QUARTERLY GROUNDWATER MONITORING REPORT

Prepared for
BLACK & DECKER (U.S.) INC.
Hampstead, Maryland
January 2004

Prepared by
ROY F. WESTON, INC.
1400 Weston Way, West Chester, Pennsylvania 19380

W.O. No. 02501.004.004.0200
TABLE OF CONTENTS

Section Page

1. INTRODUCTION... 1-1

2. SITE CHARACTERISTICS... 2-1
 2.1 HYDRAULIC PROPERTIES ... 2-1
 2.2 EFFLUENT CHARACTERISTICS ... 2-1
 2.3 GROUNDWATER QUALITY DATA .. 2-1

3. OPERATION AND MAINTENANCE OF THE TREATMENT SYSTEM........... 3-1

4. RECOMMENDATIONS... 4-1

LIST OF APPENDICES

APPENDIX A - GROUNDWATER TREATMENT SYSTEM PUMPING RECORDS

APPENDIX B - DISCHARGE MONITORING REPORTS

APPENDIX C - GROUNDWATER TREATMENT SYSTEM ANALYTICAL RESULTS

APPENDIX D - GROUNDWATER ANALYTICAL DATA PACKAGE
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2-1</td>
<td>Treatment System Pumping Records – 4th Quarter 2003</td>
<td>2-2</td>
</tr>
<tr>
<td>Table 2-2</td>
<td>Groundwater Elevation Data – 4th Quarter 2003</td>
<td>2-3</td>
</tr>
<tr>
<td>Table 2-3</td>
<td>Effluent Characteristics Summary – 4th Quarter 2003</td>
<td>2-4</td>
</tr>
<tr>
<td>Table 2-4</td>
<td>Summary of Groundwater Analytical Results - November 2003</td>
<td>2-5</td>
</tr>
<tr>
<td>Table 3-1</td>
<td>Treatment System Maintenance Activities – 4th Quarter 2003</td>
<td>3-2</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

This Groundwater Monitoring Report has been prepared to meet the requirements of Condition IV.G of the Administrative Consent Order between the State of Maryland Department of the Environment (MDE) and Black & Decker (U.S.) Inc. (April 1995) (Consent Order). Specifically, Condition IV.G calls for preparation of a Groundwater Monitoring Report containing the following information for each reporting period:

- The quantities of groundwater pumped, treated, and discharged.
- The calculation of quantities of contaminants removed from groundwater.
- A summary of all sampling analyses.
- An explanation of all operational or other problems encountered, and the manner in which each problem was resolved.
- Copies of all reports submitted to the Department of Natural Resources in conjunction with the Groundwater Appropriations Permit.
- Recommendations for changes to the Interim Groundwater Treatment System.

This document is one of several which are being prepared in response to the Consent Order; each of these documents are to be submitted to the MDE in accordance with the schedule outlined in the Consent Order. This document will become part of the Administrative Record for the site, which is maintained at the Hampstead Public Library.
2. SITE CHARACTERISTICS

2.1 HYDRAULIC PROPERTIES

In accordance with the Consent Order and the Water Appropriation Permit issued to the Black and Decker (U.S.) Inc. Hampstead, Maryland, facility, the following pumping and water level information is included for the period of October through December 2003.

Pumping records showing the total gallons pumped per month of treatment system operation are presented in Table 2-1. The complete groundwater treatment system pumping records are included in Appendix A.

Monthly water levels for wells included in the water level monitoring plan are presented in Table 2-2. For the reporting period of October through December 2003, the extraction wells were pumping at an average combined rate of approximately 156 gallons per minute (gpm).

2.2 EFFLUENT CHARACTERISTICS

Effluent characteristics of the NPDES discharge points are recorded monthly on Discharge Monitoring Reports (DMRs) and are submitted to MDE, Water Management Administration, on a quarterly basis. A summary of the sample results from the DMRs is presented in Table 2-3. DMRs for the period of October through December 2003 are included in Appendix B.

2.3 GROUNDWATER QUALITY DATA

For the reporting period of October through December 2003, approximately 50 pounds of total volatile organic compounds (VOCs) were removed from the groundwater by the extraction and treatment system. In general, the total VOCs removed from the groundwater were comprised primarily of trichloroethene (TCE) (84 %) and tetrachloroethene (PCE) (16 %). Analytical results of the groundwater collected at the inlet to the air stripper for the period of October through December 2003 are included in Appendix C.

A summary of the analytical results from the fourth quarter (November 2003) groundwater sampling round of the extraction and monitor wells is included in Table 2-4. The complete
Table 2-1
Treatment System Pumping Records - 4th Quarter 2003
Black & Decker
Hampstead, Maryland

<table>
<thead>
<tr>
<th>Date</th>
<th>Water Pumped (gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 2003</td>
<td>6,754,991</td>
</tr>
<tr>
<td>November 2003</td>
<td>6,313,453</td>
</tr>
<tr>
<td>December 2003</td>
<td>6,822,229</td>
</tr>
<tr>
<td>WELL NO.</td>
<td>TOC ELEV.</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>EW-1</td>
<td>847.21</td>
</tr>
<tr>
<td>EW-2</td>
<td>849.21</td>
</tr>
<tr>
<td>EW-3</td>
<td>846.64</td>
</tr>
<tr>
<td>EW-4</td>
<td>858.01</td>
</tr>
<tr>
<td>EW-5</td>
<td>864.17</td>
</tr>
<tr>
<td>EW-6</td>
<td>831.98</td>
</tr>
<tr>
<td>EW-7</td>
<td>818.38</td>
</tr>
<tr>
<td>EW-8</td>
<td>811.13</td>
</tr>
<tr>
<td>EW-9</td>
<td>811.35</td>
</tr>
<tr>
<td>EW-10</td>
<td>807.74</td>
</tr>
<tr>
<td>RFW-1A</td>
<td>864.37</td>
</tr>
<tr>
<td>RFW-1B</td>
<td>864.23</td>
</tr>
<tr>
<td>RFW-2A</td>
<td>857.41</td>
</tr>
<tr>
<td>RFW-2B</td>
<td>857.73</td>
</tr>
<tr>
<td>RFW-3B</td>
<td>839.21</td>
</tr>
<tr>
<td>RFW-4A</td>
<td>830.37</td>
</tr>
<tr>
<td>RFW-4B</td>
<td>830.37</td>
</tr>
<tr>
<td>RFW-5A</td>
<td>817.30</td>
</tr>
<tr>
<td>RFW-6</td>
<td>785.04</td>
</tr>
<tr>
<td>RFW-7</td>
<td>805.14</td>
</tr>
<tr>
<td>RFW-8</td>
<td>860.07</td>
</tr>
<tr>
<td>RFW-9</td>
<td>862.02</td>
</tr>
<tr>
<td>RFW-10</td>
<td>852.06</td>
</tr>
<tr>
<td>RFW-11A</td>
<td>849.32</td>
</tr>
<tr>
<td>RFW-11B</td>
<td>849.62</td>
</tr>
<tr>
<td>RFW-12B</td>
<td>844.87</td>
</tr>
<tr>
<td>RFW-13</td>
<td>849.11</td>
</tr>
<tr>
<td>RFW-14B</td>
<td>812.39</td>
</tr>
<tr>
<td>RFW-16</td>
<td>856.14</td>
</tr>
<tr>
<td>RFW-17</td>
<td>834.66</td>
</tr>
<tr>
<td>RFW-20</td>
<td>842.49</td>
</tr>
<tr>
<td>RFW-21</td>
<td>832.65</td>
</tr>
<tr>
<td>PH-7</td>
<td>805.94</td>
</tr>
<tr>
<td>PH-9</td>
<td>814.98</td>
</tr>
<tr>
<td>PH-11</td>
<td>820.68</td>
</tr>
<tr>
<td>PH-12</td>
<td>828.35</td>
</tr>
<tr>
<td>B-3</td>
<td>803.02</td>
</tr>
<tr>
<td>Amoco</td>
<td>842.29</td>
</tr>
<tr>
<td>Hamp. Town #22</td>
<td>804.96</td>
</tr>
<tr>
<td>Pembroke #1</td>
<td>NA</td>
</tr>
<tr>
<td>Pembroke #2</td>
<td>NA</td>
</tr>
<tr>
<td>N. Houcks. Rd.</td>
<td>NA</td>
</tr>
<tr>
<td>E. Century St.</td>
<td>NA</td>
</tr>
<tr>
<td>Lwr. Beckleys. Rd.</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA - Not Available/Not Accessible
Table 2-3
Effluent Characteristics Summary - 4th Quarter 2003
Black & Decker
Hampstead, Maryland

<table>
<thead>
<tr>
<th>Discharge Number</th>
<th>Parameter</th>
<th>Units</th>
<th>Permit Limits</th>
<th>DMR DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>October 2003</td>
</tr>
<tr>
<td>001</td>
<td>FLOW</td>
<td>MGD</td>
<td>NA</td>
<td>0.202</td>
</tr>
<tr>
<td></td>
<td>average maximum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>ug/l</td>
<td>5</td>
<td>< 5</td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td>ug/l</td>
<td>5</td>
<td>< 5</td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td>ug/l</td>
<td>5</td>
<td>< 5</td>
</tr>
<tr>
<td></td>
<td>Total Residual Chlorine</td>
<td>mg/l</td>
<td>< 0.1</td>
<td>< 0.1</td>
</tr>
<tr>
<td></td>
<td>Oil & Grease</td>
<td>mg/l</td>
<td>15</td>
<td>< 5</td>
</tr>
<tr>
<td></td>
<td>quarterly average</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>STD</td>
<td>6.0</td>
<td>6.38</td>
</tr>
<tr>
<td></td>
<td>minimum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>maximum</td>
<td></td>
<td></td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>BOD</td>
<td>mg/l</td>
<td>15</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>TSS</td>
<td>mg/l</td>
<td>30</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>quarterly average</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101 (Monitoring Point)</td>
<td>FLOW</td>
<td>MGD</td>
<td>NA</td>
<td>0.415</td>
</tr>
<tr>
<td></td>
<td>average maximum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fecal Coliform</td>
<td>MPN/100ml</td>
<td>200</td>
<td>< 2</td>
</tr>
<tr>
<td>201 (Monitoring Point)</td>
<td>FLOW</td>
<td>MGD</td>
<td>NA</td>
<td>0.218</td>
</tr>
<tr>
<td></td>
<td>average maximum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>ug/l</td>
<td>NA</td>
<td>< 5</td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td>ug/l</td>
<td>NA</td>
<td>< 5</td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td>ug/l</td>
<td>NA</td>
<td>< 5</td>
</tr>
</tbody>
</table>

DMR - Discharge Monitoring Report
NA - Not Applicable
NR - Not Reported

4q0312-3.xls
Table 2-4
Summary of Groundwater Analytical Results - November 2003
Black & Decker
Hampstead, Maryland

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>Units</th>
<th>EW-1 (10)</th>
<th>EW-2 (10)</th>
<th>EW-2 Duplicated (10)</th>
<th>EW-3 (10)</th>
<th>EW-4 (10)</th>
<th>EW-5</th>
<th>EW-6</th>
<th>EW-7</th>
<th>EW-8</th>
<th>EW-9</th>
<th>EW-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloromethane</td>
<td>ug/L</td>
<td>NS 100 U</td>
<td>100 U</td>
<td>10 U</td>
<td>100 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ug/L</td>
<td>NS 100 U</td>
<td>100 U</td>
<td>10 U</td>
<td>100 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>ug/L</td>
<td>NS 100 U</td>
<td>100 U</td>
<td>10 U</td>
<td>100 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ug/L</td>
<td>NS 100 U</td>
<td>100 U</td>
<td>10 U</td>
<td>100 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>ug/L</td>
<td>NS 100 B</td>
<td>100 B</td>
<td>3 JB</td>
<td>110 B</td>
<td>3 JB</td>
<td>3 JB</td>
<td>3 JB</td>
<td>3 JB</td>
<td>3 JB</td>
<td>3 JB</td>
<td>2 JB</td>
</tr>
<tr>
<td>Acetone</td>
<td>ug/L</td>
<td>NS 100 U</td>
<td>100 U</td>
<td>2 JB</td>
<td>100 U</td>
<td>2 JB</td>
<td>2 JB</td>
<td>2 JB</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,2-Dichloroethene (total)</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>2 J</td>
<td>50 U</td>
<td>5 U</td>
<td>5 U</td>
<td>4 J</td>
<td>19</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ug/L</td>
<td>NS 1100</td>
<td>360 D</td>
<td>360 D</td>
<td>690 D</td>
<td>10</td>
<td>4 J</td>
<td>11</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Benzene</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Trans-1,3-Dichloropropene</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ug/L</td>
<td>NS 100 U</td>
<td>100 U</td>
<td>10 U</td>
<td>100 U</td>
<td>10 U</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ug/L</td>
<td>NS 100 U</td>
<td>100 U</td>
<td>10 U</td>
<td>100 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ug/L</td>
<td>NS 67</td>
<td>63</td>
<td>8</td>
<td>48 J</td>
<td>33</td>
<td>24</td>
<td>8</td>
<td>71</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Toluene</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Styrene</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Xylene (total)</td>
<td>ug/L</td>
<td>NS 50 U</td>
<td>50 U</td>
<td>5 U</td>
<td>50 U</td>
<td>5 U</td>
</tr>
</tbody>
</table>

DUP = Duplicate sample
NS = Not sampled
U = Compound was analyzed for but not detected. Value shown is the method detection limit for quantification.
J = Indicates an estimated value.
<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>Units</th>
<th>RFW-1A</th>
<th>RFW-1B</th>
<th>RFW-2A</th>
<th>RFW-2B</th>
<th>RFW-3B</th>
<th>RFW-4A</th>
<th>RFW-4A (DUP)</th>
<th>RFW-4B</th>
<th>RFW-5A</th>
<th>RFW-6</th>
<th>RFW-7</th>
<th>RFW-8</th>
<th>RFW-9</th>
<th>RFW-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloromethane</td>
<td>ug/L</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>NS</td>
<td>10</td>
<td>10</td>
<td>NS</td>
<td>10</td>
</tr>
<tr>
<td>Bromonemethane</td>
<td>ug/L</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>NS</td>
<td>10</td>
<td>10</td>
<td>NS</td>
<td>10</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>ug/L</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>NS</td>
<td>10</td>
<td>10</td>
<td>NS</td>
<td>10</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ug/L</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>NS</td>
<td>10</td>
<td>10</td>
<td>NS</td>
<td>10</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>ug/L</td>
<td>2 JB</td>
<td>4 JB</td>
<td>2 JB</td>
<td>2 JB</td>
<td>2 JB</td>
<td>2 JB</td>
<td>2 JB</td>
<td>NS</td>
<td>3 JB</td>
<td>2 JB</td>
<td>NS</td>
<td>3 JB</td>
<td>NS</td>
<td>10</td>
</tr>
<tr>
<td>Acetone</td>
<td>ug/L</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>NS</td>
<td>3 JB</td>
<td>2 JB</td>
<td>NS</td>
<td>10</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>1,1-Dichloroethene (total)</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ug/L</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>NS</td>
<td>10</td>
<td>10</td>
<td>NS</td>
<td>10</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>éíí,1,3-Dichloropropane</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>13</td>
<td>83</td>
<td>83</td>
<td>12</td>
<td>NS</td>
<td>7</td>
<td>7</td>
<td>26</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>Benzene</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>Trans-1,3-Dichloropropane</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ug/L</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>NS</td>
<td>10</td>
<td>10</td>
<td>NS</td>
<td>10</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ug/L</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>NS</td>
<td>10</td>
<td>10</td>
<td>NS</td>
<td>10</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>69</td>
<td>68</td>
<td>76</td>
<td>NS</td>
<td>7</td>
<td>5</td>
<td>25</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethene</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>Toluene</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>Styrene</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
<tr>
<td>Xylene (total)</td>
<td>ug/L</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
<td>5</td>
<td>NS</td>
<td>5</td>
</tr>
</tbody>
</table>

DUP = Duplicate sample
U = Compound was analyzed for but not detected. Value shown is the method detection limit for quantification.
J = Indicates an estimated value.
NS = Not sampled
Table 2-4
Summary of Groundwater Analytical Results - November 2003
Black & Decker
Hampstead, Maryland

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>Units</th>
<th>RFW-11A</th>
<th>RFW-11B</th>
<th>RFW-12A</th>
<th>RFW-13</th>
<th>RFW-16</th>
<th>RFW-17</th>
<th>RFW-20</th>
<th>RFW-21</th>
<th>Town #22</th>
<th>Town #23</th>
<th>Leister Dairy</th>
<th>Leister Res. #1</th>
<th>Leister Res. #2</th>
<th>Trip Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloromethane</td>
<td>ug/L</td>
<td>NS</td>
<td>10 U</td>
<td>50 U</td>
<td>10 U</td>
<td>NS</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>NS</td>
<td>10 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ug/L</td>
<td>NS</td>
<td>10 U</td>
<td>50 U</td>
<td>10 U</td>
<td>NS</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>NS</td>
<td>10 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>ug/L</td>
<td>NS</td>
<td>10 U</td>
<td>50 U</td>
<td>10 U</td>
<td>NS</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>NS</td>
<td>10 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ug/L</td>
<td>NS</td>
<td>10 U</td>
<td>50 U</td>
<td>10 U</td>
<td>NS</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>NS</td>
<td>10 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Acetone</td>
<td>ug/L</td>
<td>NS</td>
<td>10 U</td>
<td>50 U</td>
<td>2 JB</td>
<td>NS</td>
<td>10 U</td>
<td>4 JB</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>NS</td>
<td>10 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,2-Dichloroethene (total)</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>12 J</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ug/L</td>
<td>NS</td>
<td>10 U</td>
<td>50 U</td>
<td>10 U</td>
<td>NS</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>NS</td>
<td>10 U</td>
<td>10 U</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ug/L</td>
<td>NS</td>
<td>63</td>
<td>560</td>
<td>28</td>
<td>NS</td>
<td>7</td>
<td>2 J</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Benzene</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Trans-1,3-Dichloropropene</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ug/L</td>
<td>NS</td>
<td>10 U</td>
<td>50 U</td>
<td>10 U</td>
<td>NS</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>NS</td>
<td>10 U</td>
<td>10 U</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ug/L</td>
<td>NS</td>
<td>10 U</td>
<td>50 U</td>
<td>10 U</td>
<td>NS</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>10 U</td>
<td>NS</td>
<td>10 U</td>
<td>10 U</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ug/L</td>
<td>NS</td>
<td>1 J</td>
<td>33</td>
<td>81</td>
<td>NS</td>
<td>1 J</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>1 J</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Toluene</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Styrene</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
<tr>
<td>Xylene (total)</td>
<td>ug/L</td>
<td>NS</td>
<td>5 U</td>
<td>25 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>5 U</td>
<td>NS</td>
<td>5 U</td>
<td>5 U</td>
</tr>
</tbody>
</table>

DUP = Duplicate sample
U = Compound was analyzed for but not detected. Value shown is the method detection limit for q1
J = Indicates an estimated value.
NS = Not sampled
analytical data package is included in Appendix D.

As found in earlier sampling events at the Black & Decker facility, TCE and PCE were the VOCs detected at the highest concentrations in the groundwater samples. The highest concentration of TCE was detected in the groundwater samples collected from wells RFW-12B and EW-4 and the highest concentration of PCE was detected in the groundwater samples collected from wells EW-8 and RFW-13. Lower concentrations of 1,2-dichloroethene, 1,1,1-Trichloroethane and 1,1-Dichloroethane were also detected. EW-9 was not sampled due to a malfunction in the flow meter. The meter was not recording flow so it was thought that the well was down. The remainder of VOCs present were detected at levels well below the Federal Maximum Contaminant Levels (MCL).
3. OPERATION AND MAINTENANCE OF THE TREATMENT SYSTEM

A summary of the maintenance activities which were undertaken with the extraction and treatment system during the reporting period (October through December 2003) is provided in Table 3-1. This table is comprehensive in summarizing significant maintenance events or activities, while not including those activities considered unworthy of note (such as replacement of light bulbs, lubrication of moving parts as appropriate or other routine activities).
Table 3-1
Treatment System Maintenance Activities - 4th Quarter 2003
Black & Decker
Hampstead, Maryland

<table>
<thead>
<tr>
<th>Date</th>
<th>Event/Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2003</td>
<td>Flow meter in EW-9 not functioning, the well is pumping. A new meter has been ordered and will be replaced when it is received.</td>
</tr>
</tbody>
</table>
4. RECOMMENDATIONS

For the reporting period of October through December 2003, the treatment system continued to create a hydraulic boundary preventing off-site migration of groundwater. The extraction system will continue to operate as currently configured to pump and treat contaminated groundwater. Depth-to-water measurements will continue to be collected on a monthly basis in all site monitor wells to construct a groundwater elevation contour map for the site. The groundwater elevation contour map will be used to verify that the required area of groundwater capture is being maintained. If necessary, pumping rates will be adjusted to maintain groundwater capture due to seasonal fluctuations in groundwater elevations. The treatment system will also continue to operate as currently configured, as data collected have proven that the treatment system is fully effective in removing VOCs from the extracted groundwater.