/17 19:13	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102	75 - 126	08/10/17 19.	13 1
Toluene-d8 (Surr)	95	75 ₋ 120	08/10/17 19.	13 1
4-Bromofluorobenzene (Surr)	95	72 - 124	08/10/17 19.	13 1
Dibromofluoromethane	101	75 ₋ 120	08/10/17 19.	13 1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-12B

Date Collected: 08/03/17 12:30 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-13

Matrix: Water

Method: 8260B - VOC	Me	thod:	8260B	- VOC
---------------------	----	-------	-------	-------

Method: 8260B - VOC					_			
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene	<0.50	0.50	0.15				08/10/17 19:41	1
Dichlorodifluoromethane	<2.0	2.0	0.67	_			08/10/17 19:41	1
Chloromethane	<1.0	1.0	0.32	_			08/10/17 19:41	1
Vinyl chloride	<0.50	0.50	0.20				08/10/17 19:41	1
Bromomethane	<2.0	2.0	0.80	-			08/10/17 19:41	1
Chloroethane	<1.0	1.0	0.51	_			08/10/17 19:41	1
Trichlorofluoromethane	<1.0	1.0	0.43				08/10/17 19:41	1
1,1-Dichloroethene	<1.0	1.0	0.39				08/10/17 19:41	1
Carbon disulfide	<2.0	2.0	0.45				08/10/17 19:41	1
Acetone	<5.0	5.0		ug/L			08/10/17 19:41	1
Methylene Chloride	<5.0	5.0	1.6	ug/L			08/10/17 19:41	1
trans-1,2-Dichloroethene	<1.0	1.0	0.35	ug/L			08/10/17 19:41	1
1,1-Dichloroethane	<1.0	1.0	0.41	ug/L			08/10/17 19:41	1
2,2-Dichloropropane	<1.0	1.0	0.44	ug/L			08/10/17 19:41	1
cis-1,2-Dichloroethene	2.2	1.0	0.41	ug/L			08/10/17 19:41	1
Methyl Ethyl Ketone	< 5.0	5.0	2.1	ug/L			08/10/17 19:41	1
Bromochloromethane	<1.0	1.0	0.43	ug/L			08/10/17 19:41	1
Chloroform	<2.0	2.0	0.37	ug/L			08/10/17 19:41	1
1,1,1-Trichloroethane	<1.0	1.0	0.38	ug/L			08/10/17 19:41	1
1,1-Dichloropropene	<1.0	1.0	0.30	ug/L			08/10/17 19:41	1
Carbon tetrachloride	<1.0	1.0	0.38	ug/L			08/10/17 19:41	1
1,2-Dichloroethane	<1.0	1.0	0.39	ug/L			08/10/17 19:41	1
Trichloroethene	160	0.50	0.16	ug/L			08/10/17 19:41	1
1,2-Dichloropropane	<1.0	1.0	0.43	ug/L			08/10/17 19:41	1
Dibromomethane	<1.0	1.0	0.27	ug/L			08/10/17 19:41	1
Bromodichloromethane	<1.0	1.0	0.37	ug/L			08/10/17 19:41	1
cis-1,3-Dichloropropene	<1.0	1.0	0.42	ug/L			08/10/17 19:41	1
methyl isobutyl ketone	<5.0	5.0	2.2	ug/L			08/10/17 19:41	1
Toluene	<0.50	0.50	0.15	-			08/10/17 19:41	1
trans-1,3-Dichloropropene	<1.0	1.0	0.36	ug/L			08/10/17 19:41	1
1.1.2-Trichloroethane	<1.0	1.0	0.35	-			08/10/17 19:41	1
Tetrachloroethene	14	1.0	0.37				08/10/17 19:41	1
1,3-Dichloropropane	<1.0	1.0	0.36				08/10/17 19:41	1
2-Hexanone	<5.0	5.0		ug/L			08/10/17 19:41	1
Dibromochloromethane	<1.0	1.0	0.49				08/10/17 19:41	1
1,2-Dibromoethane	<1.0	1.0	0.39	•			08/10/17 19:41	1
Chlorobenzene	<1.0	1.0	0.39				08/10/17 19:41	1
1,1,1,2-Tetrachloroethane	<1.0	1.0	0.46				08/10/17 19:41	1
Ethylbenzene	<0.50	0.50	0.18	•			08/10/17 19:41	1
m&p-Xylene	<1.0	1.0	0.18	-			08/10/17 19:41	1
o-Xylene	<0.50	0.50	0.22				08/10/17 19:41	1
Styrene	<1.0	1.0	0.39				08/10/17 19:41	1
Bromoform	<1.0	1.0	0.48	-			08/10/17 19:41	1
Isopropylbenzene	<1.0	1.0	0.39	_			08/10/17 19:41	1
Bromobenzene	<1.0	1.0	0.36	_			08/10/17 19:41	1
1,1,2,2-Tetrachloroethane	<1.0	1.0	0.40	-			08/10/17 19:41	1
1,2,3-Trichloropropane	<1.0	1.0	0.41	•			08/10/17 19:41	1
N-Propylbenzene	<1.0	1.0	0.41	_			08/10/17 19:41	1
2-Chlorotoluene	<1.0	1.0	0.31	-			08/10/17 19:41	1
Z-Omorotolidene	\$1.U	1.0	0.31	ug/L			JUN 10111 JJ.41	1

1

1

Client Sample Results

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

08/10/17 19:41

08/10/17 19:41

08/10/17 19:41

08/10/17 19:41

Client Sample ID: RFW-12B

Date Collected: 08/03/17 12:30 Date Received: 08/07/17 10:25

1,2,4-Trichlorobenzene

Hexachlorobutadiene

1,2,3-Trichlorobenzene

Naphthalene

Lab Sample ID: 500-132231-13

Matrix: Water

Method: 8260B - VOC (Continued)						
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25 ug/L		08/10/17 19:41	1
4-Chlorotoluene	<1.0	1.0	0.35 ug/L		08/10/17 19:41	1
tert-Butylbenzene	<1.0	1.0	0.40 ug/L		08/10/17 19:41	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36 ug/L		08/10/17 19:41	1
sec-Butylbenzene	<1.0	1.0	0.40 ug/L		08/10/17 19:41	1
1,3-Dichlorobenzene	<1.0	1.0	0.40 ug/L		08/10/17 19:41	1
p-isopropyltoluene	<1.0	1.0	0.36 ug/L		08/10/17 19:41	1
1,4-Dichlorobenzene	<1.0	1.0	0.36 ug/L		08/10/17 19:41	1
n-Butylbenzene	<1.0	1.0	0.39 ug/L		08/10/17 19:41	1
1,2-Dichlorobenzene	<1.0	1.0	0.33 ug/L		08/10/17 19:41	1
1,2-Dibromo-3-Chloropropane	< 5.0	5.0	2.0 ug/L		08/10/17 19:41	1

<1.0

<1.0

<1.0

<1.0

Surrogate	%Recovery Q	Qualifier Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	75 - 126	08/10/17 19:4	1
Toluene-d8 (Surr)	95	75 - 120	08/10/17 19:4	1
4-Bromofluorobenzene (Surr)	94	72 - 124	08/10/17 19:4	1
Dibromofluoromethane	100	75 - 120	08/10/17 19:4	1

1.0

1.0

1.0

1.0

0.34 ug/L

0.45 ug/L

0.34 ug/L

0.46 ug/L

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-13

Date Collected: 08/02/17 14:55 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-14

Matrix: Water

Method: 8260B - VOC

Method: 8260B - VOC								
Analyte		Qualifier RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50	0.50		ug/L			08/10/17 20:08	1
Dichlorodifluoromethane	<2.0	2.0		ug/L			08/10/17 20:08	1
Chloromethane	<1.0	1.0		ug/L			08/10/17 20:08	1
Vinyl chloride	<0.50	0.50		ug/L			08/10/17 20:08	1
Bromomethane	<2.0	2.0		ug/L			08/10/17 20:08	1
Chloroethane	<1.0	1.0		ug/L			08/10/17 20:08	1
Trichlorofluoromethane	<1.0	1.0		ug/L			08/10/17 20:08	1
1,1-Dichloroethene	<1.0	1.0	0.39	ug/L			08/10/17 20:08	1
Carbon disulfide	<2.0	2.0	0.45	ug/L			08/10/17 20:08	1
Acetone	<5.0	5.0	1.7	ug/L			08/10/17 20:08	1
Methylene Chloride	<5.0	5.0	1.6	ug/L			08/10/17 20:08	1
trans-1,2-Dichloroethene	<1.0	1.0	0.35	ug/L			08/10/17 20:08	1
1,1-Dichloroethane	<1.0	1.0	0.41	ug/L			08/10/17 20:08	1
2,2-Dichloropropane	<1.0	1.0	0.44	ug/L			08/10/17 20:08	1
cis-1,2-Dichloroethene	1.3	1.0	0.41	ug/L			08/10/17 20:08	1
Methyl Ethyl Ketone	< 5.0	5.0	2.1	ug/L			08/10/17 20:08	1
Bromochloromethane	<1.0	1.0	0.43	ug/L			08/10/17 20:08	1
Chloroform	<2.0	2.0	0.37	ug/L			08/10/17 20:08	1
1,1,1-Trichloroethane	<1.0	1.0	0.38	ug/L			08/10/17 20:08	1
1,1-Dichloropropene	<1.0	1.0	0.30	ug/L			08/10/17 20:08	1
Carbon tetrachloride	<1.0	1.0	0.38	ug/L			08/10/17 20:08	1
1,2-Dichloroethane	<1.0	1.0	0.39	ug/L			08/10/17 20:08	1
Trichloroethene	2.8	0.50	0.16	ug/L			08/10/17 20:08	1
1,2-Dichloropropane	<1.0	1.0	0.43	ug/L			08/10/17 20:08	1
Dibromomethane	<1.0	1.0	0.27	ug/L			08/10/17 20:08	1
Bromodichloromethane	<1.0	1.0	0.37	ug/L			08/10/17 20:08	1
cis-1,3-Dichloropropene	<1.0	1.0	0.42	ug/L			08/10/17 20:08	1
methyl isobutyl ketone	<5.0	5.0	2.2	ug/L			08/10/17 20:08	1
Toluene	<0.50	0.50	0.15	ug/L			08/10/17 20:08	1
trans-1,3-Dichloropropene	<1.0	1.0	0.36	ug/L			08/10/17 20:08	1
1,1,2-Trichloroethane	<1.0	1.0	0.35	ug/L			08/10/17 20:08	1
Tetrachloroethene	16	1.0	0.37	ug/L			08/10/17 20:08	1
1,3-Dichloropropane	<1.0	1.0	0.36	ug/L			08/10/17 20:08	1
2-Hexanone	< 5.0	5.0	1.6	ug/L			08/10/17 20:08	1
Dibromochloromethane	<1.0	1.0	0.49	ug/L			08/10/17 20:08	1
1,2-Dibromoethane	<1.0	1.0	0.39	ug/L			08/10/17 20:08	1
Chlorobenzene	<1.0	1.0	0.39	ug/L			08/10/17 20:08	1
1,1,1,2-Tetrachloroethane	<1.0	1.0	0.46	ug/L			08/10/17 20:08	1
Ethylbenzene	<0.50	0.50	0.18	ug/L			08/10/17 20:08	1
m&p-Xylene	<1.0	1.0	0.18	ug/L			08/10/17 20:08	1
o-Xylene	<0.50	0.50		ug/L			08/10/17 20:08	1
Styrene	<1.0	1.0		ug/L			08/10/17 20:08	1
Bromoform	<1.0	1.0		ug/L			08/10/17 20:08	1
Isopropylbenzene	<1.0	1.0		ug/L			08/10/17 20:08	1
Bromobenzene	<1.0	1.0		ug/L			08/10/17 20:08	1
1,1,2,2-Tetrachloroethane	<1.0	1.0		ug/L			08/10/17 20:08	1
1,2,3-Trichloropropane	<1.0	1.0		ug/L			08/10/17 20:08	1
N-Propylbenzene	<1.0	1.0		ug/L			08/10/17 20:08	1
2-Chlorotoluene	<1.0	1.0		ug/L			08/10/17 20:08	1
		1,10	5.	J. –				·

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-13

Lab Sample ID: 500-132231-14

Date Collected: 08/02/17 14:55 Date Received: 08/07/17 10:25 Matrix: Water

Method: 8260	B - VOC	(Continued)
Analyto		

Analyte	Result Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			08/10/17 20:08	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			08/10/17 20:08	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			08/10/17 20:08	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			08/10/17 20:08	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			08/10/17 20:08	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			08/10/17 20:08	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			08/10/17 20:08	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			08/10/17 20:08	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			08/10/17 20:08	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			08/10/17 20:08	1
1,2-Dibromo-3-Chloropropane	< 5.0	5.0	2.0	ug/L			08/10/17 20:08	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			08/10/17 20:08	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			08/10/17 20:08	1
Naphthalene	<1.0	1.0	0.34	ug/L			08/10/17 20:08	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			08/10/17 20:08	1

Surrogate	%Recovery Qua	lifier Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102	75 - 126	08/10/17 20:08	1
Toluene-d8 (Surr)	94	75 - 120	08/10/17 20:08	1
4-Bromofluorobenzene (Surr)	94	72 - 124	08/10/17 20:08	1
Dibromofluoromethane	100	75 ₋ 120	08/10/17 20:08	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-17

Date Collected: 08/02/17 13:35 Date Received: 08/07/17 10:25

Lab Sample ID: 500-132231-15

Matrix: Water

Method: 8260B - VOC
Analyte
Benzene

Method: 8260B - VOC						_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50	0.15				08/10/17 20:35	1
Dichlorodifluoromethane		F1 F2	2.0	0.67				08/10/17 20:35	1
Chloromethane		F1 F2	1.0	0.32	-			08/10/17 20:35	1
Vinyl chloride		F1 F2	0.50	0.20				08/10/17 20:35	1
Bromomethane		F1 F2	2.0	0.80				08/10/17 20:35	1
Chloroethane		F1 F2	1.0	0.51	•			08/10/17 20:35	1
Trichlorofluoromethane		F1 F2	1.0	0.43				08/10/17 20:35	1
1,1-Dichloroethene	<1.0		1.0	0.39				08/10/17 20:35	1
Carbon disulfide	<2.0		2.0		ug/L			08/10/17 20:35	1
Acetone	<5.0		5.0		ug/L			08/10/17 20:35	1
Methylene Chloride	<5.0		5.0		ug/L			08/10/17 20:35	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			08/10/17 20:35	1
1,1-Dichloroethane	<1.0		1.0	0.41	ug/L			08/10/17 20:35	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			08/10/17 20:35	1
cis-1,2-Dichloroethene	<1.0		1.0	0.41	ug/L			08/10/17 20:35	1
Methyl Ethyl Ketone	< 5.0		5.0		ug/L			08/10/17 20:35	1
Bromochloromethane	<1.0		1.0	0.43	ug/L			08/10/17 20:35	1
Chloroform	<2.0		2.0	0.37	ug/L			08/10/17 20:35	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	ug/L			08/10/17 20:35	1
1,1-Dichloropropene	<1.0		1.0	0.30	ug/L			08/10/17 20:35	1
Carbon tetrachloride	<1.0		1.0	0.38	ug/L			08/10/17 20:35	1
1,2-Dichloroethane	<1.0		1.0	0.39	ug/L			08/10/17 20:35	1
Trichloroethene	<0.50		0.50	0.16	ug/L			08/10/17 20:35	1
1,2-Dichloropropane	<1.0		1.0	0.43	ug/L			08/10/17 20:35	1
Dibromomethane	<1.0		1.0	0.27	ug/L			08/10/17 20:35	1
Bromodichloromethane	<1.0		1.0	0.37	ug/L			08/10/17 20:35	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42	ug/L			08/10/17 20:35	1
methyl isobutyl ketone	< 5.0		5.0	2.2	ug/L			08/10/17 20:35	1
Toluene	<0.50		0.50	0.15	ug/L			08/10/17 20:35	1
trans-1,3-Dichloropropene	<1.0		1.0	0.36	ug/L			08/10/17 20:35	1
1,1,2-Trichloroethane	<1.0		1.0	0.35	ug/L			08/10/17 20:35	1
Tetrachloroethene	0.41	J	1.0	0.37	ug/L			08/10/17 20:35	1
1,3-Dichloropropane	<1.0		1.0	0.36	ug/L			08/10/17 20:35	1
2-Hexanone	< 5.0		5.0	1.6	ug/L			08/10/17 20:35	1
Dibromochloromethane	<1.0		1.0	0.49	ug/L			08/10/17 20:35	1
1,2-Dibromoethane	<1.0		1.0	0.39	ug/L			08/10/17 20:35	1
Chlorobenzene	<1.0		1.0	0.39	ug/L			08/10/17 20:35	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46	ug/L			08/10/17 20:35	1
Ethylbenzene	< 0.50		0.50	0.18	ug/L			08/10/17 20:35	1
m&p-Xylene	<1.0		1.0	0.18	ug/L			08/10/17 20:35	1
o-Xylene	<0.50		0.50	0.22	ug/L			08/10/17 20:35	1
Styrene	<1.0		1.0	0.39	ug/L			08/10/17 20:35	1
Bromoform	<1.0		1.0	0.48	ug/L			08/10/17 20:35	1
Isopropylbenzene	<1.0		1.0	0.39	ug/L			08/10/17 20:35	1
Bromobenzene	<1.0		1.0	0.36	ug/L			08/10/17 20:35	1
1,1,2,2-Tetrachloroethane	<1.0		1.0	0.40	ug/L			08/10/17 20:35	1
1,2,3-Trichloropropane	<1.0		1.0	0.41	ug/L			08/10/17 20:35	1
N-Propylbenzene	<1.0		1.0	0.41	ug/L			08/10/17 20:35	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			08/10/17 20:35	1
					-				

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-17

Lab Sample ID: 500-132231-15

Date Collected: 08/02/17 13:35 Date Received: 08/07/17 10:25 Matrix: Water

Method: 8260B - VOC (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			08/10/17 20:35	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			08/10/17 20:35	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			08/10/17 20:35	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			08/10/17 20:35	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			08/10/17 20:35	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			08/10/17 20:35	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			08/10/17 20:35	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			08/10/17 20:35	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			08/10/17 20:35	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			08/10/17 20:35	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			08/10/17 20:35	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			08/10/17 20:35	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			08/10/17 20:35	1
Naphthalene	<1.0	1.0	0.34	ug/L			08/10/17 20:35	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			08/10/17 20:35	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	75 - 126	08/10/17 20:35	1
Toluene-d8 (Surr)	95	75 - 120	08/10/17 20:35	1
4-Bromofluorobenzene (Surr)	94	72 - 124	08/10/17 20:35	1
Dibromofluoromethane	99	75 - 120	08/10/17 20:35	1

8/18/2017

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: Trip Blank

Date Collected: 08/02/17 06:00 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-16

Matrix: Water

Mathadi	926AD	VOC
Method:	82608	- VUC

Method: 8260B - VOC Analyte	Result	Qualifier R	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50	0.5		ug/L			08/10/17 13:42	1
Dichlorodifluoromethane	<2.0	2.		ug/L			08/10/17 13:42	1
Chloromethane	<1.0	1.		ug/L			08/10/17 13:42	1
Vinyl chloride	<0.50	0.5		ug/L			08/10/17 13:42	1
Bromomethane	<2.0	2.		ug/L			08/10/17 13:42	1
Chloroethane	<1.0	1.		ug/L			08/10/17 13:42	1
Trichlorofluoromethane	<1.0	1.		ug/L			08/10/17 13:42	1
1,1-Dichloroethene	<1.0	1.		ug/L			08/10/17 13:42	1
Carbon disulfide	<2.0	2.		ug/L			08/10/17 13:42	1
Acetone	<5.0	5.		ug/L			08/10/17 13:42	1
Methylene Chloride	<5.0	5.		ug/L			08/10/17 13:42	1
trans-1,2-Dichloroethene	<1.0	1.		ug/L			08/10/17 13:42	1
1,1-Dichloroethane	<1.0	1.		ug/L			08/10/17 13:42	1
2,2-Dichloropropane	<1.0	1.		ug/L			08/10/17 13:42	1
cis-1,2-Dichloroethene	<1.0	1.		ug/L			08/10/17 13:42	1
Methyl Ethyl Ketone	<5.0	5.		ug/L			08/10/17 13:42	1
Bromochloromethane	<1.0	1.		ug/L			08/10/17 13:42	1
Chloroform	<2.0	2.		ug/L			08/10/17 13:42	1
1.1.1-Trichloroethane	<1.0	1.		ug/L			08/10/17 13:42	1
1,1-Dichloropropene	<1.0	 1.		ug/L			08/10/17 13:42	1
Carbon tetrachloride	<1.0	1.		ug/L			08/10/17 13:42	1
1,2-Dichloroethane	<1.0	1.		ug/L			08/10/17 13:42	1
Trichloroethene	<0.50	0.5		ug/L			08/10/17 13:42	1
1,2-Dichloropropane	<1.0	1.		ug/L			08/10/17 13:42	1
Dibromomethane	<1.0	 1.		ug/L			08/10/17 13:42	1
Bromodichloromethane	<1.0	 1.		ug/L			08/10/17 13:42	1
cis-1,3-Dichloropropene	<1.0	·· 1.		ug/L			08/10/17 13:42	1
methyl isobutyl ketone	<5.0	5.		ug/L			08/10/17 13:42	1
Toluene	<0.50	0.5		ug/L			08/10/17 13:42	1
trans-1,3-Dichloropropene	<1.0	1.		ug/L			08/10/17 13:42	1
1,1,2-Trichloroethane	<1.0	,. 1.		ug/L			08/10/17 13:42	1
Tetrachloroethene	<1.0	1.		ug/L			08/10/17 13:42	1
1,3-Dichloropropane	<1.0	1.		ug/L			08/10/17 13:42	1
2-Hexanone	<5.0	5.		ug/L			08/10/17 13:42	1
Dibromochloromethane	<1.0	1.		ug/L			08/10/17 13:42	1
1,2-Dibromoethane	<1.0	 1.		ug/L			08/10/17 13:42	1
Chlorobenzene	<1.0			ug/L			08/10/17 13:42	1
1.1.1.2-Tetrachloroethane	<1.0	1.		ug/L			08/10/17 13:42	1
Ethylbenzene	<0.50	0.5		ug/L			08/10/17 13:42	1
m&p-Xylene	<1.0	1.		ug/L			08/10/17 13:42	1
o-Xylene	<0.50	0.5		ug/L			08/10/17 13:42	1
Styrene	<1.0	1.		ug/L			08/10/17 13:42	1
Bromoform	<1.0	1.		ug/L			08/10/17 13:42	1
Isopropylbenzene	<1.0	1. 1.		ug/L			08/10/17 13:42	1
Bromobenzene	<1.0	1. 1.		ug/L ug/L			08/10/17 13:42	1
1,1,2,2-Tetrachloroethane	<1.0	1. 1.		ug/L ug/L			08/10/17 13:42	1
	<1.0	1. 1.		ug/L ug/L			08/10/17 13:42	1
1,2,3-Trichloropropane	<1.0	1. 1.					08/10/17 13:42	1
N-Propylbenzene	<1.0			ug/L				
2-Chlorotoluene	< 1.0	1.	U.31	ug/L			08/10/17 13:42	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: Trip Blank

Lab Sample ID: 500-132231-16 Matrix: Water

Date Collected: 08/02/17 06:00 Date Received: 08/07/17 10:25

Method: 8260B - VOC (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0		1.0	0.25	ug/L			08/10/17 13:42	1
4-Chlorotoluene	<1.0		1.0	0.35	ug/L			08/10/17 13:42	1
tert-Butylbenzene	<1.0		1.0	0.40	ug/L			08/10/17 13:42	1
1,2,4-Trimethylbenzene	<1.0		1.0	0.36	ug/L			08/10/17 13:42	1
sec-Butylbenzene	<1.0		1.0	0.40	ug/L			08/10/17 13:42	1
1,3-Dichlorobenzene	<1.0		1.0	0.40	ug/L			08/10/17 13:42	1
p-Isopropyltoluene	<1.0		1.0	0.36	ug/L			08/10/17 13:42	1
1,4-Dichlorobenzene	<1.0		1.0	0.36	ug/L			08/10/17 13:42	1
n-Butylbenzene	<1.0		1.0	0.39	ug/L			08/10/17 13:42	1
1,2-Dichlorobenzene	<1.0		1.0	0.33	ug/L			08/10/17 13:42	1
1,2-Dibromo-3-Chloropropane	<5.0		5.0	2.0	ug/L			08/10/17 13:42	1
1,2,4-Trichlorobenzene	<1.0		1.0	0.34	ug/L			08/10/17 13:42	1
Hexachlorobutadiene	<1.0		1.0	0.45	ug/L			08/10/17 13:42	1
Naphthalene	<1.0		1.0	0.34	ug/L			08/10/17 13:42	1
1,2,3-Trichlorobenzene	<1.0		1.0	0.46	ug/L			08/10/17 13:42	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	75 - 126	08/10/17 13:42	1
Toluene-d8 (Surr)	96	75 ₋ 120	08/10/17 13:42	1
4-Bromofluorobenzene (Surr)	95	72 - 124	08/10/17 13:42	1
Dibromofluoromethane	97	75 ₋ 120	08/10/17 13:42	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-2

Date Collected: 08/03/17 13:00 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-17

Matrix: Water

Method:	8260B	- VOC
wiculou.	02000	- 400

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50		ug/L		·	08/14/17 16:46	1
Dichlorodifluoromethane	<2.0		2.0		ug/L			08/14/17 16:46	1
Chloromethane	<1.0		1.0	0.32	ug/L			08/14/17 16:46	1
Vinyl chloride	<0.50		0.50	0.20	ug/L			08/14/17 16:46	1
Bromomethane	<2.0		2.0	0.80	ug/L			08/14/17 16:46	1
Chloroethane	<1.0		1.0	0.51	ug/L			08/14/17 16:46	1
Trichlorofluoromethane	<1.0		1.0	0.43	ug/L			08/14/17 16:46	1
1,1-Dichloroethene	<1.0		1.0	0.39	ug/L			08/14/17 16:46	1
Carbon disulfide	<2.0		2.0	0.45	ug/L			08/14/17 16:46	1
Acetone	<5.0		5.0	1.7	ug/L			08/14/17 16:46	1
Methylene Chloride	<5.0		5.0	1.6	ug/L			08/14/17 16:46	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			08/14/17 16:46	1
1,1-Dichloroethane	<1.0		1.0	0.41	ug/L			08/14/17 16:46	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			08/14/17 16:46	1
cis-1,2-Dichloroethene	3.2		1.0	0.41	ug/L			08/14/17 16:46	1
Methyl Ethyl Ketone	<5.0		5.0	2.1	ug/L			08/14/17 16:46	1
Bromochloromethane	<1.0		1.0	0.43	ug/L			08/14/17 16:46	1
Chloroform	<2.0		2.0	0.37	ug/L			08/14/17 16:46	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	ug/L			08/14/17 16:46	1
1,1-Dichloropropene	<1.0		1.0	0.30	ug/L			08/14/17 16:46	1
Carbon tetrachloride	<1.0		1.0	0.38	ug/L			08/14/17 16:46	1
1,2-Dichloroethane	<1.0		1.0	0.39	ug/L			08/14/17 16:46	1
Trichloroethene	99		0.50	0.16	ug/L			08/14/17 16:46	1
1,2-Dichloropropane	<1.0		1.0	0.43	ug/L			08/14/17 16:46	1
Dibromomethane	<1.0		1.0	0.27	ug/L			08/14/17 16:46	1
Bromodichloromethane	<1.0		1.0	0.37	ug/L			08/14/17 16:46	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42	ug/L			08/14/17 16:46	1
methyl isobutyl ketone	< 5.0		5.0	2.2	ug/L			08/14/17 16:46	1
Toluene	<0.50		0.50	0.15	ug/L			08/14/17 16:46	1
trans-1,3-Dichloropropene	<1.0		1.0	0.36	ug/L			08/14/17 16:46	1
1,1,2-Trichloroethane	<1.0		1.0	0.35	ug/L			08/14/17 16:46	1
Tetrachloroethene	53		1.0		ug/L			08/14/17 16:46	1
1,3-Dichloropropane	<1.0		1.0	0.36	ug/L			08/14/17 16:46	1
2-Hexanone	< 5.0		5.0	1.6	ug/L			08/14/17 16:46	1
Dibromochloromethane	<1.0		1.0		ug/L			08/14/17 16:46	1
1,2-Dibromoethane	<1.0		1.0		ug/L			08/14/17 16:46	1
Chlorobenzene	<1.0		1.0		ug/L			08/14/17 16:46	1
1,1,1,2-Tetrachloroethane	<1.0		1.0		ug/L			08/14/17 16:46	1
Ethylbenzene	<0.50		0.50		ug/L			08/14/17 16:46	1
m&p-Xylene	<1.0		1.0		ug/L			08/14/17 16:46	1
o-Xylene	<0.50		0.50		ug/L			08/14/17 16:46	1
Styrene	<1.0		1.0		ug/L			08/14/17 16:46	1
Bromoform	<1.0		1.0		ug/L			08/14/17 16:46	1
Isopropylbenzene	<1.0		1.0		ug/L			08/14/17 16:46	1
Bromobenzene	<1.0		1.0		ug/L			08/14/17 16:46	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			08/14/17 16:46	1
1,2,3-Trichloropropane	<1.0		1.0		ug/L			08/14/17 16:46	1
N-Propylbenzene	<1.0		1.0		ug/L			08/14/17 16:46	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			08/14/17 16:46	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-2

Lab Sample ID: 500-132231-17 Matrix: Water

Date Collected: 08/03/17 13:00 Date Received: 08/07/17 10:25

Method: 8260B - VOC (Continue	d	c	: (((ĺ	C	1	Ì	ı	ı			١	١	١	١	١	١	١	١	١	١	١	١	١	١	١			١	١	١	١	١	١	١	١	١	١	١	1	1	1	١	١	١				ŀ	ı	l	ı	ı	Ì	Ì	Ì	į	į	į	Ì	Ì	Ì	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ĺ	Ì	Ì	Ì	j	į		•	•	•			ĺ	ĺ	1					ί	1			ı		ľ	ı		ĺ	١	-	i	i	i		t	1	i	1	ľ	ı	ì	,	c	(1		,	٠		_	C	(ĺ	ĺ				,		_	_	Ĺ	ĺ	(d	Ì	١	١	3	
-------------------------------	---	---	-----	---	---	---	---	---	---	---	---	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	--	--	---	---	---	--	--	--	--	---	---	--	--	---	--	---	---	--	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	--	---	---	--	---	---	---	--	---	---	--	--	--	---	--	---	---	---	---	---	---	---	---	---	---	--

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			08/14/17 16:46	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			08/14/17 16:46	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			08/14/17 16:46	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			08/14/17 16:46	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			08/14/17 16:46	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			08/14/17 16:46	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			08/14/17 16:46	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			08/14/17 16:46	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			08/14/17 16:46	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			08/14/17 16:46	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			08/14/17 16:46	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			08/14/17 16:46	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			08/14/17 16:46	1
Naphthalene	<1.0	1.0	0.34	ug/L			08/14/17 16:46	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			08/14/17 16:46	1

Surrogate	%Recovery Qu	ualifier Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93	75 - 126	08/14/17 16:46	1
Toluene-d8 (Surr)	108	75 - 120	08/14/17 16:46	1
4-Bromofluorobenzene (Surr)	94	72 - 124	08/14/17 16:46	1
Dibromofluoromethane	94	75 - 120	08/14/17 16:46	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-3 Lab Sample ID: 500-132231-18

Date Collected: 08/03/17 09:30

Date Received: 08/07/17 10:25

Matrix: Water

Method: 8260B - VOC

Method: 8260B - VOC	.					_			B.: -
Analyte		Qualifier	RL	MDL) Prepared	Analyzed	Dil Fac
Benzene	0.16	J	0.50	0.15	-			08/11/17 19:03	1
Dichlorodifluoromethane	<2.0		2.0	0.67	_			08/11/17 19:03	1
Chloromethane	<1.0		1.0	0.32	_			08/11/17 19:03	1
Vinyl chloride	<0.50		0.50	0.20	-			08/11/17 19:03	1
Bromomethane	<2.0	•	2.0	0.80	-			08/11/17 19:03	1
Chloroethane	<1.0		1.0	0.51	-			08/11/17 19:03	1
Trichlorofluoromethane	<1.0		1.0	0.43	-			08/11/17 19:03	1
1,1-Dichloroethene	<1.0		1.0	0.39	-			08/11/17 19:03	1
Carbon disulfide	<2.0		2.0	0.45	ug/L			08/11/17 19:03	1
Acetone	7.0		5.0	1.7	ug/L			08/11/17 19:03	1
Methylene Chloride	<5.0		5.0	1.6	ug/L			08/11/17 19:03	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			08/11/17 19:03	1
1,1-Dichloroethane	<1.0		1.0	0.41	ug/L			08/11/17 19:03	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			08/11/17 19:03	1
cis-1,2-Dichloroethene	2.1		1.0	0.41	ug/L			08/11/17 19:03	1
Methyl Ethyl Ketone	<5.0		5.0	2.1	ug/L			08/11/17 19:03	1
Bromochloromethane	<1.0		1.0	0.43	ug/L			08/11/17 19:03	1
Chloroform	<2.0		2.0	0.37	ug/L			08/11/17 19:03	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	ug/L			08/11/17 19:03	1
1,1-Dichloropropene	<1.0		1.0	0.30	ug/L			08/11/17 19:03	1
Carbon tetrachloride	<1.0		1.0	0.38	ug/L			08/11/17 19:03	1
1,2-Dichloroethane	<1.0		1.0	0.39	ug/L			08/11/17 19:03	1
Trichloroethene	28		0.50	0.16	_			08/11/17 19:03	1
1,2-Dichloropropane	<1.0		1.0	0.43				08/11/17 19:03	1
Dibromomethane	<1.0		1.0	0.27	-			08/11/17 19:03	1
Bromodichloromethane	<1.0		1.0	0.37	-			08/11/17 19:03	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42				08/11/17 19:03	1
methyl isobutyl ketone	<5.0		5.0		ug/L			08/11/17 19:03	1
Toluene	0.15	.1	0.50	0.15	-			08/11/17 19:03	1
trans-1,3-Dichloropropene	<1.0	•	1.0	0.36				08/11/17 19:03	1
1,1,2-Trichloroethane	<1.0		1.0	0.35	_			08/11/17 19:03	1
Tetrachloroethene	1.3		1.0	0.37	-			08/11/17 19:03	1
1,3-Dichloropropane	<1.0		1.0	0.36				08/11/17 19:03	1
2-Hexanone	<5.0		5.0		ug/L			08/11/17 19:03	1
Dibromochloromethane	<1.0		1.0	0.49				08/11/17 19:03	1
1,2-Dibromoethane	<1.0		1.0	0.39	-			08/11/17 19:03	1
Chlorobenzene	<1.0		1.0	0.39	-			08/11/17 19:03	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46	-			08/11/17 19:03	1
Ethylbenzene	<0.50		0.50	0.48				08/11/17 19:03	1
•	<1.0		1.0	0.18	_			08/11/17 19:03	1
m&p-Xylene									
o-Xylene Styrono	<0.50 <1.0		0.50 1.0	0.22				08/11/17 19:03 08/11/17 19:03	1
Styrene				0.39					1
Bromoform	<1.0	*	1.0	0.48	-			08/11/17 19:03	
Isopropylbenzene	<1.0		1.0		ug/L			08/11/17 19:03	1
Bromobenzene	<1.0		1.0	0.36				08/11/17 19:03	1
1,1,2,2-Tetrachloroethane	<1.0		1.0	0.40	-			08/11/17 19:03	1
1,2,3-Trichloropropane	<1.0		1.0		ug/L			08/11/17 19:03	1
N-Propylbenzene	<1.0		1.0		ug/L			08/11/17 19:03	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			08/11/17 19:03	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-3

Date Collected: 08/03/17 09:30 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-18

Matrix: Water

Method: 8260B - VOC (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			08/11/17 19:03	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			08/11/17 19:03	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			08/11/17 19:03	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			08/11/17 19:03	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			08/11/17 19:03	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			08/11/17 19:03	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			08/11/17 19:03	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			08/11/17 19:03	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			08/11/17 19:03	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			08/11/17 19:03	1
1,2-Dibromo-3-Chloropropane	< 5.0	5.0	2.0	ug/L			08/11/17 19:03	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			08/11/17 19:03	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			08/11/17 19:03	1
Naphthalene	<1.0	1.0	0.34	ug/L			08/11/17 19:03	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			08/11/17 19:03	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	82	75 - 126		08/11/17 19:03	1
Toluene-d8 (Surr)	87	75 ₋ 120		08/11/17 19:03	1
4-Bromofluorobenzene (Surr)	89	72 - 124		08/11/17 19:03	1
Dibromofluoromethane	88	75 ₋ 120		08/11/17 19:03	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-4

Date Collected: 08/03/17 08:50 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-19

Matrix: Water

Method:	8260B	- VOC
---------	-------	-------

Method: 8260B - VOC					_			5".
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene	<0.50	0.50	0.15				08/11/17 19:28	1
Dichlorodifluoromethane	<2.0	2.0	0.67				08/11/17 19:28	1
Chloromethane	<1.0	1.0	0.32	-			08/11/17 19:28	1
Vinyl chloride	<0.50	0.50	0.20	•			08/11/17 19:28	1
Bromomethane	<2.0 *	2.0	0.80				08/11/17 19:28	1
Chloroethane	<1.0	1.0	0.51				08/11/17 19:28	1
Trichlorofluoromethane	<1.0	1.0	0.43				08/11/17 19:28	1
1,1-Dichloroethene	<1.0	1.0	0.39				08/11/17 19:28	1
Carbon disulfide	<2.0	2.0		ug/L			08/11/17 19:28	1
Acetone	<5.0	5.0		ug/L			08/11/17 19:28	1
Methylene Chloride	<5.0	5.0		ug/L			08/11/17 19:28	1
trans-1,2-Dichloroethene	<1.0	1.0	0.35	ug/L			08/11/17 19:28	1
1,1-Dichloroethane	<1.0	1.0	0.41	ug/L			08/11/17 19:28	1
2,2-Dichloropropane	<1.0	1.0	0.44	ug/L			08/11/17 19:28	1
cis-1,2-Dichloroethene	<1.0	1.0	0.41	ug/L			08/11/17 19:28	1
Methyl Ethyl Ketone	<5.0	5.0	2.1	ug/L			08/11/17 19:28	1
Bromochloromethane	<1.0	1.0	0.43	ug/L			08/11/17 19:28	1
Chloroform	<2.0	2.0	0.37	ug/L			08/11/17 19:28	1
1,1,1-Trichloroethane	<1.0	1.0	0.38	ug/L			08/11/17 19:28	1
1,1-Dichloropropene	<1.0	1.0	0.30	ug/L			08/11/17 19:28	1
Carbon tetrachloride	<1.0	1.0	0.38	ug/L			08/11/17 19:28	1
1,2-Dichloroethane	<1.0	1.0	0.39	ug/L			08/11/17 19:28	1
Trichloroethene	180	0.50	0.16	ug/L			08/11/17 19:28	1
1,2-Dichloropropane	<1.0	1.0	0.43	ug/L			08/11/17 19:28	1
Dibromomethane	<1.0	1.0	0.27	ug/L			08/11/17 19:28	1
Bromodichloromethane	<1.0	1.0	0.37	ug/L			08/11/17 19:28	1
cis-1,3-Dichloropropene	<1.0	1.0	0.42	ug/L			08/11/17 19:28	1
methyl isobutyl ketone	<5.0	5.0	2.2	ug/L			08/11/17 19:28	1
Toluene	<0.50	0.50	0.15	ug/L			08/11/17 19:28	1
trans-1,3-Dichloropropene	<1.0	1.0	0.36	ug/L			08/11/17 19:28	1
1,1,2-Trichloroethane	<1.0	1.0	0.35	ug/L			08/11/17 19:28	1
Tetrachloroethene	4.0	1.0	0.37	ug/L			08/11/17 19:28	1
1,3-Dichloropropane	<1.0	1.0	0.36	ug/L			08/11/17 19:28	1
2-Hexanone	<5.0	5.0	1.6	ug/L			08/11/17 19:28	1
Dibromochloromethane	<1.0	1.0	0.49	ug/L			08/11/17 19:28	1
1,2-Dibromoethane	<1.0	1.0	0.39				08/11/17 19:28	1
Chlorobenzene	<1.0	1.0	0.39	-			08/11/17 19:28	1
1,1,1,2-Tetrachloroethane	<1.0	1.0	0.46				08/11/17 19:28	1
Ethylbenzene	<0.50	0.50	0.18				08/11/17 19:28	1
m&p-Xylene	<1.0	1.0	0.18	-			08/11/17 19:28	1
o-Xylene	<0.50	0.50	0.22				08/11/17 19:28	1
Styrene	<1.0	1.0	0.39				08/11/17 19:28	1
Bromoform	<1.0	1.0	0.48				08/11/17 19:28	1
Isopropylbenzene	<1.0 *	1.0	0.39				08/11/17 19:28	1
Bromobenzene	<1.0 *	1.0	0.36	_			08/11/17 19:28	1
1,1,2,2-Tetrachloroethane	<1.0	1.0	0.40	-			08/11/17 19:28	1
1,2,3-Trichloropropane	<1.0	1.0		ug/L			08/11/17 19:28	1
N-Propylbenzene	<1.0	1.0	0.41	_			08/11/17 19:28	1
2-Chlorotoluene	<1.0	1.0	0.41	-			08/11/17 19:28	1
z-Gradiololuene	~1.0	1.0	0.51	uy/L			00/11/1/ 19.28	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-4

Date Collected: 08/03/17 08:50 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-19

Matrix: Water

Method: 8260B - VOC (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			08/11/17 19:28	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			08/11/17 19:28	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			08/11/17 19:28	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			08/11/17 19:28	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			08/11/17 19:28	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			08/11/17 19:28	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			08/11/17 19:28	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			08/11/17 19:28	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			08/11/17 19:28	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			08/11/17 19:28	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			08/11/17 19:28	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			08/11/17 19:28	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			08/11/17 19:28	1
Naphthalene	<1.0	1.0	0.34	ug/L			08/11/17 19:28	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			08/11/17 19:28	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	l Dil Fac
1,2-Dichloroethane-d4 (Surr)	80	75 - 126	08/11/17 19	:28 1
Toluene-d8 (Surr)	87	75 - 120	08/11/17 19	:28 1
4-Bromofluorobenzene (Surr)	90	72 - 124	08/11/17 19	:28 1
Dibromofluoromethane	91	75 ₋ 120	08/11/17 19	:28 1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-5

Date Collected: 08/03/17 08:25 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-20

Matrix: Water

Method: 8260B - V	Viethod:	8260B	- VOC
-------------------	-----------------	-------	-------

Method: 8260B - VOC	D14	O155	ı nabi	11-:4		D	A marks mand	Dil Faa
Analyte	<0.50	Qualifier F		Unit ug/L	D	Prepared	Analyzed 08/11/17 20:18	Dil Fac
Benzene		0.5 2					08/11/17 20:18	1
Dichlorodifluoromethane	<2.0			ug/L				
Chloromethane	<1.0	1		ug/L			08/11/17 20:18	1
Vinyl chloride	<0.50	0.8		ug/L			08/11/17 20:18	1
Bromomethane	<2.0			ug/L			08/11/17 20:18	1
Chloroethane	<1.0	1		ug/L			08/11/17 20:18	1
Trichlorofluoromethane	<1.0	1		ug/L			08/11/17 20:18	1
1,1-Dichloroethene	<1.0	1		ug/L			08/11/17 20:18	1
Carbon disulfide	<2.0	2		ug/L			08/11/17 20:18	1
Acetone	< 5.0	5		ug/L			08/11/17 20:18	1
Methylene Chloride	< 5.0	5		ug/L			08/11/17 20:18	1
trans-1,2-Dichloroethene	<1.0	1		ug/L			08/11/17 20:18	1
1,1-Dichloroethane	<1.0	1		ug/L			08/11/17 20:18	1
2,2-Dichloropropane	<1.0	1		ug/L			08/11/17 20:18	1
cis-1,2-Dichloroethene	<1.0	1		•			08/11/17 20:18	1
Methyl Ethyl Ketone	<5.0	5		ug/L			08/11/17 20:18	1
Bromochloromethane	<1.0	1		ug/L			08/11/17 20:18	1
Chloroform	<2.0	2		ug/L			08/11/17 20:18	1
1,1,1-Trichloroethane	<1.0	1		ug/L			08/11/17 20:18	1
1,1-Dichloropropene	<1.0	1		ug/L			08/11/17 20:18	1
Carbon tetrachloride	<1.0	1		ug/L			08/11/17 20:18	1
1,2-Dichloroethane	<1.0	1		ug/L			08/11/17 20:18	1
Trichloroethene	81	0.5		ug/L			08/11/17 20:18	1
1,2-Dichloropropane	<1.0	1		ug/L			08/11/17 20:18	1
Dibromomethane	<1.0	1		ug/L			08/11/17 20:18	1
Bromodichloromethane	<1.0	1		ug/L			08/11/17 20:18	1
cis-1,3-Dichloropropene	<1.0	1		ug/L			08/11/17 20:18	1
methyl isobutyl ketone	<5.0	5	.0 2.2	ug/L			08/11/17 20:18	1
Toluene	<0.50	0.5		ug/L			08/11/17 20:18	1
trans-1,3-Dichloropropene	<1.0	1	0 0.36	ug/L			08/11/17 20:18	1
1,1,2-Trichloroethane	<1.0	1	0 0.35	ug/L			08/11/17 20:18	1
Tetrachloroethene	2.2	1	0 0.37	ug/L			08/11/17 20:18	1
1,3-Dichloropropane	<1.0	1	0 0.36	ug/L			08/11/17 20:18	1
2-Hexanone	< 5.0	5	0 1.6	ug/L			08/11/17 20:18	1
Dibromochloromethane	<1.0	1	0 0.49	ug/L			08/11/17 20:18	1
1,2-Dibromoethane	<1.0	1	0.39	ug/L			08/11/17 20:18	1
Chlorobenzene	<1.0	1	0.39	ug/L			08/11/17 20:18	1
1,1,1,2-Tetrachloroethane	<1.0	1	.0 0.46	ug/L			08/11/17 20:18	1
Ethylbenzene	< 0.50	0.5	0.18	ug/L			08/11/17 20:18	1
m&p-Xylene	<1.0	1	.0 0.18	ug/L			08/11/17 20:18	1
o-Xylene	<0.50	0.5	0.22	ug/L			08/11/17 20:18	1
Styrene	<1.0	1	.0 0.39	ug/L			08/11/17 20:18	1
Bromoform	<1.0	1	.0 0.48	ug/L			08/11/17 20:18	1
lsopropylbenzene	<1.0	* 1	.0 0.39	ug/L			08/11/17 20:18	1
Bromobenzene	<1.0	* 1	.0 0.36	ug/L			08/11/17 20:18	1
1,1,2,2-Tetrachloroethane	<1.0	1	.0 0.40	ug/L			08/11/17 20:18	1
1,2,3-Trichloropropane	<1.0	1	.0 0.41	ug/L			08/11/17 20:18	1
N-Propylbenzene	<1.0	1	.0 0.41	ug/L			08/11/17 20:18	1
2-Chlorotoluene	<1.0	1	.0 0.31	ug/L			08/11/17 20:18	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-5

Lab Sample ID: 500-132231-20

Date Collected: 08/03/17 08:25 Date Received: 08/07/17 10:25

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			08/11/17 20:18	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			08/11/17 20:18	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			08/11/17 20:18	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			08/11/17 20:18	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			08/11/17 20:18	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			08/11/17 20:18	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			08/11/17 20:18	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			08/11/17 20:18	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			08/11/17 20:18	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			08/11/17 20:18	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			08/11/17 20:18	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			08/11/17 20:18	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			08/11/17 20:18	1
Naphthalene	<1.0	1.0	0.34	ug/L			08/11/17 20:18	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			08/11/17 20:18	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	80	75 - 126	08/11/17 20:18	1
Toluene-d8 (Surr)	88	75 - 120	08/11/17 20:18	1
4-Bromofluorobenzene (Surr)	89	72 - 124	08/11/17 20:18	1
Dibromofluoromethane	90	75 ₋ 120	08/11/17 20:18	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-6

Date Collected: 08/02/17 16:25 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-21

Matrix: Water

Method:	8260B	- VOC	,
---------	-------	-------	---

Method: 8260B - VOC									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50		ug/L			08/11/17 20:44	1
Dichlorodifluoromethane	<2.0		2.0		ug/L			08/11/17 20:44	1
Chloromethane	<1.0		1.0	0.32				08/11/17 20:44	1
Vinyl chloride	<0.50		0.50		ug/L			08/11/17 20:44	1
Bromomethane	<2.0	*	2.0	0.80	ug/L			08/11/17 20:44	1
Chloroethane	<1.0		1.0		ug/L			08/11/17 20:44	1
Trichlorofluoromethane	<1.0		1.0	0.43	ug/L			08/11/17 20:44	1
1,1-Dichloroethene	<1.0		1.0		ug/L			08/11/17 20:44	1
Carbon disulfide	<2.0		2.0		ug/L			08/11/17 20:44	1
Acetone	<5.0		5.0	1.7	ug/L			08/11/17 20:44	1
Methylene Chloride	<5.0		5.0		ug/L			08/11/17 20:44	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			08/11/17 20:44	1
1,1-Dichloroethane	<1.0		1.0	0.41	ug/L			08/11/17 20:44	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			08/11/17 20:44	1
cis-1,2-Dichloroethene	<1.0		1.0	0.41	ug/L			08/11/17 20:44	1
Methyl Ethyl Ketone	<5.0		5.0	2.1	ug/L			08/11/17 20:44	1
Bromochloromethane	<1.0		1.0	0.43	ug/L			08/11/17 20:44	1
Chloroform	<2.0		2.0	0.37	ug/L			08/11/17 20:44	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	ug/L			08/11/17 20:44	1
1,1-Dichloropropene	<1.0		1.0	0.30	ug/L			08/11/17 20:44	1
Carbon tetrachloride	<1.0		1.0	0.38	ug/L			08/11/17 20:44	1
1,2-Dichloroethane	<1.0		1.0	0.39	ug/L			08/11/17 20:44	1
Trichloroethene	5.5		0.50	0.16	ug/L			08/11/17 20:44	1
1,2-Dichloropropane	<1.0		1.0	0.43	ug/L			08/11/17 20:44	1
Dibromomethane	<1.0		1.0	0.27	ug/L			08/11/17 20:44	1
Bromodichloromethane	<1.0		1.0	0.37	ug/L			08/11/17 20:44	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42	ug/L			08/11/17 20:44	1
methyl isobutyl ketone	<5.0		5.0	2.2	ug/L			08/11/17 20:44	1
Toluene	<0.50		0.50	0.15	ug/L			08/11/17 20:44	1
trans-1,3-Dichloropropene	<1.0		1.0	0.36	ug/L			08/11/17 20:44	1
1,1,2-Trichloroethane	<1.0		1.0	0.35	ug/L			08/11/17 20:44	1
Tetrachloroethene	8.6		1.0	0.37	ug/L			08/11/17 20:44	1
1,3-Dichloropropane	<1.0		1.0	0.36	ug/L			08/11/17 20:44	1
2-Hexanone	< 5.0		5.0	1.6	ug/L			08/11/17 20:44	1
Dibromochloromethane	<1.0		1.0	0.49	ug/L			08/11/17 20:44	1
1,2-Dibromoethane	<1.0		1.0	0.39	ug/L			08/11/17 20:44	1
Chlorobenzene	<1.0		1.0	0.39	ug/L			08/11/17 20:44	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46	ug/L			08/11/17 20:44	1
Ethylbenzene	< 0.50		0.50	0.18	ug/L			08/11/17 20:44	1
m&p-Xylene	<1.0		1.0	0.18	ug/L			08/11/17 20:44	1
o-Xylene	<0.50		0.50	0.22	ug/L			08/11/17 20:44	1
Styrene	<1.0		1.0	0.39	ug/L			08/11/17 20:44	1
Bromoform	<1.0		1.0	0.48	ug/L			08/11/17 20:44	1
Isopropylbenzene	<1.0	*	1.0	0.39	ug/L			08/11/17 20:44	1
Bromobenzene	<1.0	•	1.0		ug/L			08/11/17 20:44	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			08/11/17 20:44	1
1,2,3-Trichloropropane	<1.0		1.0		ug/L			08/11/17 20:44	1
N-Propylbenzene	<1.0		1.0		ug/L			08/11/17 20:44	1
2-Chlorotoluene	<1.0		1.0		ug/L			08/11/17 20:44	1
					-				

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-6

Lab Sample ID: 500-132231-21

Date Collected: 08/02/17 16:25 Date Received: 08/07/17 10:25 Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25 ug/L	-,		08/11/17 20:44	1
4-Chlorotoluene	<1.0	1.0	0.35 ug/L			08/11/17 20:44	1
tert-Butylbenzene	<1.0	1.0	0.40 ug/L			08/11/17 20:44	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36 ug/L			08/11/17 20:44	1
sec-Butylbenzene	<1.0	1.0	0.40 ug/L			08/11/17 20:44	1
1,3-Dichlorobenzene	<1.0	1.0	0.40 ug/L			08/11/17 20:44	1
p-Isopropyltoluene	<1.0	1.0	0.36 ug/L			08/11/17 20:44	1
1,4-Dichlorobenzene	<1.0	1.0	0.36 ug/L			08/11/17 20:44	1
n-Butylbenzene	<1.0	1.0	0.39 ug/L			08/11/17 20:44	1
1,2-Dichlorobenzene	<1.0	1.0	0.33 ug/L			08/11/17 20:44	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0 ug/L			08/11/17 20:44	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34 ug/L			08/11/17 20:44	1
Hexachlorobutadiene	<1.0	1.0	0. 4 5 ug/L			08/11/17 20:44	1
Naphthalene	<1.0	1.0	0.34 ug/L			08/11/17 20:44	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46 ug/L			08/11/17 20:44	1

Surrogate	%Recovery (Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	82	75 - 126		08/11/17 20:44	1
Toluene-d8 (Surr)	87	75 - 120		08/11/17 20:44	1
4-Bromofluorobenzene (Surr)	91	72 - 124		08/11/17 20:44	1
Dibromofluoromethane	92	75 - 120		08/11/17 20:44	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-7

Method: 8260B - VOC

Bromoform

Isopropylbenzene

1,1,2,2-Tetrachloroethane

1,2,3-Trichloropropane

Bromobenzene

N-Propylbenzene

2-Chlorotoluene

Date Collected: 08/02/17 16:20 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-22

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50	0.15	ug/L			08/11/17 21:09	1
Dichlorodifluoromethane	<2.0		2.0	0.67	ug/L			08/11/17 21:09	1
Chloromethane	<1.0		1.0	0.32	ug/L			08/11/17 21:09	1
Vinyl chloride	< 0.50		0.50	0.20	ug/L			08/11/17 21:09	1
Bromomethane	<2.0	*	2.0	0.80	ug/L			08/11/17 21:09	1
Chloroethane	<1.0		1.0	0.51	ug/L			08/11/17 21:09	1
Trichlorofluoromethane	<1.0		1.0	0.43	ug/L			08/11/17 21:09	1
1,1-Dichloroethene	<1.0		1.0	0.39	ug/L			08/11/17 21:09	1
Carbon disulfide	<2.0		2.0	0.45	ug/L			08/11/17 21:09	1
Acetone	5.2		5.0	1.7	ug/L			08/11/17 21:09	1
Methylene Chloride	<5.0		5.0	1.6	ug/L			08/11/17 21:09	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			08/11/17 21:09	1
1,1-Dichloroethane	0.60	J	1.0	0.41	ug/L			08/11/17 21:09	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			08/11/17 21:09	1
cis-1,2-Dichloroethene	7.1		1.0	0.41	ug/L			08/11/17 21:09	1
Methyl Ethyl Ketone	< 5.0		5.0	2.1	ug/L			08/11/17 21:09	1
Bromochloromethane	<1.0		1.0	0.43	ug/L			08/11/17 21:09	1
Chloroform	<2.0		2.0	0.37	ug/L			08/11/17 21:09	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	ug/L			08/11/17 21:09	1
1,1-Dichloropropene	<1.0		1.0	0.30	ug/L			08/11/17 21:09	1
Carbon tetrachloride	<1.0		1.0	0.38	ug/L			08/11/17 21:09	1
1,2-Dichloroethane	<1.0		1.0	0.39	ug/L			08/11/17 21:09	1
Trichloroethene	4.5		0.50	0.16	ug/L			08/11/17 21:09	1
1,2-Dichloropropane	<1.0		1.0	0.43	ug/L			08/11/17 21:09	1
Dibromomethane	<1.0		1.0	0.27	ug/L			08/11/17 21:09	1
Bromodichloromethane	<1.0		1.0	0.37	ug/L			08/11/17 21:09	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42	ug/L			08/11/17 21:09	1
methyl isobutyl ketone	<5.0		5.0	2.2	ug/L			08/11/17 21:09	1
Toluene	<0.50		0.50	0.15	ug/L			08/11/17 21:09	1
trans-1,3-Dichloropropene	<1.0		1.0	0.36	ug/L			08/11/17 21:09	1
1,1,2-Trichloroethane	<1.0		1.0	0.35	ug/L			08/11/17 21:09	1
Tetrachloroethene	11		1.0	0.37	ug/L			08/11/17 21:09	1
1,3-Dichloropropane	<1.0		1.0	0.36	ug/L			08/11/17 21:09	1
2-Hexanone	<5.0		5.0	1.6	ug/L			08/11/17 21:09	1
Dibromochloromethane	<1.0		1.0	0.49	ug/L			08/11/17 21:09	1
1,2-Dibromoethane	<1.0		1.0	0.39	ug/L			08/11/17 21:09	1
Chlorobenzene	<1.0		1.0	0.39	ug/L			08/11/17 21:09	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46	ug/L			08/11/17 21:09	1
Ethylbenzene	<0.50		0.50	0.18	ug/L			08/11/17 21:09	1
m&p-Xylene	<1.0		1.0	0.18	ug/L			08/11/17 21:09	1
o-Xylene	<0.50		0.50	0.22	_			08/11/17 21:09	1
Styrene	<1.0		1.0	0.39	ug/L			08/11/17 21:09	1
D ,	-4.0		4.0	0.40				0044447.04.00	4

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Page 52 of 90

0.48 ug/L

0.39 ug/L

0.36 ug/L

0.40 ug/L

0.41 ug/L

0.41 ug/L

0.31 ug/L

<1.0

<1.0 *

<1.0 *

<1.0

<1.0

<1.0

<1.0

TestAmerica Chicago

08/11/17 21:09

08/11/17 21:09

08/11/17 21:09

08/11/17 21:09

08/11/17 21:09

08/11/17 21:09

08/11/17 21:09

1

1

1

1

1

1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-7

Date Collected: 08/02/17 16:20 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-22

Matrix: Water

Method: 8260B - VOC (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			08/11/17 21:09	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			08/11/17 21:09	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			08/11/17 21:09	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			08/11/17 21:09	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			08/11/17 21:09	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			08/11/17 21:09	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			08/11/17 21:09	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			08/11/17 21:09	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			08/11/17 21:09	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			08/11/17 21:09	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			08/11/17 21:09	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			08/11/17 21:09	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			08/11/17 21:09	1
Naphthalene	<1.0	1.0	0.34	ug/L			08/11/17 21:09	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			08/11/17 21:09	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	81	75 - 126	08/11/17 21:0	9 1
Toluene-d8 (Surr)	87	75 - 120	08/11/17 21:0	9 1
4-Bromofluorobenzene (Surr)	93	72 - 124	08/11/17 21:0	9 1
Dibromofluoromethane	91	75 - 120	08/11/17 21:0	9 1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-8

Date Collected: 08/02/17 16:15 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-23

Matrix: Water

Method:	8260B	- VOC
---------	-------	-------

Method: 8260B - VOC	Df4	Ouglifier DI	8801	11-4	_	Dunnanad	Amelyand	Dil Eas
Analyte	<0.50	Qualifier RL 0.50		Unit ug/L	D	Prepared	Analyzed 08/11/17 21:34	Dil Fac
Benzene							08/11/17 21:34	1
Dichlorodifluoromethane	<2.0 <1.0	2.0 1.0		ug/L ug/L			08/11/17 21:34	1
Chloromethane								
Vinyl chloride	<0.50 <2.0	0.50		ug/L			08/11/17 21:34 08/11/17 21:34	1
Bromomethane				ug/L				1
Chloroethane	<1.0	1.0		ug/L			08/11/17 21:34	1
Trichlorofluoromethane	<1.0	1.0		ug/L			08/11/17 21:34	1
1,1-Dichloroethene	<1.0	1.0		ug/L			08/11/17 21:34	1
Carbon disulfide	<2.0	2.0		ug/L			08/11/17 21:34	1
Acetone	<5.0	5.0		ug/L			08/11/17 21:34	1
Methylene Chloride	<5.0	5.0		ug/L			08/11/17 21:34	1
trans-1,2-Dichloroethene	<1.0	1.0		ug/L			08/11/17 21:34	1
1,1-Dichloroethane	0.91	J 1.0	0.41	ug/L			08/11/17 21:34	1
2,2-Dichloropropane	<1.0	1.0	0.44	ug/L			08/11/17 21:34	1
cis-1,2-Dichloroethene	34	1.0	0.41	ug/L			08/11/17 21:34	1
Methyl Ethyl Ketone	< 5.0	5.0	2.1	ug/L			08/11/17 21:34	1
Bromochloromethane	<1.0	1.0	0.43	ug/L			08/11/17 21:34	1
Chloroform	<2.0	2.0	0.37	ug/L			08/11/17 21:34	1
1,1,1-Trichloroethane	<1.0	1.0	0.38	ug/L			08/11/17 21:34	1
1,1-Dichloropropene	<1.0	1.0	0.30	ug/L			08/11/17 21:34	1
Carbon tetrachloride	<1.0	1.0	0.38	ug/L			08/11/17 21:34	1
1,2-Dichloroethane	<1.0	1.0	0.39	ug/L			08/11/17 21:34	1
Trichloroethene	7.7	0.50	0.16	ug/L			08/11/17 21:34	1
1,2-Dichloropropane	<1.0	1.0	0.43	ug/L			08/11/17 21:34	1
Dibromomethane	<1.0	1.0	0.27	ug/L			08/11/17 21:34	1
Bromodichloromethane	<1.0	1.0		ug/L			08/11/17 21:34	1
cis-1,3-Dichloropropene	<1.0	1.0		ug/L			08/11/17 21:34	1
methyl isobutyl ketone	<5.0	5.0	2.2	ug/L			08/11/17 21:34	1
Toluene	< 0.50	0.50	0.15	ug/L			08/11/17 21:34	1
trans-1,3-Dichloropropene	<1.0	1.0		ug/L			08/11/17 21:34	1
1.1.2-Trichloroethane	<1.0	1.0		ug/L			08/11/17 21:34	1
Tetrachloroethene	66	1.0		ug/L			08/11/17 21:34	1
1,3-Dichloropropane	<1.0	1.0		ug/L			08/11/17 21:34	1
2-Hexanone	<5.0	5.0		ug/L			08/11/17 21:34	1
Dibromochloromethane	<1.0	1.0		ug/L			08/11/17 21:34	1
1,2-Dibromoethane	<1.0	1.0		ug/L			08/11/17 21:34	1
Chlorobenzene	<1.0	1.0		ug/L			08/11/17 21:34	1
1,1,1,2-Tetrachloroethane	<1.0	1.0		ug/L			08/11/17 21:34	1
Ethylbenzene	<0.50	0.50		ug/L			08/11/17 21:34	1
m&p-Xylene	<1.0	1.0		ug/L			08/11/17 21:34	1
o-Xylene	<0.50	0.50		ug/L			08/11/17 21:34	1
Styrene	<1.0	1.0		ug/L			08/11/17 21:34	1
Bromoform	<1.0	1.0		ug/L ug/L			08/11/17 21:34	
	<1.0 <1.0			-			08/11/17 21:34	1
Isopropylbenzene	<1.0 <1.0			ug/L				
Bromobenzene				ug/L			08/11/17 21:34	1
1,1,2,2-Tetrachloroethane	<1.0	1.0		ug/L			08/11/17 21:34	1
1,2,3-Trichloropropane	<1.0	1.0		ug/L			08/11/17 21:34	1
N-Propylbenzene	<1.0	1.0		ug/L			08/11/17 21:34	1
2-Chlorotoluene	<1.0	1.0	0.31	ug/L			08/11/17 21:34	1

1

Client Sample Results

Client: Weston Solutions, Inc. Project/Site: Black and Decker TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-8

1,2,3-Trichlorobenzene

Lab Sample ID: 500-132231-23

Date Collected: 08/02/17 16:15 Date Received: 08/07/17 10:25 Matrix: Water

08/11/17 21:34

Method: 8260B - VOC (Contine Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25 ug/L		08/11/17 21:34	1
4-Chlorotoluene	<1.0	1.0	0.35 ug/L		08/11/17 21:34	1
tert-Butylbenzene	<1.0	1.0	0.40 ug/L		08/11/17 21:34	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36 ug/L		08/11/17 21:34	1
sec-Butylbenzene	<1.0	1.0	0.40 ug/L		08/11/17 21:34	1
1,3-Dichlorobenzene	<1.0	1.0	0.40 ug/L		08/11/17 21:34	1
p-Isopropyltoluene	<1.0	1.0	0.36 ug/L		08/11/17 21:34	1
1,4-Dichlorobenzene	<1.0	1.0	0.36 ug/L		08/11/17 21:34	1
n-Butylbenzene	<1.0	1.0	0.39 ug/L		08/11/17 21:34	1
1,2-Dichlorobenzene	<1.0	1.0	0.33 ug/L		08/11/17 21:34	1
1,2-Dibromo-3-Chloropropane	< 5.0	5.0	2.0 ug/L		08/11/17 21:34	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34 ug/L		08/11/17 21:34	1
Hexachlorobutadiene	<1.0	1.0	0.45 ug/L		08/11/17 21:34	1
Naphthalene	<1.0	1.0	0.34 ug/L		08/11/17 21:34	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analy:	zed Dil Fac
1,2-Dichloroethane-d4 (Surr)	83	75 - 126	08/11/17	21:34 1
Toluene-d8 (Surr)	86	75 ₋ 120	08/11/17	21:34 1
4-Bromofluorobenzene (Surr)	90	72 - 124	08/11/17	21:34 1
Dibromofluoromethane	93	75 ₋ 120	08/11/17	21:34 1

1.0

0.46 ug/L

<1.0

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-9

Date Collected: 08/02/17 16:10 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-24

Matrix: Water

Method:	8260B	- VOC
---------	-------	-------

Wethod: 8260B - VOC						_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50	0.15	_			08/11/17 21:59	1
Dichlorodifluoromethane	<2.0		2.0	0.67				08/11/17 21:59	1
Chloromethane	<1.0		1.0		ug/L			08/11/17 21:59	1
Vinyl chloride	<0.50		0.50		ug/L			08/11/17 21:59	1
Bromomethane	<2.0	*	2.0	0.80	_			08/11/17 21:59	1
Chloroethane	<1.0		1.0		ug/L			08/11/17 21:59	1
Trichlorofluoromethane	<1.0		1.0		ug/L			08/11/17 21:59	1
1,1-Dichloroethene	<1.0		1.0		ug/L			08/11/17 21:59	1
Carbon disulfide	<2.0		2.0		ug/L			08/11/17 21:59	1
Acetone	< 5.0		5.0		ug/L			08/11/17 21:59	1
Methylene Chloride	< 5.0		5.0		ug/L			08/11/17 21:59	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			08/11/17 21:59	1
1,1-Dichloroethane	<1.0		1.0	0.41	ug/L			08/11/17 21:59	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			08/11/17 21:59	1
cis-1,2-Dichloroethene	<1.0		1.0	0.41	ug/L			08/11/17 21:59	1
Methyl Ethyl Ketone	<5.0		5.0	2.1	ug/L			08/11/17 21:59	1
Bromochloromethane	<1.0		1.0	0.43	ug/L			08/11/17 21:59	1
Chloroform	<2.0		2.0	0.37	ug/L			08/11/17 21:59	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	ug/L			08/11/17 21:59	1
1,1-Dichloropropene	<1.0		1.0	0.30	ug/L			08/11/17 21:59	1
Carbon tetrachloride	<1.0		1.0	0.38	ug/L			08/11/17 21:59	1
1,2-Dichloroethane	<1.0		1.0	0.39	ug/L			08/11/17 21:59	1
Trichloroethene	0.59		0.50	0.16	ug/L			08/11/17 21:59	1
1,2-Dichloropropane	<1.0		1.0	0.43	ug/L			08/11/17 21:59	1
Dibromomethane	<1.0		1.0	0.27	ug/L			08/11/17 21:59	1
Bromodichloromethane	<1.0		1.0	0.37	ug/L			08/11/17 21:59	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42	ug/L			08/11/17 21:59	1
methyl isobutyl ketone	< 5.0		5.0	2.2	ug/L			08/11/17 21:59	1
Toluene	<0.50		0.50	0.15	ug/L			08/11/17 21:59	1
trans-1,3-Dichloropropene	<1.0		1.0	0.36	ug/L			08/11/17 21:59	1
1,1,2-Trichloroethane	<1.0		1.0	0.35	ug/L			08/11/17 21:59	1
Tetrachloroethene	70		1.0	0.37	ug/L			08/11/17 21:59	1
1,3-Dichloropropane	<1.0		1.0	0.36	ug/L			08/11/17 21:59	1
2-Hexanone	< 5.0		5.0	1.6	ug/L			08/11/17 21:59	1
Dibromochloromethane	<1.0		1.0	0.49	ug/L			08/11/17 21:59	1
1,2-Dibromoethane	<1.0		1.0	0.39	ug/L			08/11/17 21:59	1
Chlorobenzene	<1.0		1.0	0.39	ug/L			08/11/17 21:59	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46	ug/L			08/11/17 21:59	1
Ethylbenzene	<0.50		0.50	0.18	ug/L			08/11/17 21:59	1
m&p-Xylene	<1.0		1.0	0.18	ug/L			08/11/17 21:59	1
o-Xylene	<0.50		0.50	0.22	ug/L			08/11/17 21:59	1
Styrene	<1.0		1.0		ug/L			08/11/17 21:59	1
Bromoform	<1.0		1.0		ug/L			08/11/17 21:59	1
Isopropylbenzene	<1.0	*	1.0		ug/L			08/11/17 21:59	1
Bromobenzene	<1.0	*	1.0		ug/L			08/11/17 21:59	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			08/11/17 21:59	1
1,2,3-Trichloropropane	<1.0		1.0		ug/L			08/11/17 21:59	1
N-Propylbenzene	<1.0		1.0		ug/L			08/11/17 21:59	1
2-Chlorotoluene	<1.0		1.0		ug/L			08/11/17 21:59	1
	7.0				J				

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-9

Date Collected: 08/02/17 16:10 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-24

Matrix: Water

Method: 8260B - VOC (Continued)

Analyte	Result Qualifier	RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25 ι	ug/L			08/11/17 21:59	1
4-Chlorotoluene	<1.0	1.0	0.35 ι	ug/L			08/11/17 21:59	1
tert-Butylbenzene	<1.0	1.0	0.40 t	ug/L			08/11/17 21:59	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36 u	ug/L			08/11/17 21:59	1
sec-Butylbenzene	<1.0	1.0	0.40 ι	ug/L			08/11/17 21:59	1
1,3-Dichlorobenzene	<1.0	1.0	0.40 L	ug/L			08/11/17 21:59	1
p-Isopropyltoluene	<1.0	1.0	0.36 u	ug/L			08/11/17 21:59	1
1,4-Dichlorobenzene	<1.0	1.0	0.36 u	ug/L			08/11/17 21:59	1
n-Butylbenzene	<1.0	1.0	0.39 ι	ug/L			08/11/17 21:59	1
1,2-Dichlorobenzene	<1.0	1.0	0.33 ι	ug/L			08/11/17 21:59	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0 ι	ug/L			08/11/17 21:59	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34 u	ug/L			08/11/17 21:59	1
Hexachlorobutadiene	<1.0	1.0	0. 4 5 t	ug/L			08/11/17 21:59	1
Naphthalene	<1.0	1.0	0.34 ι	ug/L			08/11/17 21:59	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46 u	ug/L			08/11/17 21:59	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84	75 - 126	08/11/17 21:59	1
Toluene-d8 (Surr)	88	75 - 120	08/11/17 21:59	1
4-Bromofluorobenzene (Surr)	93	72 - 124	08/11/17 21:59	1
Dibromofluoromethane	92	75 - 120	08/11/17 21:59	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-9 DUP

Date Collected: 08/02/17 16:10 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-25

Matrix: Water

Method: 826	VD -	VUC
-------------	------	-----

Method: 8260B - VOC	B - 15 O 155	ъ.	MD.	11-4	D	Dunnavad	A 1: a -1	Dil Fac
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed 08/11/17 22:24	Dil Fac
Benzene	<0.50	0.50	0.15				08/11/17 22:24	1
Dichlorodifluoromethane	<2.0	2.0	0.67					
Chloromethane	<1.0	1.0	0.32				08/11/17 22:24	1
Vinyl chloride	<0.50	0.50	0.20	•			08/11/17 22:24	1
Bromomethane	<2.0 *	2.0	0.80				08/11/17 22:24	1
Chloroethane	<1.0	1.0	0.51				08/11/17 22:24	1
Trichlorofluoromethane	<1.0	1.0	0.43				08/11/17 22:24	1
1,1-Dichloroethene	<1.0	1.0	0.39	-			08/11/17 22:24	1
Carbon disulfide	<2.0	2.0	0.45	-			08/11/17 22:24	1
Acetone	5.8	5.0		ug/L			08/11/17 22:24	1
Methylene Chloride	<5.0	5.0		ug/L			08/11/17 22:24	1
trans-1,2-Dichloroethene	<1.0	1.0	0.35	ug/L			08/11/17 22:24	1
1,1-Dichloroethane	<1.0	1.0	0.41	ug/L			08/11/17 22:24	1
2,2-Dichloropropane	<1.0	1.0	0.44	ug/L			08/11/17 22:24	1
cis-1,2-Dichloroethene	<1.0	1.0	0.41	ug/L			08/11/17 22:24	1
Methyl Ethyl Ketone	<5.0	5.0	2.1	ug/L			08/11/17 22:24	1
Bromochloromethane	<1.0	1.0	0.43	ug/L			08/11/17 22:24	1
Chloroform	<2.0	2.0	0.37	ug/L			08/11/17 22:24	1
1,1,1-Trichloroethane	<1.0	1.0	0.38	ug/L			08/11/17 22:24	1
1,1-Dichloropropene	<1.0	1.0	0.30	ug/L			08/11/17 22:24	1
Carbon tetrachloride	<1.0	1.0	0.38	ug/L			08/11/17 22:24	1
1,2-Dichloroethane	<1.0	1.0	0.39	ug/L			08/11/17 22:24	1
Trichloroethene	0.70	0.50	0.16	ug/L			08/11/17 22:24	1
1,2-Dichloropropane	<1.0	1.0	0.43	ug/L			08/11/17 22:24	1
Dibromomethane	<1.0	1.0	0.27	ug/L			08/11/17 22:24	1
Bromodichloromethane	<1.0	1.0	0.37	-			08/11/17 22:24	1
cis-1,3-Dichloropropene	<1.0	1.0	0.42	•			08/11/17 22:24	1
methyl isobutyl ketone	< 5.0	5.0		ug/L			08/11/17 22:24	1
Toluene	<0.50	0.50	0.15	-			08/11/17 22:24	1
trans-1,3-Dichloropropene	<1.0	1.0	0.36	-			08/11/17 22:24	1
1,1,2-Trichloroethane	<1.0	1.0	0.35	-			08/11/17 22:24	1
Tetrachloroethene	72	1.0	0.37				08/11/17 22:24	1
1,3-Dichloropropane	<1.0	1.0	0.36	_			08/11/17 22:24	1
2-Hexanone	<5.0	5.0		ug/L			08/11/17 22:24	1
Dibromochloromethane	<1.0	1.0	0.49	=			08/11/17 22:24	1
1,2-Dibromoethane	<1.0	1.0	0.39	_			08/11/17 22:24	1
Chlorobenzene	<1.0	1.0	0.39	-			08/11/17 22:24	1
1,1,1,2-Tetrachloroethane	<1.0	1.0	0.46	-			08/11/17 22:24	1
	<0.50	0.50	0.18				08/11/17 22:24	1
Ethylbenzene	<1.0	1.0	0.18	•			08/11/17 22:24	1
m&p-Xylene	<0.50	0.50	0.10				08/11/17 22:24	1
o-Xylene	<0.50 <1.0	1.0	0.39				08/11/17 22:24	1
Styrene							08/11/17 22:24	1
Bromoform	<1.0	1.0	0.48				08/11/17 22:24	
Isopropylbenzene	<1.0 *	1.0	0.39	_				1
Bromobenzene	<1.0 *	1.0	0.36	-			08/11/17 22:24	1
1,1,2,2-Tetrachloroethane	<1.0	1.0	0.40				08/11/17 22:24	1
1,2,3-Trichloropropane	<1.0	1.0	0.41	_			08/11/17 22:24	1
N-Propylbenzene	<1.0	1.0	0.41	_			08/11/17 22:24	1
2-Chlorotoluene	<1.0	1.0	0.31	ug/L			08/11/17 22:24	1

1

1

Client Sample Results

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-9 DUP

Lab Sample ID: 500-132231-25

Date Collected: 08/02/17 16:10 Date Received: 08/07/17 10:25

Naphthalene

1,2,3-Trichlorobenzene

Matrix: Water

08/11/17 22:24

08/11/17 22:24

Method: 8260B - VOC (Contin	nued) Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25 ug/L		08/11/17 22:24	1
4-Chlorotoluene	<1.0	1.0	0.35 ug/L		08/11/17 22:24	1
tert-Butylbenzene	<1.0	1.0	0.40 ug/L		08/11/17 22:24	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36 ug/L		08/11/17 22:24	1
sec-Butylbenzene	<1.0	1.0	0.40 ug/L		08/11/17 22:24	1
1,3-Dichlorobenzene	<1.0	1.0	0.40 ug/L		08/11/17 22:24	1
p-Isopropyltoluene	<1.0	1.0	0.36 ug/L		08/11/17 22:24	1
1,4-Dichlorobenzene	<1.0	1.0	0.36 ug/L		08/11/17 22:24	1
n-Butylbenzene	<1.0	1.0	0.39 ug/L		08/11/17 22:24	1
1,2-Dichlorobenzene	<1.0	1.0	0.33 ug/L		08/11/17 22:24	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0 ug/L		08/11/17 22:24	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34 ug/L		08/11/17 22:24	1
Hexachlorobutadiene	<1.0	1.0	0.45 ug/L		08/11/17 22:24	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	82	75 - 126	08/11/17 22:2	4 1
Toluene-d8 (Surr)	88	75 _~ 120	08/11/17 22:2	4 1
4-Bromofluorobenzene (Surr)	89	72 - 124	08/11/17 22:2	4 1
Dibromofluoromethane	91	75 - 120	08/11/17 22:2	4 1

1.0

1.0

0.34 ug/L

0.46 ug/L

<1.0

<1.0

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-10

Date Collected: 08/02/17 15:45 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-26

Matrix: Water

Dichlorodifluoromethane	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Choomeshane	Benzene	<0.50		0.50	0.15	ug/L			08/11/17 22:49	1
Vinyl charlade -0.50 0.50 0.20 ug/L 08/11/17/22/49 Chloroethane 4.10 F1 1.0 0.51 ug/L 08/11/17/22/49 Tichibrofluoromethane 4.10 1.0 0.43 ug/L 08/11/17/22/49 Tichibrofluoromethane 4.10 1.0 0.39 ug/L 08/11/17/22/49 Carbon disulfide 4.20 2.0 0.45 ug/L 08/11/17/22/49 Methylene Chloride 4.50 5.0 1.6 ug/L 08/11/17/22/49 Methylene Chloride 4.50 5.0 1.6 ug/L 08/11/17/22/49 Methylene Chloride 4.50 5.0 1.6 ug/L 08/11/17/22/49 Int-Bichrorethane 4.10 1.0 0.41 ug/L 08/11/17/22/49 2.2-Dichtoropropane 4.10 1.0 0.41 ug/L 08/11/17/22/49 School Flijk Ketone 4.50 5.0 2.1 ug/L 08/11/17/22/49 Methyl Elph Ketone 4.50 5.0 2.1	Dichlorodifluoromethane	<2.0	F2	2.0	0.67	ug/L			08/11/17 22:49	1
Promomethane	Chloromethane	<1.0		1.0	0.32	ug/L			08/11/17 22:49	1
Chloroethane	Vinyl chloride	<0.50		0.50	0.20	ug/L			08/11/17 22:49	1
Trichiorofluoromethane	Bromomethane	<2.0	*	2.0	0.80	ug/L			08/11/17 22:49	1
1,1-Dichloroethene	Chloroethane	<1.0	F1	1.0	0.51	ug/L			08/11/17 22:49	1
Carbon distlifide <2.0 2.0 0.45 ug/L 08/11/17/22/49 Acetone <5.0 5.0 1.7 ug/L 08/11/17/22/49 Methylene Chloride <5.0 5.0 1.6 ug/L 08/11/17/22/49 Varians 1,2 Dichloroethene <1.0 1.0 0.35 ug/L 08/11/17/22/49 2,2 Dichloroptopane <1.0 1.0 0.41 ug/L 08/11/17/22/49 2,2 Dichloroptopane <1.0 1.0 0.41 ug/L 08/11/17/22/49 06:-12 Dichloroethene <1.0 1.0 0.41 ug/L 08/11/17/22/49 Bromochloromethane <1.0 1.0 0.41 ug/L 08/11/17/22/49 Bromochloromethane <1.0 1.0 0.43 ug/L 08/11/17/22/49 Chloroform <2.0 2.0 0.37 ug/L 08/11/17/22/49 1.1-Dichloroptopane <1.0 1.0 0.38 ug/L 08/11/17/22/49 1.2-Dichloroptopane <1.0 1.0 0.39 ug/L	Trichlorofluoromethane	<1.0		1.0	0.43	ug/L			08/11/17 22:49	1
Acetone	1,1-Dichloroethene	<1.0		1.0	0.39	ug/L			08/11/17 22:49	1
Methylene Chloride	Carbon disulfide	<2.0		2.0	0.45	ug/L			08/11/17 22:49	1
trans-1.2-Dichloroethene	Acetone	< 5.0		5.0	1.7	ug/L			08/11/17 22:49	1
1.1-Dichloroethane	Methylene Chloride	< 5.0		5.0	1.6	ug/L			08/11/17 22:49	1
2,2-Dichloropropane <1 0	trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			08/11/17 22:49	1
Cas-1,2-Dichloroethene	1,1-Dichloroethane	<1.0		1.0	0.41	ug/L			08/11/17 22:49	1
Methyl Ethyl Ketone 2.1 uyl. 08/11/17 22:49 Bromochloromethane 1.0 0.37 ugl. 08/11/17 22:49 Chloroform </td <td>2,2-Dichloropropane</td> <td><1.0</td> <td></td> <td>1.0</td> <td>0.44</td> <td>ug/L</td> <td></td> <td></td> <td>08/11/17 22:49</td> <td>1</td>	2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			08/11/17 22:49	1
Bromochloromethane	cis-1,2-Dichloroethene	<1.0		1.0	0.41	ug/L			08/11/17 22:49	1
Chloroform < 2.0 2.0 0.37 ug/L 08/11/17 22:49 1.1.1-Trichtorethane < 1.0	Methyl Ethyl Ketone	<5.0		5.0	2.1	ug/L			08/11/17 22:49	1
1,1,1-Trichloroethane <1.0	Bromochloromethane	<1.0		1.0	0.43	ug/L			08/11/17 22:49	1
1,1-Dichloropropene <1.0	Chloroform	<2.0		2.0	0.37	ug/L			08/11/17 22:49	1
1,1-Dichloropropene <1,0	1.1.1-Trichloroethane	<1.0		1.0	0.38	ug/L			08/11/17 22:49	1
Carbon tetrachloride <1.0 1.0 0.38 ug/L 08/11/17 22:49 1.2-Dichloroethane <1.0		<1.0		1.0	0.30	ug/L			08/11/17 22:49	1
Trichloroethene <0.50 0.50 0.16 lg/L 08/11/17 22:49 1.2-Dichloropropane <1.0	• •	<1.0		1.0	0.38	ug/L			08/11/17 22:49	1
Trichloroethene <0.50 0.50 0.16 lg/L 08/11/17 22:49 1,2-Dichloropropane <1.0	1.2-Dichloroethane	<1.0		1.0	0.39	ug/L			08/11/17 22:49	1
1,2-Dichloropropane <1.0	'	<0.50		0.50		_			08/11/17 22:49	1
Dibromomethane <1.0 1.0 0.27 ug/L 08/11/17 22:49 Bromodichloromethane <1.0		<1.0		1.0		-			08/11/17 22:49	1
Bromodichloromethane < 1.0 0.37 ug/L 08/11/17 22:49 cis-1,3-Dichloropropene < 1.0						_			08/11/17 22:49	1
cis-1,3-Dichloropropene <1.0 1.0 0.42 ug/L 08/11/17 22:49 methyl isobutyl ketone <5.0 5.0 2.2 ug/L 08/11/17 22:49 Toluene <0.50 0.50 0.15 ug/L 08/11/17 22:49 trans-1,3-Dichloropropene <1.0 1.0 0.36 ug/L 08/11/17 22:49 1,1,2-Trichloroethane <1.0 1.0 0.35 ug/L 08/11/17 22:49 Tetrachloroethene 1.8 1.0 0.37 ug/L 08/11/17 22:49 1,3-Dichloropropane <1.0 1.0 0.35 ug/L 08/11/17 22:49 2-Hexanone <5.0 5.0 1.6 ug/L 08/11/17 22:49 2-Hexanone <5.0 5.0 1.6 ug/L 08/11/17 22:49 2-Hexanone <5.0 5.0 1.6 ug/L 08/11/17 22:49 2-Hexanone <1.0 0.0 0.39 ug/L 08/11/17 22:49 2-Hexanone <1.0 0.0 0.39 ug/L 08/11/17 22:49									08/11/17 22:49	1
methyl isobutyl ketone <5.0 5.0 2.2 ug/L 08/11/17 22:49 Toluene <0.50						-			08/11/17 22:49	1
Toluene <0.50 0.50 0.15 ug/L 08/11/17 22:49 trans-1,3-Dichloropropene <1.0						_			08/11/17 22:49	1
trans-1,3-Dichloropropene <1.0 1.0 0.36 ug/L 08/11/17 22:49 1,1,2-Trichloroethane <1.0	· · ·					_			08/11/17 22:49	1
1,1,2-Trichloroethane <1.0				1.0		-			08/11/17 22:49	1
Tetrachloroethene 1.8 1.0 0.37 ug/L 08/11/17 22:49 1,3-Dichloropropane <1.0						-			08/11/17 22:49	1
1,3-Dichloropropane <1.0						_			08/11/17 22:49	1
2-Hexanone <5.0									08/11/17 22:49	1
Dibromochloromethane <1.0 1.0 0.49 ug/L 08/11/17 22:49 1,2-Dibromoethane <1.0	· ·								08/11/17 22:49	1
1,2-Dibromoethane <1.0						-				1
Chlorobenzene < 1.0 1.0 0.39 ug/L 08/11/17 22:49 1,1,1,2-Tetrachloroethane < 1.0 1.0 0.46 ug/L 08/11/17 22:49 Ethylbenzene < 0.50 0.50 0.18 ug/L 08/11/17 22:49 m&p-Xylene < 1.0 1.0 0.18 ug/L 08/11/17 22:49 o-Xylene < 0.50 0.50 0.22 ug/L 08/11/17 22:49 Styrene < 1.0 1.0 0.39 ug/L 08/11/17 22:49 Bromoform < 1.0 1.0 0.39 ug/L 08/11/17 22:49 Isopropylbenzene < 1.0 1.0 0.48 ug/L 08/11/17 22:49 Isopropylbenzene < 1.0 1.0 0.39 ug/L 08/11/17 22:49 Isopropylbenzene < 1.0 1.0 0.39 ug/L 08/11/17 22:49 Italy o-Xylene						J				1
1,1,1,2-Tetrachloroethane <1.0						-				1
Ethylbenzene <0.50 0.50 0.18 ug/L 08/11/17 22:49 m&p-Xylene <1.0						_				1
m&p-Xylene <1.0 1.0 0.18 ug/L 08/11/17 22:49 o-Xylene <0.50										1
o-Xylene <0.50 0.50 0.22 ug/L 08/11/17 22:49 Styrene <1.0	•									1
Styrene <1.0	• •									1
Bromoform <1.0						_				1
Isopropylbenzene	•					-				1
Bromobenzene <1.0 *			*			_				1
1,1,2,2-Tetrachloroethane <1.0	• • •					-				1
1,2,3-Trichloropropane <1.0						_				1
N-Propylbenzene <1.0 1.0 0.41 ug/L 08/11/17 22:49						_				1
	· ·									1
	2-Chlorotoluene	<1.0		1.0		-			08/11/17 22:49	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-10

Lab Sample ID: 500-132231-26

Date Collected: 08/02/17 15:45 Date Received: 08/07/17 10:25 . Matrix: Water

Method:	8260B	- VOC	(Continued)
---------	-------	-------	-------------

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<1.0	1.0	0.25	ug/L			08/11/17 22:49	1
4-Chlorotoluene	<1.0	1.0	0.35	ug/L			08/11/17 22:49	1
tert-Butylbenzene	<1.0	1.0	0.40	ug/L			08/11/17 22:49	1
1,2,4-Trimethylbenzene	<1.0	1.0	0.36	ug/L			08/11/17 22:49	1
sec-Butylbenzene	<1.0	1.0	0.40	ug/L			08/11/17 22:49	1
1,3-Dichlorobenzene	<1.0	1.0	0.40	ug/L			08/11/17 22:49	1
p-Isopropyltoluene	<1.0	1.0	0.36	ug/L			08/11/17 22:49	1
1,4-Dichlorobenzene	<1.0	1.0	0.36	ug/L			08/11/17 22:49	1
n-Butylbenzene	<1.0	1.0	0.39	ug/L			08/11/17 22:49	1
1,2-Dichlorobenzene	<1.0	1.0	0.33	ug/L			08/11/17 22:49	1
1,2-Dibromo-3-Chloropropane	<5.0	5.0	2.0	ug/L			08/11/17 22:49	1
1,2,4-Trichlorobenzene	<1.0	1.0	0.34	ug/L			08/11/17 22:49	1
Hexachlorobutadiene	<1.0	1.0	0.45	ug/L			08/11/17 22:49	1
Naphthalene	<1.0	1.0	0.34	ug/L			08/11/17 22:49	1
1,2,3-Trichlorobenzene	<1.0	1.0	0.46	ug/L			08/11/17 22:49	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	85	75 - 126	08/11/17 22:49	1
Toluene-d8 (Surr)	87	75 ₋ 120	08/11/17 22:49	1
4-Bromofluorobenzene (Surr)	92	72 - 124	08/11/17 22:49	1
Dibromofluoromethane	94	75 - 120	08/11/17 22:49	1

TestAmerica Job ID: 500-132231-1

Definitions/Glossary

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
*	LCS or LCSD is outside acceptance limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

QC Association Summary

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

GC/MS VOA

Analysis Batch: 396796

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-132231-1	RFW-1A	Total/NA	Water	8260B	
500-132231-2	RFW-1B	Total/NA	Water	8260B	
500-132231-3	RFW-2A	Total/NA	Water	8260B	
500-132231-4	RFW-2B	Total/NA	Water	8260B	
500-132231-5	RFW-3B	Total/NA	Water	8260B	
500-132231-6	RFW-4A	Total/NA	Water	8260B	
500-132231-7	RFW-4A DUP	Total/NA	Water	8260B	
500-132231-8	RFW-4B	Total/NA	Water	8260B	
500-132231-9	RFW-6	Total/NA	Water	8260B	
500-132231-10	RFW-7	Total/NA	Water	8260B	
500-132231-11	RFW-9	Total/NA	Water	8260B	
500-132231-12	RFW-11B	Total/NA	Water	8260B	
500-132231-13	RFW-12B	Total/NA	Water	8260B	
500-132231-14	RFW-13	Total/NA	Water	8260B	
500-132231-15	RFW-17	Total/NA	Water	8260B	
500-132231-16	Trip Blank	Total/NA	Water	8260B	
MB 500-396796/5	Method Blank	Total/NA	Water	8260B	
LCS 500-396796/4	Lab Control Sample	Total/NA	Water	8260B	
500-132231-15 MS	RFW-17	Total/NA	Water	8260B	
500-132231-15 MSD	RFW-17	Total/NA	Water	8260B	

Analysis Batch: 397050

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-132231-18	EW-3	Total/NA	Water	8260B	
500-132231-19	EW-4	Total/NA	Water	8260B	
500-132231-20	EW-5	Total/NA	Water	8260B	
500-132231-21	EW-6	Total/NA	Water	8260B	
500-132231-22	EW-7	Total/NA	Water	8260B	
500-132231-23	EW-8	Total/NA	Water	8260B	
500-132231-24	EW-9	Total/NA	Water	8260B	
500-132231-25	EW-9 DUP	Total/NA	Water	8260B	
500-132231-26	EW-10	Total/NA	Water	8260B	
MB 500-397050/7	Method Blank	Total/NA	Water	8260B	
LCS 500-397050/5	Lab Control Sample	Total/NA	Water	8260B	
500-132231-26 MS	EW-10	Total/NA	Water	8260B	
500-132231-26 MSD	EW-10	Total/NA	Water	8260B	

Analysis Batch: 397253

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-132231-17	EW-2	Total/NA	Water	8260B	
MB 500-397253/8	Method Blank	Total/NA	Water	8260B	
LCS 500-397253/5	Lab Control Sample	Total/NA	Water	8260B	

Surrogate Summary

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Method: 8260B - VOC

Matrix: Water

Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits)

		12DCE	TOL	BFB	DBFM		
Lab Sample ID	Client Sample ID	(75-126)	(75-120)	(72-124)	(75-120)		
500-132231-1	RFW-1A	99	95	93	97		
500-132231-2	RFW-1B	98	96	93	96		
500-132231-3	RFW-2A	100	95	95	96		
500-132231-4	RFW-2B	99	97	91	97		
500-132231-5	RFW-3B	99	96	94	96		
500-132231-6	RFW-4A	101	94	93	99		
500-132231-7	RFW-4A DUP	102	94	93	99		
500-132231-8	RFW-4B	101	94	93	100		
500-132231-9	RFW-6	100	94	93	98		
500-132231-10	RFW-7	101	96	94	98		
500-132231-11	RFW-9	101	94	93	98		
500-132231-12	RFW-11B	102	95	95	101		
500-132231-13	RFW-12B	100	95	94	100		
500-132231-14	RFW-13	102	94	94	100		
500-132231-15	RFW-17	101	95	94	99		
500-132231-15 MS	RFW-17	99	95	88	95		
500-132231-15 MSD	RFW-17	98	95	92	97		
500-132231-16	Trip Blank	98	96	95	97		
500-132231-17	EW-2	93	108	94	94		
500-132231-18	EW-3	82	87	89	88		
500-132231-19	EW-4	80	87	90	91		
500-132231-20	EW-5	80	88	89	90		
500-132231-21	EW-6	82	87	91	92		
500-132231-22	EW-7	81	87	93	91		
500-132231-23	EW-8	83	86	90	93		
500-132231-24	EW-9	84	88	93	92		
500-132231-25	EW-9 DUP	82	88	89	91		
500-132231-26	EW-10	85	87	92	94		
500-132231-26 MS	EW-10	82	91	73	95		
500-132231-26 MSD	EW-10	81	92	74	95		
LCS 500-396796/4	Lab Control Sample	93	97	91	92		
LCS 500-397050/5	Lab Control Sample	80	91	77	93		
LCS 500-397253/5	Lab Control Sample	91	107	92	92		
MB 500-396796/5	Method Blank	97	96	96	94		
MB 500-397050/7	Method Blank	82	87	94	94		
MB 500-397253/8	Method Blank	93	106	95	94		

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Method: 8260B - VOC

Lab Sample ID: MB 500-396796/5

Matrix: Water

Analysis Batch: 396796

Client Sample ID: Method Blank

Prep Type: Total/NA

,a., a	мв	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50	0.15	ug/L			08/10/17 11:53	1
Dichlorodifluoromethane	<2.0		2.0	0.67	ug/L			08/10/17 11:53	1
Chloromethane	<1.0		1.0	0.32	ug/L			08/10/17 11:53	1
Vinyl chloride	< 0.50		0.50	0.20	ug/L			08/10/17 11:53	1
Bromomethane	<2.0		2.0	0.80	ug/L			08/10/17 11:53	1
Chloroethane	<1.0		1.0	0.51	ug/L			08/10/17 11:53	1
Trichlorofluoromethane	<1.0		1.0	0.43	ug/L			08/10/17 11:53	1
1,1-Dichloroethene	<1.0		1.0	0.39	ug/L			08/10/17 11:53	1
Carbon disulfide	<2.0		2.0	0.45	ug/L			08/10/17 11:53	1
Acetone	<5.0		5.0	1.7	ug/L			08/10/17 11:53	1
Methylene Chloride	<5.0		5.0	1.6	ug/L			08/10/17 11:53	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			08/10/17 11:53	1
1,1-Dichloroethane	<1.0		1.0	0.41	ug/L			08/10/17 11:53	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			08/10/17 11:53	1
cis-1,2-Dichloroethene	<1.0		1.0	0.41	ug/L			08/10/17 11:53	1
Methyl Ethyl Ketone	< 5.0		5.0	2.1	ug/L			08/10/17 11:53	1
Bromochloromethane	<1.0		1.0	0.43	ug/L			08/10/17 11:53	1
Chloroform	<2.0		2.0	0.37	ug/L			08/10/17 11:53	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	ug/L			08/10/17 11:53	1
1,1-Dichloropropene	<1.0		1.0	0.30	ug/L			08/10/17 11:53	1
Carbon tetrachloride	<1.0		1.0	0.38	ug/L			08/10/17 11:53	1
1,2-Dichloroethane	<1.0		1.0	0.39	ug/L			08/10/17 11:53	1
Trichloroethene	<0.50		0.50	0.16	ug/L			08/10/17 11:53	1
1,2-Dichloropropane	<1.0		1.0	0.43	ug/L			08/10/17 11:53	1
Dibromomethane	<1.0		1.0	0.27	ug/L			08/10/17 11:53	1
Bromodichloromethane	<1.0		1.0	0.37	ug/L			08/10/17 11:53	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42	ug/L			08/10/17 11:53	1
methyl isobutyl ketone	< 5.0		5.0	2.2	ug/L			08/10/17 11:53	1
Toluene	<0.50		0.50	0.15	ug/L			08/10/17 11:53	1
trans-1,3-Dichloropropene	<1.0		1.0	0.36	ug/L			08/10/17 11:53	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			08/10/17 11:53	1
Tetrachloroethene	<1.0		1.0	0.37	ug/L			08/10/17 11:53	1
1,3-Dichloropropane	<1.0		1.0	0.36	ug/L			08/10/17 11:53	1
2-Hexanone	<5.0		5.0		ug/L			08/10/17 11:53	1
Dibromochloromethane	<1.0		1.0	0.49	ug/L			08/10/17 11:53	1
1,2-Dibromoethane	<1.0		1.0	0.39	ug/L			08/10/17 11:53	1
Chlorobenzene	<1.0		1.0		ug/L			08/10/17 11:53	1
1,1,1,2-Tetrachloroethane	<1.0		1.0		ug/L			08/10/17 11:53	1
Ethylbenzene	<0.50		0.50		ug/L			08/10/17 11:53	1
m&p-Xylene	<1.0		1.0		ug/L			08/10/17 11:53	1
o-Xylene	<0.50		0.50		ug/L			08/10/17 11:53	1
Styrene	<1.0		1.0		ug/L			08/10/17 11:53	1
Bromoform	<1.0		1.0		ug/L			08/10/17 11:53	1
Isopropylbenzene	<1.0		1.0		ug/L			08/10/17 11:53	1
Bromobenzene	<1.0		1.0		ug/L			08/10/17 11:53	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			08/10/17 11:53	1
1,2,3-Trichloropropane	<1.0		1.0		ug/L			08/10/17 11:53	1
N-Propylbenzene	<1.0		1.0	0.41	ug/L			08/10/17 11:53	1

TestAmerica Chicago

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Method: 8260B - VOC (Continued)

Lab Sample ID: MB 500-396796/5

Matrix: Water

Analysis Batch: 396796

Client Sample ID: Method Blank

Prep Type: Total/NA

, a.,	MB	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			08/10/17 11:53	1
1,3,5-Trimethylbenzene	<1.0		1.0	0.25	ug/L			08/10/17 11:53	1
4-Chlorotoluene	<1.0		1.0	0.35	ug/L			08/10/17 11:53	1
tert-Butylbenzene	<1.0		1.0	0.40	ug/L			08/10/17 11:53	1
1,2,4-Trimethylbenzene	<1.0		1.0	0.36	ug/L			08/10/17 11:53	1
sec-Butylbenzene	<1.0		1.0	0.40	ug/L			08/10/17 11:53	1
1,3-Dichlorobenzene	<1.0		1.0	0.40	ug/L			08/10/17 11:53	1
p-Isopropyltoluene	<1.0		1.0	0.36	ug/L			08/10/17 11:53	1
1,4-Dichlorobenzene	<1.0		1.0	0.36	ug/L			08/10/17 11:53	1
n-Butylbenzene	<1.0		1.0	0.39	ug/L			08/10/17 11:53	1
1,2-Dichlorobenzene	<1.0		1.0	0.33	ug/L			08/10/17 11:53	1
1,2-Dibromo-3-Chloropropane	<5.0		5.0	2.0	ug/L			08/10/17 11:53	1
1,2,4-Trichlorobenzene	<1.0		1.0	0.34	ug/L			08/10/17 11:53	1
Hexachlorobutadiene	<1.0		1.0	0.45	ug/L			08/10/17 11:53	1
Naphthalene	<1.0		1.0	0.34	ug/L			08/10/17 11:53	1
1,2,3-Trichlorobenzene	<1.0		1.0	0.46	ug/L			08/10/17 11:53	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	75 - 126	08/10/17 11:53	1
Toluene-d8 (Surr)	96	75 - 120	08/10/17 11:53	1
4-Bromofluorobenzene (Surr)	96	72 - 124	08/10/17 11:53	1
Dibromofluoromethane	94	75 - 120	08/10/17 11:53	1

Lab Sample ID: LCS 500-396796/4

Matrix: Water

Analysis Batch: 396796

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

,	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
Benzene	50.0	54.6		ug/L	109	70 - 120	
Dichlorodifluoromethane	50.0	43.3		ug/L	87	40 - 150	
Chloromethane	50.0	47.3		ug/L	95	54 - 147	
Vinyl chloride	50.0	47.1		ug/L	94	64 - 126	
Bromomethane	50.0	60.8		ug/L	122	40 - 130	
Chloroethane	50.0	50.7		ug/L	101	45 - 127	
Trichlorofluoromethane	50.0	49.1		ug/L	98	70 - 126	
1,1-Dichloroethene	50.0	53.4		ug/L	107	67 - 122	
Carbon disulfide	50.0	55.9		ug/L	112	66 - 120	
Acetone	50.0	46.6		ug/L	93	40 - 143	
Methylene Chloride	50.0	57.5		ug/L	115	69 - 125	
trans-1,2-Dichloroethene	50.0	54.0		ug/L	108	70 - 125	
1,1-Dichloroethane	50.0	54.3		ug/L	109	70 - 125	
2,2-Dichloropropane	50.0	53.4		ug/L	107	58 - 129	
cis-1,2-Dichloroethene	50.0	50.7		ug/L	101	70 - 125	
Methyl Ethyl Ketone	50.0	42.9		ug/L	86	53 - 141	
Bromochloromethane	50.0	49.5		ug/L	99	65 - 122	
Chloroform	50.0	52.8		ug/L	106	70 - 120	
1,1,1-Trichloroethane	50.0	53.8		ug/L	108	70 - 125	
1,1-Dichloropropene	50.0	53.9		ug/L	108	70 - 121	

TestAmerica Chicago

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Method: 8260B - VOC (Continued)

Lab Sample ID: LCS 500-396796/4

Matrix: Water

Analysis Batch: 396796

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Baton. 000700	Spike	LCS	LCS		%Rec.
Analyte	Added		Qualifier Unit	D %Rec	Limits
Carbon tetrachloride	50.0	53.2	ug/L	106	65 - 122
1,2-Dichloroethane	50.0	52.4	ug/L	105	68 - 127
Trichloroethene	50.0	51.1	ug/L	102	70 - 125
1,2-Dichloropropane	50.0	52.9	ug/L	106	67 - 130
Dibromomethane	50.0	49.8	ug/L	100	70 - 120
Bromodichloromethane	50.0	52.0	ug/L	104	69 - 120
cis-1,3-Dichloropropene	50.0	48.5	ug/L	97	64 - 127
methyl isobutyl ketone	50.0	43.1	ug/L	86	56 - 133
Toluene	50.0	54.5	ug/L	109	70 - 125
trans-1,3-Dichloropropene	50.0	47.4	ug/L	95	62 - 128
1,1,2-Trichloroethane	50.0	49.6	ug/L	99	70 - 122
Tetrachloroethene	50.0	52.8	ug/L	106	70 - 128
1,3-Dichloropropane	50.0	50.3	ug/L	101	62 - 136
2-Hexanone	50.0	40.9	ug/L	82	56 - 135
Dibromochloromethane	50.0	49.0	ug/L	98	68 - 125
1,2-Dibromoethane	50.0	48.3	ug/L	97	70 - 125
Chlorobenzene	50.0	51.7	ug/L	103	70 - 120
1,1,1,2-Tetrachloroethane	50.0	49.3	ug/L	99	70 - 125
Ethylbenzene	50.0	52.7	ug/L	105	70 - 120
m&p-Xylene	50.0	53.5	ug/L	107	70 - 125
o-Xylene	50.0	53.0	ug/L	106	70 - 120
Styrene	50.0	54.0	ug/L	108	70 - 120
Bromoform	50.0	44.2	ug/L	88	56 - 132
Isopropylbenzene	50.0	51.9	ug/L	104	70 - 126
Bromobenzene	50.0	48.2	ug/L	96	70 - 122
1,1,2,2-Tetrachioroethane	50.0	52.0	ug/L	104	67 - 127
1,2,3-Trichloropropane	50.0	43.5	ug/L	87	50 - 133
N-Propylbenzene	50.0	53.0	ug/L	106	69 - 127
2-Chlorotoluene	50.0	50.9	ug/L	102	70 - 125
1,3,5-Trimethylbenzene	50.0	51.6	ug/L	103	70 - 123
4-Chlorotoluene	50.0	52.2	ug/L	104	68 - 124
tert-Butylbenzene	50.0	50.1	ug/L	100	70 - 121
1,2,4-Trimethylbenzene	50.0	50.9	ug/L	102	70 - 123
sec-Butylbenzene	50.0	51.3	ug/L	103	70 - 123
1,3-Dichlorobenzene	50.0	48.8	ug/L	98	70 - 125
p-Isopropyltoluene	50.0	50.1	ug/L	100	70 - 125
1,4-Dichlorobenzene	50.0	48.8	ug/L	98	70 - 120
n-Butylbenzene	50.0	51.0	ug/L	102	68 - 125
1,2-Dichlorobenzene	50.0	48.5		97	70 - 125
1,2-Dibromo-3-Chloropropane	50.0	43.8		88	56 - 123
1,2,4-Trichlorobenzene	50.0	42.2		84	66 - 127
Hexachlorobutadiene	50.0	43.2	-	86	51 - 150
Naphthalene	50.0	40.3		81	59 - 130
1,2,3-Trichlorobenzene	50.0	41.5	•	83	55 - 140
/= r - / · · · · · · · · · · · · · · · · · ·					

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		75 - 126
Toluene-d8 (Surr)	97		75 - 120

TestAmerica Chicago

Client: Weston Solutions, Inc. Project/Site: Black and Decker TestAmerica Job ID: 500-132231-1

Method: 8260B - VOC (Continued)

Lab Sample ID: LCS 500-396796/4

Matrix: Water

Analysis Batch: 396796

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	91		72 - 124
Dibromofluoromethane	92		75 - 120

Lab Sample ID: 500-132231-15 MS

Matrix: Water

Analysis Batch: 396796

Cilen	t Sam	ipie iu	: RFW-17
	Prep	Type:	Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.50		50.0	52.6		ug/L		105	70 - 120	***************************************
Dichlorodifluoromethane	<2.0	F1 F2	50.0	58.8		ug/L		118	40 - 150	
Chloromethane	<1.0	F1 F2	50.0	58.0		ug/L		116	54 - 147	
Vinyl chloride	<0.50	F1 F2	50.0	53.7		ug/L		107	64 - 126	
Bromomethane	<2.0	F1 F2	50.0	72.9	F1	ug/L		146	40 - 130	
Chloroethane	<1.0	F1 F2	50.0	57.8		ug/L		116	45 - 127	
Trichlorofluoromethane	<1.0	F1 F2	50.0	52.2		ug/L		104	70 - 126	
1,1-Dichloroethene	<1.0		50.0	48.6		ug/L		97	67 - 122	
Carbon disulfide	<2.0		50.0	52.4		ug/L		105	66 - 120	
Acetone	<5.0		50.0	56.1		ug/L		112	40 - 143	
Methylene Chloride	<5.0		50.0	54.3		ug/L		109	69 - 125	
trans-1,2-Dichloroethene	<1.0		50.0	51.3		ug/L		103	70 - 125	
1,1-Dichloroethane	<1.0		50.0	51.9		ug/L		104	70 - 125	
2,2-Dichloropropane	<1.0		50.0	48.1		ug/L		96	58 - 129	
cis-1,2-Dichloroethene	<1.0		50.0	49.2		ug/L		98	70 - 125	
Methyl Ethyl Ketone	< 5.0		50.0	47.4		ug/L		95	53 - 141	
Bromochloromethane	<1.0		50.0	49.5		ug/L		99	65 - 122	
Chloroform	<2.0		50.0	51.9		ug/L		104	70 - 120	
1,1,1-Trichloroethane	<1.0		50.0	50.3		ug/L		101	70 - 125	
1,1-Dichloropropene	<1.0		50.0	49.8		ug/L		100	70 - 121	
Carbon tetrachloride	<1.0		50.0	50.0		ug/L		100	65 - 122	
1,2-Dichloroethane	<1.0		50.0	52.0		ug/L		104	68 ₋ 127	
Trichloroethene	<0.50		50.0	48.3		ug/L		97	70 - 125	
1,2-Dichloropropane	<1.0		50.0	52.1		ug/L		104	67 - 130	
Dibromomethane	<1.0		50.0	49.9		ug/L		100	70 - 120	
Bromodichloromethane	<1.0		50.0	52.0		ug/L		104	69 - 120	
cis-1,3-Dichloropropene	<1.0		50.0	42.2		ug/L		84	64 - 127	
methyl isobutyl ketone	< 5.0		50.0	42.8		ug/L		86	56 - 133	
Toluene	<0.50		50.0	49.3		ug/L		99	70 - 125	
trans-1,3-Dichloropropene	<1.0		50.0	43.7		ug/L		87	62 - 128	
1,1,2-Trichloroethane	<1.0		50.0	47.8		ug/L		96	70 - 122	
Tetrachloroethene	0.41	J	50.0	47.0		ug/L		93	70 - 128	
1,3-Dichloropropane	<1.0		50.0	47.8		ug/L		96	62 - 136	
2-Hexanone	< 5.0		50.0	41.6		ug/L		83	56 - 135	
Dibromochloromethane	<1.0		50.0	45.6		ug/L		91	68 - 125	
1,2-Dibromoethane	<1.0		50.0	45.8		ug/L		92	70 - 125	
Chlorobenzene	<1.0		50.0	46.8		ug/L		94	70 - 120	
1,1,1,2-Tetrachloroethane	<1.0		50.0	46.3		ug/L		93	70 - 125	
Ethylbenzene	<0.50		50.0	47.7		ug/L		95	70 - 120	
m&p-Xylene	<1.0		50.0	47.9		ug/L		96	70 - 125	

TestAmerica Chicago

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Method: 8260B - VOC (Continued)

Lab Sample ID: 500-132231-15 MS

Matrix: Water

Analysis Batch: 396796

Client Sample ID: RFW-17 Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
o-Xylene	<0.50	-	50.0	48.5		ug/L		97	70 - 120
Styrene	<1.0		50.0	49.3		ug/L		99	70 - 120
Bromoform	<1.0		50.0	43.1		ug/L		86	56 - 132
Isopropylbenzene	<1.0		50.0	44.8		ug/L		90	70 - 126
Bromobenzene	<1.0		50.0	43.7		ug/L		87	70 - 122
1,1,2,2-Tetrachloroethane	<1.0		50.0	50.1		ug/L		100	67 - 127
1,2,3-Trichloropropane	<1.0		50.0	40.6		ug/L		81	50 - 133
N-Propylbenzene	<1.0		50.0	45.7		ug/L		91	69 - 127
2-Chlorotoluene	<1.0		50.0	45.3		ug/L		91	70 - 125
1,3,5-Trimethylbenzene	<1.0		50.0	45.4		ug/L		91	70 - 123
4-Chlorotoluene	<1.0		50.0	46.5		ug/L		93	68 - 124
tert-Butylbenzene	<1.0		50.0	43.4		ug/L		87	70 - 121
1,2,4-Trimethylbenzene	<1.0		50.0	45.1		ug/L		90	70 - 123
sec-Butylbenzene	<1.0		50.0	44.5		ug/L		89	70 - 123
1,3-Dichlorobenzene	<1.0		50.0	44.2		ug/L		88	70 - 125
p-Isopropyltoluene	<1.0		50.0	43.7		ug/L		87	70 - 125
1,4-Dichlorobenzene	<1.0		50.0	44.2		ug/L		88	70 - 120
n-Butylbenzene	<1.0		50.0	44.1		ug/L		88	68 - 125
1,2-Dichlorobenzene	<1.0		50.0	45.2		ug/L		90	70 - 125
1,2-Dibromo-3-Chloropropane	< 5.0		50.0	42.8		ug/L		86	56 - 123
1,2,4-Trichlorobenzene	<1.0		50.0	37. 4		ug/L		75	66 - 127
Hexachlorobutadiene	<1.0		50.0	39.6		ug/L		79	51 - 150
Naphthalene	<1.0		50.0	37.7		ug/L		75	59 ₋ 130
1,2,3-Trichlorobenzene	<1.0		50.0	40.0		ug/L		80	55 ₋ 140

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		75 - 126
Toluene-d8 (Surr)	95		75 - 120
4-Bromofluorobenzene (Surr)	88		72 - 124
Dibromofluoromethane	95		75 - 120

Lab Sample ID: 500-132231-15 MSD

Matrix: Water

Analysis Batch: 396796

Allalysis Dalcii. 330130											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.50		50.0	54.1		ug/L		108	70 - 120	3	20
Dichlorodifluoromethane	<2.0	F1 F2	50.0	85.2	F1 F2	ug/L		170	40 - 150	37	20
Chloromethane	<1.0	F1 F2	50.0	82.5	F1 F2	ug/L		165	54 - 147	35	20
Vinyl chloride	< 0.50	F1 F2	50.0	77.0	F1 F2	ug/L		154	64 - 126	36	20
Bromomethane	<2.0	F1 F2	50.0	102	F1 F2	ug/L		205	40 - 130	34	20
Chloroethane	<1.0	F1 F2	50.0	82.8	F1 F2	ug/L		166	45 - 127	35	20
Trichlorofluoromethane	<1.0	F1 F2	50.0	74.4	F1 F2	ug/L		149	70 - 126	35	20
1,1-Dichloroethene	<1.0		50.0	50.7		ug/L		101	67 - 122	4	20
Carbon disulfide	<2.0		50.0	53.6		ug/L		107	66 - 120	2	20
Acetone	< 5.0		50.0	51.3		ug/L		103	40 - 143	9	20
Methylene Chloride	< 5.0		50.0	55.5		ug/L		111	69 - 125	2	20
trans-1,2-Dichloroethene	<1.0		50.0	52.4		ug/L		105	70 - 125	2	20

TestAmerica Chicago

Client Sample ID: RFW-17

Prep Type: Total/NA

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Method: 8260B - VOC (Continued)

Lab Sample ID: 500-132231-15 MSD

Matrix: Water

Analysis Batch: 396796

Client Sample ID: RFW-17 Prep Type: Total/NA

Analysis Batch: 396796								a. =		222
A b.4-	•	Sample	Spike Added		MSD Qualifier L	Jnit D	%Rec	%Rec. Limits	RPD	RPD Limit
Analyte 1,1-Dichloroethane	<1.0	Qualifier	50.0	53.5		ig/L	107	70 - 125	3	20
*	<1.0		50.0	49.3		ig/L	99	58 - 129	2	20
2,2-Dichloropropane	<1.0		50.0	50.5		ıg/L	101	70 - 125	3	20
cis-1,2-Dichloroethene	<5.0		50.0	44.2		ig/L	88	53 - 141	7	20
Methyl Ethyl Ketone			50.0	50.2		ig/L	100	65 - 122	1	20
Bromochloromethane	<1.0 <2.0		50.0	52.7		ıg/L	105	70 - 120	2	20
Chloroform			50.0	51.7		ıg/L	103	70 - 125 70 - 125	3	20
1,1,1-Trichloroethane	<1.0			51.7		_	103	70 - 123 70 - 121	4	20
1,1-Dichloropropene	<1.0		50.0	51.7		ıg/L	103	65 - 122	3	20
Carbon tetrachloride	<1.0		50.0	52.8		ıg/L	102	68 ₋ 127	2	20
1,2-Dichloroethane	<1.0		50.0			ıg/L			3	20
Trichloroethene	<0.50		50.0	49.5		ıg/L	99	70 - 125	ა 4	
1,2-Dichloropropane	<1.0		50.0	54.1		ıg/L	108	67 - 130		20
Dibromomethane	<1.0		50.0	50.6		ıg/L	101	70 - 120	1	20
Bromodichloromethane	<1.0		50.0	52.4		ıg/L	105	69 - 120	1	20
cis-1,3-Dichloropropene	<1.0		50.0	44.1		ıg/L	88	64 - 127	4	20
methyl isobutyl ketone	<5.0		50.0	44.0		ıg/L	88	56 - 133	3	20
Toluene	<0.50		50.0	50.6		ıg/L	101	70 - 125	3	20
trans-1,3-Dichloropropene	<1.0		50.0	44.3		ıg/L	89	62 - 128	1	20
1,1,2-Trichloroethane	<1.0		50.0	48.5		ıg/L	97	70 - 122	1	20
Tetrachloroethene	0.41	J	50.0	48.3		ıg/L	96	70 - 128	3	20
1,3-Dichloropropane	<1.0		50.0	48.6	L	ıg/L	97	62 - 136	2	20
2-Hexanone	<5.0		50.0	43.0	ι	ıg/L	86	56 ₋ 135	3	20
Dibromochloromethane	<1.0		50.0	46.9	· ·	ıg/L	94	68 - 125	3	20
1,2-Dibromoethane	<1.0		50.0	46.8	ι	ıg/L	94	70 - 125	2	20
Chlorobenzene	<1.0		50.0	47.9	ι	ıg/L	96	70 - 120	2	20
1,1,1,2-Tetrachloroethane	<1.0		50.0	47.4	ι	ıg/L	95	70 - 125	2	20
Ethylbenzene	<0.50		50.0	49.0	ι	ıg/L	98	70 - 120	3	20
m&p-Xylene	<1.0		50.0	48.8	ι	ıg/L	98	70 - 125	2	20
o-Xylene	<0.50		50.0	49.1	ι	ıg/L	98	70 - 120	1	20
Styrene	<1.0		50.0	49.9	L	ıg/L	100	70 - 120	1	20
Bromoform	<1.0		50.0	44.0	ι	ıg/L	88	56 - 132	2	20
Isopropylbenzene	<1.0		50.0	48.5	U	ıg/L	97	70 - 126	8	20
Bromobenzene	<1.0		50.0	46.8	ι	ıg/L	94	70 - 122	7	20
1,1,2,2-Tetrachloroethane	<1.0		50.0	51.5	ι	ıg/L	103	67 - 127	3	20
1,2,3-Trichloropropane	<1.0		50.0	42.4	ι	ıg/L	85	50 - 133	4	20
N-Propylbenzene	<1.0		50.0	49.4	ι	ıg/L	99	69 - 127	8	20
2-Chlorotoluene	<1.0		50.0	48.3	ι	ıg/L	97	70 - 125	7	20
1,3,5-Trimethylbenzene	<1.0		50.0	48.6	ι	ıg/L	97	70 - 123	7	20
4-Chlorotoluene	<1.0		50.0	49.5	L	ıg/L	99	68 - 124	6	20
tert-Butylbenzene	<1.0		50.0	46.8	ı	ıg/L	94	70 - 121	8	20
1,2,4-Trimethylbenzene	<1.0		50.0	47.7	ι	ug/L	95	70 - 123	6	20
sec-Butylbenzene	<1.0		50.0	47.6		ıg/L	95	70 - 123	7	20
1,3-Dichlorobenzene	<1.0		50.0	46.0		ıg/L	92	70 - 125	4	20
p-Isopropyltoluene	<1.0		50.0	46.5		ıg/L	93	70 - 125	6	20
1,4-Dichlorobenzene	<1.0		50.0	45.5		.g/L	91	70 - 120	3	20
n-Butylbenzene	<1.0		50.0	46.4		-9/L Jg/L	93	68 - 125	5	20
1,2-Dichlorobenzene	<1.0		50.0	46.9		.g/L	94	70 ₋ 125	4	20
1,2-Dibromo-3-Chloropropane	<5.0		50.0	43.8		19/L	88	56 - 123	2	20
1,2-Dibromo-3-Chibropropane	~3.0		30.0	75.0	,	-5, L	00	00-120	_	20

TestAmerica Chicago

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Method: 8260B - VOC (Continued)

Lab Sample ID: 500-132231-15 MSD

Matrix: Water

Analysis Batch: 396796

Client Sample ID: RFW-17

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,4-Trichlorobenzene	<1.0	-	50.0	36.8		ug/L	nauman ama	74	66 - 127	2	20
Hexachlorobutadiene	<1.0		50.0	40.3		ug/L		81	51 - 150	2	20
Naphthalene	<1.0		50.0	36.1		ug/L		72	59 - 130	5	20
1,2,3-Trichlorobenzene	<1.0		50.0	37.6		ug/L		75	55 - 140	6	20

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		75 - 126
Toluene-d8 (Surr)	95		75 - 120
4-Bromofluorobenzene (Surr)	92		72 - 124
Dibromofluoromethane	97		75 - 120

Lab Sample ID: MB 500-397050/7

Matrix: Water

Analysis Batch: 397050

Client Sample ID: Method Blank

Prep Type: Total/NA

Allalysis Batch. 397030	мв	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50	0.15	ug/L			08/11/17 14:52	1
Dichlorodifluoromethane	<2.0		2.0	0.67	ug/L			08/11/17 14:52	1
Chloromethane	<1.0		1.0	0.32	ug/L			08/11/17 14:52	1
Vinyl chloride	<0.50		0.50	0.20	ug/L			08/11/17 14:52	1
Bromomethane	<2.0		2.0	0.80	ug/L			08/11/17 14:52	1
Chloroethane	<1.0		1.0	0.51	ug/L			08/11/17 14:52	1
Trichlorofluoromethane	<1.0		1.0	0.43	ug/L			08/11/17 14:52	1
1,1-Dichloroethene	<1.0		1.0	0.39	ug/L			08/11/17 14:52	1
Carbon disulfide	<2.0		2.0	0.45	ug/L			08/11/17 14:52	1
Acetone	< 5.0		5.0	1.7	ug/L			08/11/17 14:52	1
Methylene Chloride	< 5.0		5.0	1.6	ug/L			08/11/17 14:52	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			08/11/17 14:52	1
1,1-Dichloroethane	<1.0		1.0	0.41	ug/L			08/11/17 14:52	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			08/11/17 14:52	1
cis-1,2-Dichloroethene	<1.0		1.0	0.41	ug/L			08/11/17 14:52	1
Methyl Ethyl Ketone	< 5.0		5.0	2.1	ug/L			08/11/17 14:52	1
Bromochloromethane	<1.0		1.0	0.43	ug/L			08/11/17 14:52	1
Chloroform	<2.0		2.0	0.37	ug/L			08/11/17 14:52	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	ug/L			08/11/17 14:52	1
1,1-Dichloropropene	<1.0		1.0	0.30	ug/L			08/11/17 14:52	1
Carbon tetrachloride	<1.0		1.0	0.38	ug/L		•	08/11/17 14:52	1
1,2-Dichloroethane	<1.0		1.0	0.39	ug/L			08/11/17 14:52	1
Trichloroethene	<0.50		0.50	0.16	ug/L			08/11/17 14:52	1
1,2-Dichloropropane	<1.0		1.0	0.43	ug/L			08/11/17 14:52	1
Dibromomethane	<1.0		1.0	0.27	ug/L			08/11/17 14:52	1
Bromodichloromethane	<1.0		1.0	0.37	ug/L			08/11/17 14:52	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42	ug/L			08/11/17 14:52	1
methyl isobutyl ketone	<5.0		5.0	2.2	ug/L			08/11/17 14:52	1
Toluene	<0.50		0.50	0.15	ug/L			08/11/17 14:52	1
trans-1,3-Dichloropropene	<1.0		1.0	0.36	ug/L			08/11/17 14:52	1
1,1,2-Trichloroethane	<1.0		1.0	0.35	ug/L			08/11/17 14:52	1
Tetrachloroethene	<1.0		1.0	0.37	ug/L			08/11/17 14:52	1

Client: Weston Solutions, Inc. Project/Site: Black and Decker TestAmerica Job ID: 500-132231-1

Method: 8260B - VOC (Continued)

Lab Sample ID: MB 500-397050/7

Matrix: Water

Analysis Batch: 397050

Client Sample ID: Method Blank

Prep Type: Total/NA

Allalysis Batcii. 357030	MB	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichloropropane	<1.0		1.0	0.36	ug/L			08/11/17 14:52	1
2-Hexanone	<5.0		5.0	1.6	ug/L			08/11/17 14:52	1
Dibromochloromethane	<1.0		1.0	0.49	ug/L			08/11/17 14:52	1
1,2-Dibromoethane	<1.0		1.0	0.39	ug/L			08/11/17 14:52	1
Chlorobenzene	<1.0		1.0	0.39	ug/L			08/11/17 14:52	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46	ug/L			08/11/17 14:52	1
Ethylbenzene	<0.50		0.50	0.18	ug/L			08/11/17 14:52	1
m&p-Xylene	<1.0		1.0	0.18	ug/L			08/11/17 14:52	1
o-Xylene	<0.50		0.50	0.22	ug/L			08/11/17 14:52	1
Styrene	<1.0		1.0	0.39	ug/L			08/11/17 14:52	1
Bromoform	<1.0		1.0	0.48	ug/L			08/11/17 14:52	1
Isopropylbenzene	<1.0		1.0	0.39	ug/L			08/11/17 14:52	1
Bromobenzene	<1.0		1.0	0.36	ug/L			08/11/17 14:52	1
1,1,2,2-Tetrachloroethane	<1.0		1.0	0.40	ug/L			08/11/17 14:52	1
1,2,3-Trichloropropane	<1.0		1.0	0.41	ug/L			08/11/17 14:52	1
N-Propylbenzene	<1.0		1.0	0.41	ug/L			08/11/17 14:52	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			08/11/17 14:52	1
1,3,5-Trimethylbenzene	<1.0		1.0	0.25	ug/L			08/11/17 14:52	1
4-Chlorotoluene	<1.0		1.0	0.35	ug/L			08/11/17 14:52	1
tert-Butylbenzene	<1.0		1.0	0.40	ug/L			08/11/17 14:52	1
1,2,4-Trimethylbenzene	<1.0		1.0	0.36	ug/L			08/11/17 14:52	1
sec-Butylbenzene	<1.0		1.0	0.40	ug/L			08/11/17 14:52	1
1,3-Dichlorobenzene	<1.0		1.0	0.40	ug/L			08/11/17 14:52	1
p-Isopropyltoluene	<1.0		1.0	0.36	ug/L			08/11/17 14:52	1
1,4-Dichlorobenzene	<1.0		1.0	0.36	ug/L			08/11/17 14:52	1
n-Butylbenzene	<1.0		1.0	0.39	ug/L			08/11/17 14:52	1
1,2-Dichlorobenzene	<1.0		1.0	0.33	ug/L			08/11/17 14:52	1
1,2-Dibromo-3-Chloropropane	<5.0		5.0	2.0	ug/L			08/11/17 14:52	1
1,2,4-Trichlorobenzene	<1.0		1.0	0.34	ug/L			08/11/17 14:52	1
Hexachlorobutadiene	<1.0		1.0	0.45	ug/L			08/11/17 14:52	1
Naphthalene	<1.0		1.0	0.34	ug/L			08/11/17 14:52	1
1,2,3-Trichlorobenzene	<1.0		1.0	0.46	ug/L			08/11/17 14:52	1

MR	MR
1110	1110

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	82	75 - 126	08/11/17 14:5	2 1
Toluene-d8 (Surr)	87	75 - 120	08/11/17 14:5	2 1
4-Bromofluorobenzene (Surr)	94	72 - 124	08/11/17 14:5	i2 1
Dibromofluoromethane	94	75 - 120	08/11/17 14:5	i2 1

Lab Sample ID: LCS 500-397050/5

Matrix: Water

Analysis Batch: 397050

Client Sample ID:	: Lab Control Sample
	Pren Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	41.0		ug/L		82	70 - 120	
Dichlorodifluoromethane	50.0	45.3		ug/L		91	40 - 150	
Chloromethane	50.0	45.2		ug/L		90	54 - 147	
Vinyl chloride	50.0	46.8		ug/L		94	64 - 126	

TestAmerica Chicago

Page 72 of 90

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Method: 8260B - VOC (Continued)

Lab Sample ID: LCS 500-397050/5

Matrix: Water

Analysis Batch: 397050

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 397050					
	Spike		LCS		%Rec.
Analyte	Added		Qualifier Unit	D %Rec	Limits
Bromomethane	50.0	66.0	•	132	40 - 130
Chloroethane	50.0	48.6	ug/L 	97	45 - 127
Trichlorofluoromethane	50.0	38.5	ug/L	77	70 - 126
1,1-Dichloroethene	50.0	43.2	ug/L 	86	67 - 122
Carbon disulfide	50.0	43.2	ug/L	86	66 - 120
Acetone	50.0	37.9	ug/L	76	40 - 143
Methylene Chloride	50.0	46.5	ug/L	93	69 - 125
trans-1,2-Dichloroethene	50.0	43.0	ug/L	86	70 - 125
1,1-Dichloroethane	50.0	37.9	ug/L	76	70 - 125
2,2-Dichloropropane	50.0	41.1	ug/L	82	58 - 129
cis-1,2-Dichloroethene	50.0	43.0	ug/L	86	70 - 125
Methyl Ethyl Ketone	50.0	34.1	ug/L	68	53 - 141
Bromochloromethane	50.0	42.1	ug/L	84	65 - 122
Chloroform	50.0	37.9	ug/L	76	70 - 120
1,1,1-Trichloroethane	50.0	40.0	ug/L	80	70 - 125
1,1-Dichloropropene	50.0	39.1	ug/L	78	70 - 121
Carbon tetrachloride	50.0	40.2	ug/L	80	65 - 122
1,2-Dichloroethane	50.0	34.1	ug/L	68	68 - 127
Trichloroethene	50.0	40.2	ug/L	80	70 - 125
1,2-Dichloropropane	50.0	36.6	ug/L	73	67 - 130
Dibromomethane	50.0	38.4	ug/L	77	70 - 120
Bromodichloromethane	50.0	39.2	ug/L	78	69 - 120
cis-1,3-Dichloropropene	50.0	34.8	ug/L	70	64 - 127
methyl isobutyl ketone	50.0	35.5	ug/L	71	56 - 133
Toluene	50.0	39.3	ug/L	79	70 - 125
trans-1,3-Dichloropropene	50.0	33.9	ug/L	68	62 - 128
1,1,2-Trichloroethane	50.0	36.9	ug/L	74	70 - 122
Tetrachloroethene	50.0	41.1	ug/L	82	70 - 128
1,3-Dichloropropane	50.0	36.6	ug/L	73	62 - 136
2-Hexanone	50.0	36.0	ug/L	72	56 - 135
Dibromochloromethane	50.0	36.5	ug/L	73	68 - 125
1,2-Dibromoethane	50.0	37.3	ug/L	75	70 - 125
Chlorobenzene	50.0	39.5	ug/L	79	70 - 120
1,1,1,2-Tetrachloroethane	50.0	39.2	ug/L	78	70 - 125
Ethylbenzene	50.0	39.7	ug/L	79	70 - 120
m&p-Xylene	50.0	38.1	ug/L	76	70 - 125
o-Xylene	50.0	39.3	ug/L	79	70 - 120
Styrene	50.0	40.7	ug/L	81	70 - 120
Bromoform	50.0	39.4	ug/L	79	56 - 132
Isopropylbenzene	50.0	34.7	* ug/L	69	70 - 126
Bromobenzene	50.0	34.4	* ug/L	69	70 - 122
1,1,2,2-Tetrachloroethane	50.0	36.4	ug/L	73	67 - 127
1,2,3-Trichloropropane	50.0	31.8	ug/L	64	50 - 133
N-Propylbenzene	50.0	34.7	ug/L	69	69 - 127
2-Chlorotoluene	50.0	36.9	ug/L	74	70 - 125
1,3,5-Trimethylbenzene	50.0	36.6	ug/L	73	70 - 123
4-Chlorotoluene	50.0	35.1	ug/L	70	68 - 124
tert-Butylbenzene	50.0	36.1	ug/L	72	70 - 121

Client: Weston Solutions, Inc. Project/Site: Black and Decker TestAmerica Job ID: 500-132231-1

Method: 8260B - VOC (Continued)

Lab Sample ID: LCS 500-397050/5

Matrix: Water

Analysis Batch: 397050

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Allalysis Batch. 337030								
-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,4-Trimethylbenzene	50.0	37.6		ug/L		75	70 - 123	,,,,,
sec-Butylbenzene	50.0	38.3		ug/L		77	70 - 123	
1,3-Dichlorobenzene	50.0	38.1		ug/L		76	70 - 125	
p-Isopropyltoluene	50.0	38.5		ug/L		77	70 - 125	
1,4-Dichlorobenzene	50.0	40.1		ug/L		80	70 - 120	
n-Butylbenzene	50.0	39.3		ug/L		79	68 - 125	
1,2-Dichlorobenzene	50.0	37.7		ug/L		75	70 - 125	
1,2-Dibromo-3-Chloropropane	50.0	30.2		ug/L		60	56 - 123	
1,2,4-Trichlorobenzene	50.0	34.2		ug/L		68	66 - 127	
Hexachlorobutadiene	50.0	34.8		ug/L		70	51 - 150	
Naphthalene	50.0	31.6		ug/L		63	59 - 130	
1,2,3-Trichlorobenzene	50.0	33.8		ug/L		68	55 - 140	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	80		75 - 126
Toluene-d8 (Surr)	91		75 - 120
4-Bromofluorobenzene (Surr)	77		72 - 124
Dibromofluoromethane	93		75 - 120

Lab Sample ID: 500-132231-26 MS

Matrix: Water

Analysis Batch: 397050

Client Sample ID: EW-10 Prep Type: Total/NA

Analysis Dateil. 007000	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.50		50.0	46.7		ug/L		93	70 - 120	
Dichlorodifluoromethane	<2.0	F2	50.0	63.8		ug/L		128	40 - 150	
Chloromethane	<1.0		50.0	63.0		ug/L		126	54 - 147	
Vinyl chloride	<0.50		50.0	61.8		ug/L		124	64 - 126	
Bromomethane	<2.0	*	50.0	59.8		ug/L		120	40 - 130	
Chloroethane	<1.0	F1	50.0	67.6	F1	ug/L		135	45 - 127	
Trichlorofluoromethane	<1.0		50.0	50.1		ug/L		100	70 - 126	
1,1-Dichloroethene	<1.0		50.0	51.4		ug/L		103	67 - 122	
Carbon disulfide	<2.0		50.0	49.6		ug/L		99	66 - 120	
Acetone	< 5.0		50.0	46.5		ug/L		93	40 - 143	
Methylene Chloride	<5.0		50.0	55.0		ug/L		110	69 - 125	
trans-1,2-Dichtoroethene	<1.0		50.0	50.2		ug/L		100	70 - 125	
1,1-Dichloroethane	<1.0		50.0	44.9		ug/L		90	70 - 125	
2,2-Dichloropropane	<1.0		50.0	45.2		ug/L		90	58 - 129	
cis-1,2-Dichloroethene	<1.0		50.0	50.3		ug/L		101	70 - 125	
Methyl Ethyl Ketone	< 5.0		50.0	38.1		ug/L		76	53 - 141	
Bromochloromethane	<1.0		50.0	49.0		ug/L		98	65 - 122	
Chloroform	<2.0		50.0	45.3		ug/L		91	70 - 120	
1,1,1-Trichloroethane	<1.0		50.0	45.7		ug/L		91	70 - 125	
1,1-Dichloropropene	<1.0		50.0	43.9		ug/L		88	70 - 121	
Carbon tetrachloride	<1.0		50.0	46.3		ug/L		93	65 - 122	
1,2-Dichloroethane	<1.0		50.0	37.5		ug/L		75	68 - 127	
Trichloroethene	<0.50		50.0	45.5		ug/L		91	70 - 125	
1,2-Dichloropropane	<1.0		50.0	40.8		ug/L		82	67 - 130	

TestAmerica Chicago

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Method: 8260B - VOC (Continued)

Lab Sample ID: 500-132231-26 MS

Matrix: Water

Analysis Batch: 397050

Client Sample ID: EW-10 Prep Type: Total/NA

Analysis Buton. 007000	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dibromomethane	<1.0		50.0	44.3		ug/L		89	70 - 120	
Bromodichloromethane	<1.0		50.0	42.2		ug/L		84	69 - 120	
cis-1,3-Dichloropropene	<1.0		50.0	36.7		ug/L		73	64 - 127	
methyl isobutyl ketone	<5.0		50.0	39.3		ug/L		79	56 - 133	
Toluene	<0.50		50.0	42.5		ug/L		85	70 - 125	
trans-1,3-Dichloropropene	<1.0		50.0	34.9		ug/L		70	62 - 128	
1,1,2-Trichloroethane	<1.0		50.0	40.5		ug/L		81	70 - 122	
Tetrachloroethene	1.8		50.0	47.1		ug/L		91	70 - 128	
1,3-Dichloropropane	<1.0		50.0	39.0		ug/L		78	62 - 136	
2-Hexanone	<5.0		50.0	41.2		ug/L		82	56 - 135	
Dibromochloromethane	<1.0		50.0	38.4		ug/L		77	68 - 125	
1,2-Dibromoethane	<1.0		50.0	40.7		ug/L		81	70 - 125	
Chlorobenzene	<1.0		50.0	43.5		ug/L		87	70 - 120	
1,1,1,2-Tetrachloroethane	<1.0		50.0	42.7		ug/L		85	70 - 125	
Ethylbenzene	<0.50		50.0	44.1		ug/L		88	70 - 120	
m&p-Xylene	<1.0		50.0	42.1		ug/L		84	70 - 125	
o-Xylene	<0.50		50.0	44.3		ug/L		89	70 - 120	
Styrene	<1.0		50.0	44.6		ug/L		89	70 - 120	
Bromoform	<1.0		50.0	41.5		ug/L		83	56 - 132	
Isopropylbenzene	<1.0	*	50.0	37.2		ug/L		74	70 - 126	
Bromobenzene	<1.0	*	50.0	37.5		ug/L		75	70 - 122	
1,1,2,2-Tetrachloroethane	<1.0		50.0	38.9		ug/L		78	67 - 127	
1,2,3-Trichloropropane	<1.0		50.0	31.4		ug/L		63	50 - 133	
N-Propylbenzene	<1.0		50.0	36.9		ug/L		74	69 - 127	
2-Chlorotoluene	<1.0		50.0	39.7		ug/L		79	70 - 125	
1,3,5-Trimethylbenzene	<1.0		50.0	39.3		ug/L		79	70 - 123	
4-Chlorotoluene	<1.0		50.0	37.1		ug/L		74	68 - 124	
tert-Butylbenzene	<1.0		50.0	39.0		ug/L		78	70 - 121	
1,2,4-Trimethylbenzene	<1.0		50.0	39.9		ug/L		80	70 - 123	
sec-Butylbenzene	<1.0		50.0	40.9		ug/L		82	70 - 123	
1,3-Dichlorobenzene	<1.0		50.0	41.2		ug/L		82	70 - 125	
p-lsopropyltoluene	<1.0		50.0	41.7		ug/L		83	70 - 125	
1,4-Dichlorobenzene	<1.0		50.0	43.1		ug/L		86	70 - 120	
n-Butylbenzene	<1.0		50.0	42.2		ug/L		84	68 - 125	
1,2-Dichlorobenzene	<1.0		50.0	41.8		ug/L		84	70 - 125	
1,2-Dibromo-3-Chloropropane	<5.0		50.0	31.8		ug/L		64	56 - 123	
1,2,4-Trichlorobenzene	<1.0		50.0	37.8		ug/L		76	66 - 127	
Hexachlorobutadiene	<1.0		50.0	39.5		ug/L		79	51 - 150	
Naphthalene	<1.0		50.0	36.5		ug/L		73	59 - 130	
1,2,3-Trichlorobenzene	<1.0		50.0	38.5		ug/L		77	55 ₋ 140	
• •						-				

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	82		75 - 126
Toluene-d8 (Surr)	91		75 - 120
4-Bromofluorobenzene (Surr)	73		72 - 124
Dibromofluoromethane	95		75 - 120

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Method: 8260B - VOC (Continued)

Lab Sample ID: 500-132231-26 MSD

Matrix: Water

Analysis Batch: 397050

Client Sample ID: EW-10 Prep Type: Total/NA

Analysis Batch: 39/050	Sample	Sample	Spike	MSD	MSD			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D %Rec	Limits	RPD	Limit
Benzene	<0.50	V	50.0	48.2		ug/L	96	70 - 120	3	20
Dichlorodifluoromethane	<2.0	F2	50.0	51.8	F2	ug/L	104	40 - 150	21	20
Chloromethane	<1.0		50.0	51.7		ug/L	103	54 - 147	20	20
Vinyl chloride	<0.50		50.0	52.7		ug/L	105	64 - 126	16	20
Bromomethane	<2.0	*	50.0	54.7		ug/L	109	40 - 130	9	20
Chloroethane	<1.0	F1	50.0	55.9		ug/L	112	45 - 127	19	20
Trichlorofluoromethane	<1.0		50.0	43.0		ug/L	86	70 - 126	15	20
1,1-Dichloroethene	<1.0		50.0	51.7		ug/L	103	67 - 122	1	20
Carbon disulfide	<2.0		50.0	49.8		ug/L	100	66 - 120	0	20
Acetone	<5.0		50.0	47.3		ug/L	95	40 - 143	2	20
Methylene Chloride	< 5.0		50.0	54.2		ug/L	108	69 - 125	2	20
trans-1,2-Dichloroethene	<1.0		50.0	51.8		ug/L	104	70 - 125	3	20
1,1-Dichloroethane	<1.0		50.0	45.7		ug/L	91	70 - 125	2	20
2,2-Dichloropropane	<1.0		50.0	46.3		ug/L	93	58 - 129	2	20
cis-1,2-Dichloroethene	<1.0		50.0	50.8		ug/L	102	70 - 125	1	20
Methyl Ethyl Ketone	<5.0		50.0	40.7		ug/L	81	53 - 141	6	20
Bromochloromethane	<1.0		50.0	50.5		ug/L	101	65 - 122	3	20
Chloroform	<2.0		50.0	46.5		ug/L	93	70 - 120	3	20
1,1,1-Trichloroethane	<1.0		50.0	46.5		ug/L	93	70 - 125	2	20
1,1-Dichloropropene	<1.0		50.0	46.3		ug/L	93	70 - 121	5	20
Carbon tetrachloride	<1.0		50.0	47.1		ug/L	94	65 - 122	2	20
1,2-Dichloroethane	<1.0		50.0	39.8		ug/L	80	68 - 127	6	20
Trichloroethene	<0.50		50.0	46.3		ug/L	93	70 - 125	2	20
1,2-Dichloropropane	<1.0		50.0	42.9		ug/L	86	67 - 130	5	20
Dibromomethane	<1.0		50.0	44.9		ug/L	90	70 - 120	1	20
Bromodichloromethane	<1.0		50.0	43.9		ug/L	88	69 - 120	4	20
cis-1,3-Dichloropropene	<1.0		50.0	40.0		ug/L	80	64 - 127	9	20
methyl isobutyl ketone	<5.0		50.0	40.3		ug/L	81	56 - 133	2	20
Toluene	<0.50		50.0	46.5		ug/L	93	70 - 125	9	20
trans-1,3-Dichloropropene	<1.0		50.0	37.7		ug/L	75	62 - 128	8	20
1,1,2-Trichloroethane	<1.0		50.0	43.6		ug/L	87	70 - 122	7	20
Tetrachloroethene	1.8		50.0	49.4		ug/L	95	70 - 128	5	20
1,3-Dichloropropane	<1.0		50.0	42.3		ug/L	85	62 - 136	8	20
2-Hexanone	<5.0		50.0	40.8		ug/L	82	56 - 135	1	20
Dibromochloromethane	<1.0		50.0	43.1		ug/L	86	68 - 125	12	20
1,2-Dibromoethane	<1.0		50.0	43.4		ug/L	87	70 - 125	6	20
Chlorobenzene	<1.0		50.0	46.7		ug/L	93	70 - 120	7	20
1,1,1,2-Tetrachloroethane	<1.0		50.0	46.3		ug/L	93	70 - 125	8	20
Ethylbenzene	<0.50		50.0	47.6		ug/L	95	70 - 120	8	20
m&p-Xylene	<1.0		50.0	45.2		ug/L	90	70 - 125	7	20
o-Xylene	<0.50		50.0	47.5		ug/L	95	70 - 120	7	20
Styrene	<1.0		50.0	46.4		ug/L	93	70 - 120	4	20
Bromoform	<1.0		50.0	44.4		ug/L	89	56 - 132	7	20
Isopropylbenzene	<1.0	*	50.0	40.7		ug/L	81	70 - 126	9	20
Bromobenzene	<1.0	*	50.0	41.9		ug/L	84	70 - 122	11	20
1,1,2,2-Tetrachloroethane	<1.0		50.0	42.8		ug/L	86	67 - 127	10	20
1,2,3-Trichloropropane	<1.0		50.0	36.0		ug/L	72	50 - 133	14	20
N-Propylbenzene	<1.0		50.0	40.3		ug/L	81	69 - 127	9	20

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Method: 8260B - VOC (Continued)

Lab Sample ID: 500-132231-26 MSD

Matrix: Water

Analysis Batch: 397050

Client Sample ID: EW-10 Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2-Chlorotoluene	<1.0		50.0	43.0		ug/L		86	70 - 125	8	20
1,3,5-Trimethylbenzene	<1.0		50.0	42.5		ug/L		85	70 - 123	8	20
4-Chlorotoluene	<1.0		50.0	40.8		ug/L		82	68 - 124	10	20
tert-Butylbenzene	<1.0		50.0	42.5		ug/L		85	70 - 121	8	20
1,2,4-Trimethylbenzene	<1.0		50.0	43.8		ug/L		88	70 - 123	9	20
sec-Butylbenzene	<1.0		50.0	45.0		ug/L		90	70 - 123	9	20
1,3-Dichlorobenzene	<1.0		50.0	44.8		ug/L		90	70 - 125	8	20
p-Isopropyltoluene	<1.0		50.0	45.3		ug/L		91	70 - 125	8	20
1,4-Dichlorobenzene	<1.0		50.0	46.2		ug/L		92	70 - 120	7	20
n-Butylbenzene	<1.0		50.0	44.9		ug/L		90	68 - 125	6	20
1,2-Dichlorobenzene	<1.0		50.0	45.1		ug/L		90	70 - 125	8	20
1,2-Dibromo-3-Chloropropane	<5.0		50.0	32.4		ug/L		65	56 - 123	2	20
1,2,4-Trichlorobenzene	<1.0		50.0	38.4		ug/L		77	66 - 127	2	20
Hexachlorobutadiene	<1.0		50.0	41.0		ug/L		82	51 - 150	4	20
Naphthalene	<1.0		50.0	38.3		ug/L		77	59 - 130	5	20
1,2,3-Trichlorobenzene	<1.0		50.0	40.1		ug/L		80	55 - 140	4	20

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	81		75 - 126
Toluene-d8 (Surr)	92		75 - 120
4-Bromofluorobenzene (Surr)	74		72 - 124
Dibromofluoromethane	95		75 - 120

Lab Sample ID: MB 500-397253/8

Matrix: Water

Analysis Batch: 397253

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batem. 037200	мв	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.50		0.50	0.15	ug/L			08/14/17 14:07	1
Dichlorodifluoromethane	<2.0		2.0	0.67	ug/L			08/14/17 14:07	1
Chloromethane	<1.0		1.0	0.32	ug/L			08/14/17 14:07	1
Vinyl chloride	<0.50		0.50	0.20	ug/L			08/14/17 14:07	1
Bromomethane	<2.0		2.0	0.80	ug/L			08/14/17 14:07	1
Chloroethane	<1.0		1.0	0.51	ug/L			08/14/17 14:07	1
Trichlorofluoromethane	<1.0		1.0	0.43	ug/L			08/14/17 14:07	1
1,1-Dichloroethene	<1.0		1.0	0.39	ug/L			08/14/17 14:07	1
Carbon disulfide	<2.0		2.0	0.45	ug/L			08/14/17 14:07	1
Acetone	<5.0		5.0	1.7	ug/L			08/14/17 14:07	1
Methylene Chloride	< 5.0		5.0	1.6	ug/L			08/14/17 14:07	1
trans-1,2-Dichloroethene	<1.0		1.0	0.35	ug/L			08/14/17 14:07	1
1,1-Dichloroethane	<1.0		1.0	0.41	ug/L			08/14/17 14:07	1
2,2-Dichloropropane	<1.0		1.0	0.44	ug/L			08/14/17 14:07	1
cis-1,2-Dichloroethene	<1.0		1.0	0.41	ug/L			08/14/17 14:07	1
Methyl Ethyl Ketone	<5.0		5.0	2.1	ug/L			08/14/17 14:07	1
Bromochloromethane	<1.0		1.0	0.43	ug/L			08/14/17 14:07	1
Chloroform	<2.0		2.0	0.37	ug/L			08/14/17 14:07	1
1,1,1-Trichloroethane	<1.0		1.0	0.38	ug/L			08/14/17 14:07	1
1,1-Dichloropropene	<1.0		1.0	0.30	ug/L			08/14/17 14:07	1
-									

TestAmerica Chicago

MB MB

Client: Weston Solutions, Inc. Project/Site: Black and Decker TestAmerica Job ID: 500-132231-1

Method: 8260B - VOC (Continued)

Lab Sample ID: MB 500-397253/8

Matrix: Water

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Analysis Batch: 397253

Client Sample ID: Method Blank

Prep Type: Total/NA

	IAID	IAID							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Carbon tetrachloride	<1.0		1.0	0.38	ug/L			08/14/17 14:07	1
1,2-Dichloroethane	<1.0		1.0	0.39	ug/L			08/14/17 14:07	1
Trichloroethene	<0.50		0.50	0.16	ug/L			08/14/17 14:07	1
1,2-Dichloropropane	<1.0		1.0	0.43	ug/L			08/14/17 14:07	1
Dibromomethane	<1.0		1.0	0.27	ug/L			08/14/17 14:07	1
Bromodichloromethane	<1.0		1.0	0.37	ug/L			08/14/17 14:07	1
cis-1,3-Dichloropropene	<1.0		1.0	0.42	ug/L			08/14/17 14:07	1
methyl isobutyl ketone	<5.0		5.0	2.2	ug/L			08/14/17 14:07	1
Toluene	<0.50		0.50	0.15	ug/L			08/14/17 14:07	1
trans-1,3-Dichloropropene	<1.0		1.0	0.36	ug/L			08/14/17 14:07	1
1,1,2-Trichloroethane	<1.0		1.0	0.35	ug/L			08/14/17 14:07	1
Tetrachloroethene	<1.0		1.0	0.37	ug/L			08/14/17 14:07	1
1,3-Dichloropropane	<1.0		1.0	0.36	ug/L			08/14/17 14:07	1
2-Hexanone	<5.0		5.0	1.6	ug/L			08/14/17 14:07	1
Dibromochloromethane	<1.0		1.0	0.49	ug/L			08/14/17 14:07	1
1,2-Dibromoethane	<1.0		1.0	0.39	ug/L			08/14/17 14:07	1
Chlorobenzene	<1.0		1.0	0.39	ug/L			08/14/17 14:07	1
1,1,1,2-Tetrachloroethane	<1.0		1.0	0.46	ug/L			08/14/17 14:07	1
Ethylbenzene	<0.50		0.50	0.18	ug/L			08/14/17 14:07	1
m&p-Xylene	<1.0		1.0	0.18	ug/L			08/14/17 14:07	1
o-Xylene	<0.50		0.50	0.22	ug/L			08/14/17 14:07	1
Styrene	<1.0		1.0	0.39	ug/L			08/14/17 14:07	1
Bromoform	<1.0		1.0	0.48	ug/L			08/14/17 14:07	1
Isopropylbenzene	<1.0		1.0	0.39	ug/L			08/14/17 14:07	1
Bromobenzene	<1.0		1.0	0.36	ug/L			08/14/17 14:07	1
1,1,2,2-Tetrachloroethane	<1.0		1.0	0.40	ug/L			08/14/17 14:07	1
1,2,3-Trichloropropane	<1.0		1.0	0.41	ug/L			08/14/17 14:07	1
N-Propylbenzene	<1.0		1.0	0.41	ug/L			08/14/17 14:07	1
2-Chlorotoluene	<1.0		1.0	0.31	ug/L			08/14/17 14:07	1
1,3,5-Trimethylbenzene	<1.0		1.0	0.25	ug/L			08/14/17 14:07	1
4-Chlorotoluene	<1.0		1.0	0.35	ug/L			08/14/17 14:07	1
tert-Butylbenzene	<1.0		1.0	0.40	ug/L			08/14/17 14:07	1
1,2,4-Trimethylbenzene	<1.0		1.0	0.36	ug/L			08/14/17 14:07	1
sec-Butylbenzene	<1.0		1.0	0.40	ug/L			08/14/17 14:07	1
1,3-Dichlorobenzene	<1.0		1.0	0.40	ug/L			08/14/17 14:07	1
p-Isopropyltoluene	<1.0		1.0	0.36	ug/L			08/14/17 14:07	1
1,4-Dichlorobenzene	<1.0		1.0	0.36	ug/L			08/14/17 14:07	1
n-Butylbenzene	<1.0		1.0	0.39	ug/L			08/14/17 14:07	1
1,2-Dichlorobenzene	<1.0		1.0	0.33	ug/L			08/14/17 14:07	1
1,2-Dibromo-3-Chloropropane	<5.0		5.0	2.0	ug/L			08/14/17 14:07	1
1,2,4-Trichlorobenzene	<1.0		1.0	0.34	ug/L			08/14/17 14:07	1
Hexachlorobutadiene	<1.0		1.0	0.45	ug/L			08/14/17 14:07	1
Naphthalene	<1.0		1,0	0.34	ug/L			08/14/17 14:07	1
1,2,3-Trichlorobenzene	<1.0		1.0	0.46	ug/L			08/14/17 14:07	1

TestAmerica Chicago

Analyzed

08/14/17 14:07

08/14/17 14:07

Prepared

Dil Fac

Limits

75 - 126

75 - 120

MB MB

%Recovery Qualifier

93

106

Client: Weston Solutions, Inc. Project/Site: Black and Decker TestAmerica Job ID: 500-132231-1

Method: 8260B - VOC (Continued)

Lab Sample ID: MB 500-397253/8

Matrix: Water

Analysis Batch: 397253

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB I	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		72 - 124		08/14/17 14:07	1
Dibromofluoromethane	94		75 - 120		08/14/17 14:07	1

Lab Sample ID: LCS 500-397253/5

Matrix: Water

Analysis Batch: 397253

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 397253	0		1.00		0/ D
	Spike		LCS	D 0/ D	%Rec.
Analyte	Added		Qualifier Unit	D %Rec	Limits
Benzene	50.0	48.4	ug/L	97	70 - 120
Dichlorodifluoromethane	50.0	68.2	ug/L 	136	40 - 150
Chloromethane	50.0	35.6	ug/L 	71	54 - 147
Vinyl chloride	50.0	4 6.8	ug/L	94	64 - 126
Bromomethane	50.0	61.7	ug/L	123	40 - 130
Chloroethane	50.0	50.6	ug/L	101	45 - 127
Trichlorofluoromethane	50.0	54.8	ug/L	110	70 - 126
1,1-Dichloroethene	50.0	4 9.0	ug/L	98	67 - 122
Carbon disulfide	50.0	47.2	ug/L	94	66 - 120
Acetone	50.0	32.7	ug/L	65	40 - 143
Methylene Chloride	50.0	45.7	ug/L	91	69 - 125
trans-1,2-Dichloroethene	50.0	4 9.8	ug/L	100	70 - 125
1,1-Dichloroethane	50.0	47.8	ug/L	96	70 - 125
2,2-Dichloropropane	50.0	45.1	ug/L	90	58 - 129
cis-1,2-Dichloroethene	50.0	49.8	ug/L	100	70 - 125
Methyl Ethyl Ketone	50.0	32.8	ug/L	66	53 - 141
Bromochloromethane	50.0	50.6	ug/L	101	65 - 122
Chloroform	50.0	46.6	ug/L	93	70 - 120
1,1,1-Trichloroethane	50.0	51.8	ug/L	104	70 - 125
1,1-Dichloropropene	50.0	51.2	ug/L	102	70 - 121
Carbon tetrachloride	50.0	52.0	ug/L	104	65 - 122
1,2-Dichloroethane	50.0	48.7	ug/L	97	68 - 127
Trichloroethene	50.0	51.3	ug/L	103	70 - 125
1,2-Dichloropropane	50.0	4 9.6	ug/L	99	67 - 130
Dibromomethane	50.0	48.4	ug/L	97	70 - 120
Bromodichloromethane	50.0	47.5	ug/L	95	69 - 120
cis-1,3-Dichloropropene	50.0	47.3	ug/L	95	64 - 127
methyl isobutyl ketone	50.0	32.0	ug/L	64	56 - 133
Toluene	50.0	53.9	ug/L	108	70 - 125
trans-1,3-Dichloropropene	50.0	46.7	ug/L	93	62 - 128
1,1,2-Trichloroethane	50.0	50.9	ug/L	102	70 - 122
Tetrachloroethene	50.0	52.4	ug/L	105	70 - 128
1,3-Dichloropropane	50.0	48.4	ug/L	97	62 - 136
2-Hexanone	50.0	31.7	ug/L	63	56 ₋ 135
Dibromochloromethane	50.0	48.5	ug/L	97	68 ₋ 125
1,2-Dibromoethane	50.0	46.4	ug/L	93	70 ₋ 125
Chlorobenzene	50.0	52.8	ug/L	106	70 - 120
1,1,1,2-Tetrachloroethane	50.0	51.9	ug/L	104	70 - 125
Ethylbenzene	50.0	49.0	ug/L	98	70 - 120
m&p-Xylene	50.0	50.1	ug/L	100	70 - 125
map Aylone	30.0	55.1	ug/ L	,00	

TestAmerica Chicago

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Method: 8260B - VOC (Continued)

Lab Sample ID: LCS 500-397253/5

Matrix: Water

Analysis Batch: 397253

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
o-Xylene	50.0	50.5		ug/L		101	70 - 120	
Styrene	50.0	46.0		ug/L		92	70 - 120	
Bromoform	50.0	40.6		ug/L		81	56 - 132	
Isopropylbenzene	50.0	48.8		ug/L		98	70 - 126	
Bromobenzene	50.0	51.4		ug/L		103	70 - 122	
1,1,2,2-Tetrachloroethane	50.0	45.7		ug/L		91	67 - 127	
1,2,3-Trichloropropane	50.0	41.2		ug/L		82	50 - 133	
N-Propylbenzene	50.0	53.2		ug/L		106	69 - 127	
2-Chlorotoluene	50.0	51.0		ug/L		102	70 - 125	
1,3,5-Trimethylbenzene	50.0	48.6		ug/L		97	70 - 123	
4-Chlorotoluene	50.0	51.1		ug/L		102	68 - 124	
tert-Butylbenzene	50.0	53.1		ug/L		106	70 - 121	
1,2,4-Trimethylbenzene	50.0	47.9		ug/L		96	70 - 123	
sec-Butylbenzene	50.0	49.8		ug/L		100	70 - 123	
1,3-Dichlorobenzene	50.0	52.0		ug/L		104	70 - 125	
p-Isopropyltoluene	50.0	53.8		ug/L		108	70 - 125	
1,4-Dichlorobenzene	50.0	51.9		ug/L		104	70 - 120	
n-Butylbenzene	50.0	54.1		ug/L		108	68 - 125	
1,2-Dichlorobenzene	50.0	52.4		ug/L		105	70 - 125	
1,2-Dibromo-3-Chloropropane	50.0	40.1		ug/L		80	56 - 123	
1,2,4-Trichlorobenzene	50.0	50.2		ug/L		100	66 - 127	
Hexachlorobutadiene	50.0	51.6		ug/L		103	51 - 150	
Naphthalene	50.0	47.4		ug/L		95	59 - 130	
1,2,3-Trichlorobenzene	50,0	52.7		ug/L		105	55 - 140	

LCS	LCS
-----	-----

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		75 - 126
Toluene-d8 (Surr)	107		75 - 120
4-Bromofluorobenzene (Surr)	92		72 - 124
Dibromofluoromethane	92		75 ₋ 120

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-1A

Date Collected: 08/02/17 07:20 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	396796	08/10/17 14:10	JJH	TAL CHI

Client Sample ID: RFW-1B

Date Collected: 08/02/17 07:25

Date Received: 08/07/17 10:25

Lab Sample ID: 500-132231-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	396796	08/10/17 14:38	JJH	TAL CHI

Client Sample ID: RFW-2A

Date Collected: 08/02/17 10:05

Date Received: 08/07/17 10:25

Lab Sample ID: 500-132231-3

Lab Sample ID: 500-132231-4

Lab Sample ID: 500-132231-5

Lab Sample ID: 500-132231-6

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	and the state of t	1	396796	08/10/17 15:05	JJH	TAL CHI

Client Sample ID: RFW-2B

Date Collected: 08/02/17 10:50

Date Received: 08/07/17 10:25

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B		1	396796	08/10/17 15:33	JJH	TAL CHI	

Client Sample ID: RFW-3B

Date Collected: 08/02/17 16:00

Date Received: 08/07/17 10:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	396796	08/10/17 16:01	JJH	TAL CHI

Client Sample ID: RFW-4A

Date Collected: 08/03/17 10:40

Date Received: 08/07/17 10:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	396796	08/10/17 16:28	JJH	TAL CHI

Client: Weston Solutions, Inc. Project/Site: Black and Decker TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-4A DUP

Date Collected: 08/03/17 10:40 Date Received: 08/07/17 10:25

Lab Sample ID: 500-132231-7

Lab Sample ID: 500-132231-8

Lab Sample ID: 500-132231-9

Lab Sample ID: 500-132231-10

Lab Sample ID: 500-132231-11

Lab Sample ID: 500-132231-12

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Dilution Batch Prepared Ratch Ratch Factor Number or Analyzed Prep Type Type Method Run Analyst Lah Total/NA Analysis 8260B 396796 08/10/17 16:56 JJH TAL CHI

Client Sample ID: RFW-4B

Date Collected: 08/03/17 11:25

Date Received: 08/07/17 10:25

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA 8260B 396796 08/10/17 17:23 JJH TAL CHI Analysis

Client Sample ID: RFW-6

Date Collected: 08/02/17 12:40 Date Received: 08/07/17 10:25

Batch Batch Dilution Batch Prepared

Number Type Method Run Factor or Analyzed Analyst Lab Prep Type Total/NA Analysis 8260B 396796 08/10/17 17:51 TAL CHI

Client Sample ID: RFW-7

Date Collected: 08/02/17 11:40

Date Received: 08/07/17 10:25

Dilution Batch Prepared Batch Batch Number or Analyzed Analyst Prep Type Type Method Run Factor Lab 396796 08/10/17 18:19 JJH TAL CHI 8260B Total/NA Analysis

Client Sample ID: RFW-9

Date Collected: 08/02/17 08:10

Date Received: 08/07/17 10:25

Dilution Batch Prepared **Batch** Batch Factor Number or Analyzed Analyst Prep Type Type Method Run Lab 396796 08/10/17 18:46 JJH TAL CHI Total/NA Analysis 8260B

Client Sample ID: RFW-11B

Date Collected: 08/03/17 09:20

Date Received: 08/07/17 10:25

Dilution Batch Prepared Batch Batch Prep Type Method Run Factor Number or Analyzed **Analyst** Lab Type 396796 08/10/17 19:13 TAL CHI Total/NA Analysis 8260B

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: RFW-12B

Date Collected: 08/03/17 12:30 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-13

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	396796	08/10/17 19:41	JJH	TAL CHI

Client Sample ID: RFW-13

Date Collected: 08/02/17 14:55

Date Received: 08/07/17 10:25

Lab Sample ID: 500-132231-14

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	396796	08/10/17 20:08	JJH	TAL CHI

Client Sample ID: RFW-17

Date Collected: 08/02/17 13:35

Date Received: 08/07/17 10:25

Lab Sample ID: 500-132231-15

Lab Sample ID: 500-132231-16

Lab Sample ID: 500-132231-17

Lab Sample ID: 500-132231-18

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	396796	08/10/17 20:35	JJH	TAL CHI

Client Sample ID: Trip Blank

Date Collected: 08/02/17 06:00

Date Received: 08/07/17 10:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	396796	08/10/17 13:42	JJH	TAL CHI

Client Sample ID: EW-2

Date Collected: 08/03/17 13:00

Date Received: 08/07/17 10:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	397253	08/14/17 16:46	EMA	TAL CHI

Client Sample ID: EW-3

Date Collected: 08/03/17 09:30

Date Received: 08/07/17 10:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	397050	08/11/17 19:03	EMA	TAL CHI

ab

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Client Sample ID: EW-4

Date Collected: 08/03/17 08:50 Date Received: 08/07/17 10:25

Lab Sample ID: 500-132231-19

Matrix: Water

Dilution Batch Ratch Ratch Prepared or Analyzed Prep Type Type Method Run Factor Number **Analyst** Lab 8260B 397050 08/11/17 19:28 EMA TAL CHI Total/NA Analysis

Client Sample ID: EW-5

Date Collected: 08/03/17 08:25

Batch

Туре

Analysis

Batch

Method

8260B

Date Received: 08/07/17 10:25

Lab Sample ID: 500-132231-20 Matrix: Water

Dilution Batch Prepared Run Factor Number or Analyzed **Analyst** Lab 397050 08/11/17 20:18 EMA TAL CHI

Client Sample ID: EW-6

Prep Type

Prep Type

Total/NA

Total/NA

Date Collected: 08/02/17 16:25 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-21

Lab Sample ID: 500-132231-22

Lab Sample ID: 500-132231-24

Matrix: Water

Matrix: Water

Matrix: Water

Batch Dilution Batch Prepared Batch Method Run Factor Number or Analyzed **Analyst** Prep Type Type Lab 8260B 397050 08/11/17 20:44 EMA TAL CHI Total/NA Analysis

Client Sample ID: EW-7

Date Collected: 08/02/17 16:20

Date Received: 08/07/17 10:25

Batch

Type

Analysis

Batch Dilution Batch Prepared Method Run Factor Number or Analyzed Analyst Lab 397050 08/11/17 21:09 EMA TAL CHI 8260B

Client Sample ID: EW-8

Date Collected: 08/02/17 16:15

Date Received: 08/07/17 10:25

Lab Sample ID: 500-132231-23 Matrix: Water

Dilution Batch Prepared Batch Batch Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA 8260B 397050 08/11/17 21:34 EMA TAL CHI Analysis

Client Sample ID: EW-9

Date Collected: 08/02/17 16:10

Date Received: 08/07/17 10:25

Dilution Batch Batch Batch Prepared Method Number or Analyzed Analyst Prep Type Type Run Factor 08/11/17 21:59 EMA TAL CHI Total/NA 8260B 397050 Analysis

Client: Weston Solutions, Inc. Project/Site: Black and Decker

TestAmerica Job ID: 500-132231-1

Client Sample ID: EW-9 DUP

Date Collected: 08/02/17 16:10 Date Received: 08/07/17 10:25 Lab Sample ID: 500-132231-25

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	397050	08/11/17 22:24	EMA	TAL CHI

Client Sample ID: EW-10

Date Collected: 08/02/17 15:45

Date Received: 08/07/17 10:25

Lab Sample ID: 500-132231-26 Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	397050	08/11/17 22:49	EMA	TAL CHI

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

12

13

TestAmerica Job ID: 500-132231-1

Accreditation/Certification Summary

Client: Weston Solutions, Inc. Project/Site: Black and Decker

Tojectone. Black and Decker

Laboratory: TestAmerica ChicagoAll accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
California	State Program	9	2903	04-30-18
Georgia	State Program	4	N/A	04-30-18
Georgia	State Program	4	939	04-30-18
Hawaii	State Program	9	N/A	04-30-18
Illinois	NELAP	5	100201	04-30-19
Indiana	State Program	5	C-IL-02	04-30-18
lowa	State Program	7	82	05-01-18
Kansas	NELAP	7	E-10161	10-31-17 *
Kentucky (UST)	State Program	4	66	04-30-18
Mississippi	State Program	4	N/A	04-30-18
New York	NELAP	2	12019	04-01-18
North Carolina (WW/SW)	State Program	4	291	12-31-17 *
North Dakota	State Program	8	R-194	04-30-18
Oklahoma	State Program	6	8908	08-31-17 *
South Carolina	State Program	4	77001	04-30-17 *
USDA	Federal		P330-15-00038	02-11-18
Wisconsin	State Program	5	999580010	08-31-17 *
Wyoming	State Program	8	8TMS-Q	04-30-17 *

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmeric

THE LEADER IN ENVIRONMENTAL TES

2417 Bond Street, University Park, IL 60484 Phone: 708.534,5200 Fax: 708.534,5211

(optional)	(optional)	
Report Ta	Bill To	
Contact:	Contact:	
Company:	Company:	
Addrass:	Address:	
Address:	Address:	
Phone: 610, 731,0583	Phone:	
Fax:	Fax:500.132234 C.C.	

At a last A contact of the Act of	Chain of Custody Record	12000	Lab Job #. 500 / 54451		Chain of Custody Number:	Page of 3	13.7-13.8	Temperature °C of Cooler:
(optional)	Billio	Contact:	Company:	Address:	Address:	Phone:	Fax:500-132234 COC	PO#/Reference#
(opriorial)	Report Io	Contact:	Company:	Address:	Address:	Phone: 610.721.0583	Fax:	E-Mail:
7		5	CNIT	2				

Slent C P	Client Project # Solint Project # (1) Pesteu Solint Project # (2) Pesteu Solint Projec	S00.400.	Preservative			Preservative Key 1. HCL, Cool to 4°
Project Na	me ,		Parameter			2. H2SO4, Cool to 4°
Ø	Black + Decker					3. HNO3, Cool to 4° 4. NaOH, Cool to 4°
Project Lox	Project Location/State Lab Project #					5. NaOH/Zn, Cool to 4°
Har.	Haupstead 112			_ >		6. NaHSO4
Sampler	77, 77	+ S J. T. S J. Wid Act				8. None
5	The Mesan			_		9, Other
	J esw	Sampling				
daJ \SM	Sample ID	Date Time	itasM	······		Comments
~	RFW - 1A	8/2/17 730	3 63	1/		A THE LOCAL PROPERTY OF THE LOCAL PROPERTY O
7	RFW - 1.P3	255	_			
w	RFW - 2 A	Sool		>		
3-	RFw . 2B	(050)		>		
く	Prw-3B	7600	:	_	 	
۹	Prw-4A	8 3 17 10 40		<i>y</i>		
-	RFW-4A Dun	8 3 17 10 40		7		
50	RFW-4R	5011 11818		\		
9	RFW-6	2/17		7		
و .	RFW-7		1	>		
	1					

	an 1 month)		3		
	Months (A fee may be assessed if samples are retained longer than 1 month)	Lab Courier	Shipped	Hand Delivered	
	samples are rei		3	<u> </u>	
	assessed if g	ELL.	Time /0	Time	
	(A fee may b	•	2/17		
	Months	Date	Date 08/07	Dáte	5 5:
	Archive for		7		Lab Comments:
		Сотрапу	Company 74	Сотрапу	
	Disposal by Lab	<u>,</u> X	1	<i>'</i>	
		30	3	S	
>	Disposal Return to Cilent	Received By	Received	Referred	
1 (Sample	™ (പ്രവദ	Time	Time	
8/2/17/1140	Other	-			
2 8	15 Days	Date (N)	Date	Date	mments
	10 Days	73			Ollent Comments
	ays) 7 Days	Company	Company	Сотралу	Key SE - Sediment SO - Soil L - Leachate WI - Wipe DW - Drinking Water O - Other
KFW- 1	Turnaround Time Required (Business Days) 1 Day 2 Pays 5 Days 7 Days 15 Days 15 Days	X)		Matrix Key SE - Sediment SO - Soil L - Leachate WI - Wipe DW - Drinking V
它	and Time Requir		と	Ag Bé	astewater er Jge scelkneous
2	Turnarou 1 E Request	Sinbulia	Refindsh	Refinquished By	WW - Waser S - Soil SL - Sludg MS - Misc OL - Oil

Page 87 of 90

TAL-4128709 89020 17

TestAmerico	Report To Contact:	(optional)	(optional) Bill To Contact:		Chain of Custody Record	dy Record
THE LEADER IN ENVIRONMENTAL TESTING	NG Company:		Company:		Lab Job #:	1.2261
2417 Bond Street, University Park, IL 60484 Phone: 708 534 5300 - Eav. 708 534 531	Address:		Address:	· · · · · · · · · · · · · · · · · · ·	ody	And the separate control of the separate separat
	Phone: 600	731.0583	Phone:	Prince of the control	Page S of 3	1
	Fax:E-Maii;		Fax:		Temperature °C of Cooler	and the second s
Client Colon Solutions Client Project #	S00.400.	Preservative				Preservative Key 1. HCL, Cool to 4°
Jack.		Parameter				2. H2SO4, Gool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4°
AL M	t t	7				5. NaOH/Zn, Cool to 4° 6. NaHSO4
Sampler F Passursk DAPPM K	ck Wordht	· •				7. Cool to 4. 8. None 9. Other
o de marco	Sampling Time To	ontainers				
V	# 0000 2					Comments
11 Ew-3		>				
19 Ew-4	8.53	>				
2 Ew.S	8228					
2.82.6	\$ 12 17 1525					
7. 四三 2	029)	>				
3	1615	<u>```</u>				
# Ew-9	1610	>				
	(610	>	7.00	The state of the s		
1 FW-10	7 527 -	7				
Time Required (Business Days)	•	Sample Disposal				
Requested Ave Date 5 Days 10 D	10 Days 15 Days Other	Return to Client	Disposal by Lab	Months (A fee may b	(A fee may be assessed if samples are retained longer than 1 month)	an 1 month)
Helinoukharakin	Date Time	Received By	Company	Date	Time Lab Courier	
Relinguished By Company	Date	Received By	Company 74	Dete 08/07/17	Time 826	The state of the s
Reliquished By Company	Date	Repliked By	Company	Date	Time Hand Delivered	
WW – Wastewater SE – Sediment SE – Sediment SO – Soil L – Leachate SL – Studge WI – Wilh pe MS – Miscollaneous DW – Drinking Water OL – Oil A – Air	Client Comments		Lab Comments:	ents:		
		Page 89 of 90	9 of 90			TAL-48/198/2017

Login Sample Receipt Checklist

Client: Weston Solutions, Inc.

Job Number: 500-132231-1

List Source: TestAmerica Chicago

Login Number: 132231

List Number: 1

Creator: Kelsey, Shawn M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Water present in cooler; indicates evidence of melted ice.
Cooler Temperature is acceptable.	False	Cooler temperature outside required temperature criteria.
Cooler Temperature is recorded.	True	13.8c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	